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Abstract

Weakly Supervised Semantic Segmentation (WSSS) aims

to learn the concept of segmentation using image-level class

labels. Recent WSSS works have shown promising results

by using the Segment Anything Model (SAM), a foundation

model for segmentation, during the inference phase. How-

ever, we observe that these methods can still be vulnera-

ble to the noise of class activation maps (CAMs) serving

as initial seeds. As a remedy, this paper introduces From-

SAM-to-CAMs (S2C), a novel WSSS framework that di-

rectly transfers the knowledge of SAM to the classifier dur-

ing the training process, enhancing the quality of CAMs it-

self. S2C comprises SAM-segment Contrasting (SSC) and a

CAM-based prompting module (CPM), which exploit SAM

at the feature and logit levels, respectively. SSC performs

prototype-based contrasting using SAM’s automatic seg-

mentation results. It constrains each feature to be close

to the prototype of its segment and distant from prototypes

of the others. Meanwhile, CPM extracts prompts from

the CAM of each class and uses them to generate class-

specific segmentation masks through SAM. The masks are

aggregated into unified self-supervision based on the con-

fidence score, designed to consider the reliability of both

SAM and CAMs. S2C achieves a new state-of-the-art per-

formance across all benchmarks, outperforming existing

studies by significant margins. The code is available at

https://github.com/sangrockEG/S2C.

1. Introduction

Semantic segmentation is a computer vision task, aiming

to partition an image into semantically meaningful seg-

ments. Over the past decade, learning-based methods have

achieved remarkable progress; however, they often rely on

a fully supervised approach, demanding labor-intensive and

costly pixel-level annotations.

As a remedy, Weakly Supervised Semantic Segmenta-

tion (WSSS) has emerged, harnessing weak yet inexpensive

Figure 1. (A): From top to bottom, the RGB image, ground truth

(GT), and the segmentation result of SAM. (B)-(D): The top and

bottom rows represent the results from vanilla CAMs and the pro-

posed method, respectively. For (D), we apply the SAM-based

post-processing method of [9]. Despite SAM’s segmentation ca-

pability, the initial errors present in CAMs often cannot be recti-

fied and may worsen in some cases. In contrast, the proposed S2C

framework effectively harnesses SAM during the training phase,

leading to a substantial improvement in the quality of CAMs.

labels. Notably, the approach using image-level class la-

bels [1–3, 5, 8, 14, 17, 26, 29, 34, 43, 45, 51, 52, 59, 60, 64,

65, 68, 71] have gained most attention due to their practical-

ity. The conventional works have utilized Class Activation

Maps (CAMs) [70], which identify the regions crucial for

a classifier’s decision-making. While CAMs offer a coarse

localization of relevant objects, they usually exhibit a bias

towards the most discriminative regions, resulting in incom-

plete activation. Furthermore, due to the lack of pixel-wise

supervision, the CAMs usually have imprecise boundaries.

The field of WSSS has endeavored to overcome these

challenges, incorporating additional information sources

such as off-the-shelf saliency prediction modules [19–21,

28, 49, 53], background-only external data [31], or vision-

language models [37, 57, 61]. Leveraging publicly available

resources, these works have achieved meaningful improve-

ments while preserving the cost-effectiveness of WSSS.

In line with this philosophy, this paper explores the uti-

lization of another potent information source: the Segment-

Anything Model (SAM) [22], a recently introduced founda-

tional model for promptable segmentation. Note that our fo-

cus is not merely on using SAM but on how to use it effec-
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tively to address persistent challenges in WSSS. In this pa-

per, we begin by examining how contemporary works have

incorporated SAM for WSSS through post-processing [9]

or zero-shot inference [10]. Despite promising results, these

approaches primarily employ SAM during the inference

phase, leaving the overall pipeline susceptible to noise in

the initial seeds, i.e., CAMs, as in the top row of Fig. 1.

In response, we introduce a novel WSSS framework

named “from-SAM-to-CAMs (S2C)”, aiming to enhance

the quality of CAMs itself by transferring the knowledge of

SAM to the classifier. S2C comprises two innovative meth-

ods: SAM-Segment Contrasting (SSC) and CAM-based

Prompting Module (CPM), distillating SAM’s capabilities

at the feature and