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Figure 1. Teaser – we present a strikingly simple training-free method to make already available novel-view synthesis diffusion models
more consistent both in terms of the desired viewing angle and the content—combining it with video diffusion. As shown in the example,
the results of our method are more consistent with the input images and correspond more to the target views.

Abstract

Generating novel views of an object from a single image

is a challenging task. It requires an understanding of the un-

derlying 3D structure of the object from an image and ren-

dering high-quality, spatially consistent new views. While

recent methods for view synthesis based on diffusion have

shown great progress, achieving consistency among various

view estimates and at the same time abiding by the desired

camera pose remains a critical problem yet to be solved.

In this work, we demonstrate a strikingly simple method,

where we utilize a pre-trained video diffusion model to solve

this problem. Our key idea is that synthesizing a novel view

could be reformulated as synthesizing a video of a cam-

era going around the object of interest—a scanning video—

*Equal contribution
†Work done while visiting University of British Columbia

which then allows us to leverage the powerful priors that a

video diffusion model would have learned. Thus, to perform

novel-view synthesis, we create a smooth camera trajectory

to the target view that we wish to render, and denoise using

both a view-conditioned diffusion model and a video diffu-

sion model. By doing so, we obtain a highly consistent novel

view synthesis, outperforming the state of the art.

1. Introduction

Novel view synthesis from a single image is an interesting
problem in Computer Vision as it requires an understanding
of the 3D characteristics of an object or a scene, simply by
looking at a 2D image. Recent methods have utilized Neural
Radiance Fields (NeRF) [26, 78], and more recently diffu-
sion models [7, 73], including those that expand upon Sta-
ble Diffusion [50] such as Zero-1-to-3 [34]. While recent
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Figure 2. Example rendering inconsistencies – we show exam-
ple novel views generated for a chair image as shown on the left.
Our method provides improved consistency with the input image,
compared to both Zero-1-to-3 XL [10, 34], a pure 2D novel-view
diffusion model, and even when it is combined with the Score Dis-
tillation Sampling (SDS) [43] for improved 3D consistency. Note
that the 3D distilled version exhibits blurriness due to the pose er-
rors that Zero-1-to-3 XL makes.

methods show high-quality rendering from a given view,
when examined more carefully, these models lack consis-
tency [34], and their poses are also not accurate. This is
because diffusion models are mainly geared towards gener-
ating images that look good. Moreover, diffusion models
learn the 3D consistency implicitly, not explicitly. These
limitations are not resolved even when models are trained
with large datasets [10, 11]; see Fig. 1.

Very recently, researchers have thus focused their ef-
forts on making diffusion model-based novel view synthe-
sis more ‘consistent’. These include methods that train
or finetune 2D diffusion models to make them more con-
sistent [10, 35, 56, 57, 74, 77] or embed 3D constraints
in the form of 3D representations [28, 42, 70] through
score distillation techniques [43, 44, 62, 69, 72]. While
they provide improved results, there are still several limi-
tations. 2D view-conditioned models often require retrain-
ing [35, 56, 74] which is costly, and as shown in Fig. 2 (mid-
dle), even with this additional training they still have con-
siderable room for improvement. In the case of methods
that bring in explicit 3D representations such as NeRF [42]
or Gaussian Splatting [28] on top [33, 44, 62], suffer from
poor visual quality often due to the blurs that the pose in-
consistencies of 2D models bring; see Fig. 2 (bottom).

In this work, we show that a strikingly simple solution
that does not require any new training or fine-tuning ex-
ists for this problem—leveraging pre-trained video diffu-

sion models. Our key idea is that, given their recent im-
provement in quality, video diffusion models [1, 18] can be
used as strong priors for any task that can be represented as
a video—including the current task of novel view synthe-
sis. For example, consider generating a video of someone
scanning an object. If we were to generate such a video,
where the first frame of the video corresponds to the ob-
ject that we wish to generate a novel view of, and the last
frame is from the target novel view, generating this video
is effectively equivalent to the single image novel view syn-
thesis task, except now with redundant intermediate frames.
Importantly, we already have pre-trained public models for
both generating these individual frames—view-conditioned
diffusion models [34]—and the video as a whole—video
diffusion models [1, 18].

To implement our method we use Zero-1-to-3 XL [10,
34] and ZeroScope [1], both of which are based on Sta-
ble Diffusion [50]. We generate a smooth camera trajec-
tory from the frontal view to the desired view and provide
Zero-1-to-3 XL with the individual camera locations for
each frame, along with the input image. We then denoise a
video, where the noise estimates for each frame are a com-
bination of noise estimates from both diffusion models. We
investigate multiple different strategies for combining the
noise estimates, and find that starting to denoise with equal
emphasis on both diffusion models and then reducing the
weight on the video diffusion model to half throughout the
denoising process is the best.

To evaluate our method we rely on 100 shapes from the
Google Scanned Object (GSO) dataset [12]. As we are
able to render these shapes from any view, we compare the
novel-view synthesis results with the ground-truth render-
ing. We find that, due to the difficulty of the novel-view
synthesis tasks, it is very easy to have minor misalignments,
and the typical image quality metrics do not provide a com-
plete view. We thus propose a novel metric based on optical
flow, and measure the spatial deviations of the novel-view
renderings. Our metric, together with the standard ones pro-
vides a holistic view of the performances of each method.

2. Related work

We first review novel-view synthesis methods based on ex-
plicit geometric constraints, then discuss the more recent
trend of using diffusion models. As we rely on video diffu-
sion, we also briefly discuss noteworthy works.

Novel view synthesis with geometric constraints. Early
work on novel view synthesis recovers the 3D structure of
a scene by incorporating geometric prior such as camera
parameters [52, 60]. Since then, as in many other areas in
computer vision, deep learning-based methods have been
proposed [15, 48, 49], which often combine traditional 3D
geometry aware multi-view synthesis [3, 17] with modern
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deep learning. Other works leverage voxels [36, 59], depth
maps [14, 66] or epipolar constraints [30] in their model.

More recently, since the introduction of Neural Radi-
ance Fields (NeRF) [42], 3D constraints via volume render-
ing have become popular. While training a NeRF requires
multiple views, PixelNeRF [78] utilizes convolutional fea-
tures of pre-trained deep networks [19] to reduce the num-
ber of required views, as little as a single view. GRF [65]
extends this idea to the concept of canonical space. Gen-
NVS [7] further appends diffusion models into the pipeline
for improved rendering. While they have shown impressive
progress, these methods require per-dataset training, which
limits their applicability.
Novel-view synthesis with diffusion models. Recently,
like many other applications that involve image genera-
tion [20, 29, 41, 50], there has been a flurry of research for
novel view synthesis based on diffusion models. These in-
clude those that directly aim to generate 2D novel views
conditioned on the input image and the camera pose [34,
73]. Among them, Zero-1-to-3 [34], being based on Stable
Diffusion [50], has demonstrated impressive results, bene-
fiting from the original weights of Stable Diffusion that have
been trained with a very large dataset [53]. This method has
been further trained on a large-scale 3D dataset [10, 11],
further improving its performance—we use this model.

While these direct 2D methods have shown impressive
rendering quality, as shown in Fig. 2, they often fall short
when it comes to the consistency of what they render, and
also from where they are viewed. Various approaches, con-
currently to our work [35, 56, 57, 74, 77] have thus been
presented in an attempt to make them more ‘consistent’.
They, however, require re-training or fine-tuning, and some-
times only provide restricted views [35]. Our method suf-
fers from neither of these shortcomings.

Alternatively, to enforce consistency, methods that aim
to distill what diffusion models have learned to 3D repre-
sentations have also been suggested. DreamFusion [43] and
Score Jacobian Chaining (SJC) [69] leverage a pre-trained
diffusion model [51] to distill it into a NeRF representa-
tion [42], allowing text-to-3D, which can also be utilized
for novel-view synthesis. Various followups [4, 8, 27, 32,
40, 54, 72, 75, 76] have since then been suggested to im-
prove the rendering quality via additional constraints such
as subject-driven diffusion guidance [45] and frontal cam-
era position [32, 54].

More recent, concurrent works [33, 37, 44] have further
integrated this idea with view-conditioned diffusion meth-
ods [34], but due to misalignments between desired camera
pose and the outcome of 2D part of their pipelines, their
results can become blurry (Fig. 2). Our method is comple-
mentary to these efforts in that we still rely on a pure 2D
pipeline, yet allow more consistent renderings.
Video diffusion models. We also briefly review video dif-

fusion models since we utilize them. A recent trend in
video diffusion models is to take advantage of the advance-
ments in image diffusion models by factorizing space and
time [6, 24, 25, 58, 68, 80]. They include methods that
use cascaded diffusion models [24], and spatio-temporal
interpolation [58]. Among them, methods that extend al-
ready trained test-to-image latent diffusion models such as
Stable Diffusion [50] have become popular. For example,
Blattmann et al. [6] choose to train separate temporal lay-
ers, Guo et al. [18] injects motion modules, ZeroScope [1]
finetunes VideoFusion [39], which decomposes the diffu-
sion process as a sum of a base noise and a residual noise.
Among them, we use ZeroScope, as their models are pub-
licly available, and they also build on top of Stable Diffu-
sion, as is the case of view-synthesis diffusion model Zero-
1-to-3 XL [10, 34].

3. Method

The key idea behind our method is strikingly simple—video
diffusion models can be used as a strong prior in conjunc-
tion with novel-view diffusion models to improve consis-
tency in synthesized views, without any training or fine-
tuning. To do this, instead of directly generating a novel
view, we propose to generate a camera trajectory towards
the camera view that we wish to render.

As illustrated in Fig. 3, images generated by the view-
conditioned diffusion model for generating novel views of-
ten do not faithfully follow the target camera path, and can
also have (object) pose errors. As such renderings, when
viewed as a video, would not look like a natural video due
to abrupt motions, using a video diffusion model helps to
smooth out this error. This results in renderings that abide
by the requested novel pose, as well as the contents being
consistent with the input view.

To explain our method, we first provide a brief overview
of diffusion models to introduce the notations that we will
use (Sec. 3.1) then detail our method (Sec. 3.2).

3.1. Preliminary: diffusion models

Specifically among the diffusion models, we rely on La-
tent Diffusion Models (LDM) [13, 50, 67]. Latent diffusion
models utilize an encoder-decoder, E-D, pair—often pre-
trained, e.g., with Vector-Quantized Generative Adversarial
Nets (VQ-GAN) [50]—to convert an input image x into a
latent code z = E(x) and transform it into noise by itera-
tively adding Gaussian noise for T steps [50]. The diffusion
model then learns to estimate the amount of noise at a given
time step t, which is then used to reverse the diffusion pro-
cess and denoise to the corresponding signal z. Specifically,
denoting the denoising model as ✏(·), to generate an image
we write

zt�1 = � (zt, ✏ (zt, t, y)) , (1)
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Figure 3. Overview – to synthesize a target novel view of a given object, we synthesize along a smooth camera trajectory, starting from an
initial view and ending at the target. We then denoise to generate images with guidance from two diffusion models: a novel-view synthesis
diffusion model; and a video diffusion model. The video diffusion model helps create a smooth camera trajectory and preserve consistency,
which the novel-view synthesis diffusion model can lack. The two together, as shown, provide high-quality novel-view synthesis, that is
consistent in both the content and the desired camera views.

where �(·) is an update (sampling) rule for denoising such
as Denoising Diffusion Probabilistic Models (DDPM) [23],
and y is the conditioning text. Note that for clarity in nota-
tion, we drop text conditioning from Eq. (1).

We now formalize the two types of denoising diffusion
models that we use, a model for novel-view synthesis, and
one for generating videos.

Diffusion models for novel view synthesis. For novel view
synthesis with diffusion models, instead of the text condi-
tioning via y, it is often replaced with an encoding of the
image and the desired camera pose [34, 57]. Thus, denois-
ing with this model takes the form,

zt�1 = �
�
zt, ✏view

�
zt, t,V(x0,v)

��
, (2)

where x0 is the input image, v denotes the camera poses to
synthesize, and V is a mapping that encodes the input image
x0 and the desired view v to a conditioning signal.

Video diffusion models. While video diffusion models
vary in their architectural designs and their sophisticated
training schemes [1, 6, 18, 39], at a high level they dif-
fuse multiple images (frames) together so that they form a
video. At any timestep of the denoising process, the denois-
ing model is applied across all the frames, given by,

z1:Ft�1 = �
�
z1:Ft , ✏video

�
z1:Ft , t, y

��
, (3)

where z1:F={z1t , . . . , zFt } denotes the F frames of a video
at a denoising step t.

3.2. Video diffusion for novel view synthesis

To combine the two diffusion models for novel view syn-
thesis, we generate a trajectory of camera poses for each
view. views v1:F = {v1, . . . ,vF } where vF is the desired
novel view. We generate these views by creating a smooth
trajectory of views through Spherical Linear Interpolation
(Slerp) [9], starting from the initial view v1 to the target
view vF . For convenience, we set the initial view to be
the same as v0 corresponding to the input image x0 (i.e.,
v1 := v0), but it can be any arbitrary view. We then ini-
tialize the latent for each view z1:FT by drawing them from a
Gaussian distribution, that is, z1:FT ⇠ N (0,1). With these,
we iteratively denoise them according to the typical diffu-
sion process with the two denoisers ✏view and ✏video together.

Specifically, simplifying the notation for the denoiser
estimates in Eqs. (2) and (3) by dropping t, y, and V ,
as ✏view(zt,x0,v) and ✏video(z1:F ), we write our denoising
process as

z1:Ft�1 = �
�
z1:Ft , ✏1:Fboth

�
, (4)

where, denoting the view index as superscript f ,

✏fboth = �view✏view(z
f ,x0,vf ) + �video✏video

�
z1:F

�f
, (5)
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where �view and �video denote the hyperparameters control-
ling the influence of each denoising model.

Note that combining two noise estimates together is sim-
ilar to how conditional and unconditional models are used
together for Classifier Free Guidance [22]. Here, we are
combining two models, each with different conditioning
and architecture to perform the same task of generating the
video frames of the camera going about a specific trajectory.
Ultimately, for the generated frames to be precise, they must
satisfy both models, which is the core idea that provides im-
proved synthesis results as shown in Fig. 3.
Null prompting. As shown in Eq. (5), ✏view(·), the denoiser
for the novel views is already conditioned on the input im-
age x0. Because of this, there is no need for the user to
provide the text prompt y for ✏video(·). We thus set it to a
null prompt, that is, y = Ø. Hence, the guidance of the
content for the video diffusion model is purely reliant on
✏view(·), the novel-view synthesis diffusion model.
Scheduling influence of each model. We found that the
way the two noise estimates are combined in Eq. (5) has
an impact on the behaviour of our method. Too strong
emphasis—large �video—on the ✏video(·) estimates in later
stages of the denoising process causes the entire generation
to be overly smooth, while having too small of an impact—
small �video—in early stages restrict the impact of the video
diffusion model, as the early stages determine the global
structures [5, 21] often related to the camera view. We thus
propose a linearly decaying setup, where �view=1 is set to a
constant, and �video decay linearly from 1.0 at the 0-th step
to 0.5 at the 50-th step. We ablate our choice in Sec. 4.3.

4. Results

4.1. Datasets and experimental setup

We will release the code and the experimental settings to
make our results completely reproducible.
Datasets. To systematically evaluate the quality of the syn-
thesized images, we rely on the 100 3D shapes from the
Google Scanned Objects (GSO) dataset [12]. Among the
1,030 objects in the dataset, we manually select 100 shapes
that look interesting—for example, we ignore shapes such
as cubes and spheres. We render these images using the
same lighting as in Zero-1-to-3 [34]. We render 25 views,
with an elevation of 15 degrees and azimuth ranging from
-45 to 45 degrees from manually selected views that capture
the characteristics of the object.
Metrics. While results from diffusion-based novel-
view synthesis models look good in general it can be
misleading—synthesized images may not be of the desired
view, and their contents may change as diffusion-based
models often do not have the explicit notion of 3D space.
Thus, with the synthetic dataset (described above), we sys-
tematically measure the quality of the generated images.

GT Zero-1-to-3 XL ViVid-1-to-3
(Ours)

24.33 / 0.949 / 0.076 / 0.5337 23.97 / 0.951 / 0.049 / 0.1444

17.75 / 0.825 / 0.163 / 0.6415  17.71 / 0.843 / 0.188 / 0.5838

PSNR / SSIM / LPIPS / FOR8  

PSNR / SSIM / LPIPS / FOR8  

PSNR / SSIM / LPIPS / FOR8  20.82 / 0.914 / 0.083 / 0.7219 20.15 / 0.908 / 0.102 / 0.6310

Figure 4. Shortcoming of standard image metrics – we show
example (left) ground-truth renderings from the target view, and
the novel-view images by (middle) Zero-1-to-3 XL and (right)

our method. We show PSNR / SSIM / LPIPS / FOR8 for each
shape. As shown, standard image metrics—PSNR, SSIM, and
LPIPS—may not correspond to how ‘accurate’ each image is due
to misalignments. Arguably, our renderings are more consistent
and faithful to the ground truth. However, each metric provides a
different story. We propose an optical flow-based metric, FORk,
to compensate for this shortcoming and provide a holistic view.

While we also report standard images for novel-view
reconstruction, Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index Metric (SSIM) [71], and Learned Per-
ceptual Image Patch Similarity (LPIPS) [79], we notice that
these metrics do not faithfully resemble the synthesis qual-
ity. It is because synthesizing a novel view from a single im-
age is inherently an ill-posed problem, and even the slightest
error in the implied 3D estimate can lead to a large error for
the standard metric; see Fig. 4. This is expected, since these
standard metrics are well known to be either highly sensi-
tive to misalignment as in the case of PSNR and SSIM, or
lead to measures that cannot distinguish between good and
poor alignment due to insensitivity, e.g., with LPIPS.
Optical flow metric – FORk. We thus propose to use
a metric that measures how many of the rendered pixels
are close enough to where they really should be – optical
flow. To retrieve optical flow, given that the generated im-
ages and the ground truth are supposed to be similar, we
use RAFT [64]. We then measure the ratio of flow esti-
mates that deviate significantly (we use various thresholds)
from RAFT estimates to account for the potential errors that
RAFT itself may make. We denote our metric as FORk

(flow outlier ratio), where k is the pixel threshold—we use
8 and 16 as RAFT is reported [64] to make an average pixel
error of 5 pixels on the KITTI benchmark [16]. Note that
our metric is similar to how the KITTI benchmark measures
optical flow accuracy by counting the ratio of optical flow
outliers. Ideally, if the rendering was perfect, this metric
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Figure 5. Qualitative highlights – we provide examples for multiple recent baselines. Our results are most consistent with the input
image. Note the direction of the tail for the left object, the horns of the object in the middle, and the tail of the object on the right.

would be zero, and the lower the ratio of flow outliers the
more accurate. Since we are looking at estimated optical
flow, which relies on appearance, this metric takes into ac-
count both the faithfulness of the appearance and the align-
ment; see Fig. 4.

4.2. Qualitative comparison

Baselines. We compare our method against the following
2D and 3D baselines:
• 2D) Zero-1-to-3 (XL) [10, 34]: the base model for our

novel-view diffusion model. We compare against both
the original version and the one fine-tuned on Objaverse-
XL [10].
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• 2D) SyncDreamer [35]: a 2D novel-view diffusion
model that improves the consistency of Zero-1-to-3 XL
by finetuning it with pre-defined fixed views. For this
method, we thus show the nearest view, in its pre-defined
view set.

• 3D) Magic123 [44]: a method that consists of two
stages of coarse-to-fine generation process for textured
3D mesh. Firstly it utilizes both 2D [50] and 3D [43]
diffusion prior to train NeRF. It then converts the trained
NeRF to DMTet [55] to generate high-resolution 3D tex-
tured models.

• 3D) Make-It-3D [63]: a method that first uses the ref-
erence image and its monocular depth estimate to opti-
mize a NeRF. It then uses the Score Distillation Sampling
(SDS) [43] loss with a text prompt obtained via BLIP-
2 [31] and optimizes a textured point cloud, which is then
rendered as novel views via deferred neural rendering.

• 3D) One-2-3-45 [33]: a method that trains a straightfor-
ward and efficient multi-view reconstruction model with a
3D convolutional neural network using images generated
from Zero-1-to-3 (XL) [10, 34].

• 3D) DreamGaussian [62]: a method that leverages the
recently popularized 3D Gaussian Splatting [28] for effi-
cient 3D textured mesh generation.

For all baselines, we use the official code provided by the
authors and use default parameters. We visualize each base-
line from a similar view, which we manually align for 3D
methods due to the different coordinate conventions of each
method, and the inconsistency between the pose estimates
and the requested pose.

Discussion Fig. 5. We first demonstrate our results qualita-
tively in Fig. 5. As shown, our method provides results that
are much more consistent with the input image. Note that
many of the methods shown, qualitatively, look good. How-
ever, upon close inspection, these models are often not con-
sistent with either the input image, especially as the target
view deviates strongly from the input image. For example,
the tail direction of the left object, the horns of the middle
object, or the ears and the tails of the right object.

We notice that the methods that utilize explicit 3D repre-
sentations show worse quality than the pure 2D ones. This
is potentially due to their reliance on monocular depth es-
timates from off-the-shelf methods [46, 47], and the pose
inconsistencies that 2D novel-view diffusion models bring.
While their renderings are 3D consistent by construction,
they tend to be blurrier and less faithful to the input image.

From text to novel views – Fig. 6. We further demon-
strate rendering multiple views of objects purely from text.
We generate an image of an object with Stable Diffusion,
remove the background via Ranftl et al. [47], and then use
our method to generate novel views. The generated views
are not only consistent with the input view but also preserve

“A pepperoni pizza toy with arms and legs, Cinematic”

“A cute squirrel, 3D rendering” 

“A delicious chocolate croissant, Cinematic”

Input Multi-view images

Figure 6. From text to novel-view synthesis – we show exam-
ples of multiple views of objects being generated purely from text
prompts via Stable Diffusion [50] and our method. We show both
the original view and the novel view.

the semantics of the input prompt. Our framework yields a
high-quality text-to-novel view synthesis model when com-
bined with the denoising pipeline of stable diffusion.

4.3. Quantitative results

Baselines. Due to the limited amount of computational re-
sources, we focus our efforts to peer-reviewed baselines at
the time of writing: Zero-1-to-3 (XL) [10, 34] and Make-
It-3D [63]. As before, we use the official implementations,
with their default configurations. For Make-It-3D, we ren-
der images at 800⇥800 which is the default rendering reso-
lution, and then resize it to 512⇥512 with bilinear sampling.
Flow-based metric – Fig. 8. We report the flow-based
metric at varying thresholds—8 and 16 pixels—in Fig. 8.
Here, we exclude Make-It-3D as its results were signifi-
cantly worse than others, as we will show via standard met-
rics in Tab. 1. Our method significantly improves over Zero-
1-to-3 XL, especially when the requested viewing angle is
distant from the original view. This demonstrates how video
diffusion helps in providing more consistent renderings.
Image-based metrics –Tab. 1. For completeness, we fur-
ther report the standard image-based metrics in Tab. 1. Our
method also improves over the state of the art in terms of
traditional image quality metrics. Interestingly, Make-It-
3D, by focusing on building an explicit 3D representation,
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Input image

λvideo = 0.0

λvideo = 1.0

λvideo = 2.0

Figure 7. Effect of hyperparameters – we show an example of our method when (top) video diffusion is not used hence equivalent
to Zero-1-to-3 XL [10, 34], (middle) with optimal hyper parameters, and (bottom) with too much influence from video diffusion model.
Without video diffusion the poses are inconsistent—they change abruptly from one image to another (marked with blue boxes). With too
much video diffusion the content smooths out, losing detail (marked with orange boxes).

Ours
Zero-1-to-3 XL
Zero-1-to-3

0� � 15� 15� � 30� 30� � 45� 0� � 15� 15� � 30� 30� � 45�

0.1

0.2

0.3

0.4

Flow outlier ratio at 8 pixels (FOR8) Flow outlier ratio at 16 pixels (FOR16)

Figure 8. Optical flow outlier ratio – we report the optical flow
outlier ratio with varying thresholds (8 and 16 pixels) for each
method for novel view images generated for different viewing an-
gles. Our method provides significant improvement over Zero-1-
to-3 XL [10, 34] and outperforms all methods.

PSNR" SSIM" LPIPS# FOR8# FOR16#
Make-It-3D [63] 17.13 0.841 0.135 0.876 0.501
Zero-1-to-3 [34] 22.66 0.902 0.106 0.255 0.091
Zero-1-to-3 XL [10, 34] 23.47 0.909 0.101 0.203 0.068
ViVid-1-to-3 (Ours) 24.05 0.917 0.099 0.178 0.060

Table 1. Image metrics – We report the PSNR, SSIM, and LPIPS
for each method for all views. Our method performs best.

�s
video �e

video PSNR" SSIM" LPIPS# FOR8# FOR16#
1.0 0.5 22.55 0.905 0.105 0.2923 0.0944

1.0 1.0 22.55 0.905 0.106 0.2958 0.0949
1.0 0.0 22.48 0.905 0.105 0.3082 0.0995
1.5 0.5 22.44 0.904 0.106 0.2952 0.1072

Table 2. Effect of hyperparameters – we show all metrics for
the azimuth range of 30–45 degrees for various scheduling of �view

and �video. We keep �view=1 and schedule �video, where we denote
the linear scheduling as �s

video-�e
video-t, where �s

video is the starting
�video value, �e

video is the end value at timestep 50.

loses quality when it comes to actual 2D renderings.

Effect of hyperparameters �view and �video – Tab. 2 and

Fig. 7. As discussed earlier in Sec. 3.2, the choice of �view
and �video matters. We investigate multiple parameter set-
tings and report a subset of our search in Tab. 2. Note that
our optical flow-based metric, FORk is more distinctive. As
shown, relying either too much or too little on the video dif-
fusion model is suboptimal. A representative example of
both cases is shown in Fig. 7.

5. Conclusion

We have presented a framework for novel-view synthe-
sis, that poses the problem as a video generation prob-
lem, which allows combining novel-view diffusion models
with video diffusion models. By utilizing the strong pri-
ors learned within video diffusion models, we achieve more
consistent novel-view synthesis results. To compensate for
the shortcomings of standard image-based metrics, we pro-
pose a novel metric based on optical flow. We compared our
method existing methods, achieving the state of the art.
Limitations and future work. While our method delivers
improved consistency with the input image, it still does not
have an explicit 3D model and can be multi-view inconsis-
tent. We note, however, that our method is complementary
to other methods that focus on consistent novel-view syn-
thesis including those that embed 3D models. With our im-
proved consistency in a pure 2D pipeline, a promising future
direction would be to incorporate explicit 3D pipelines.
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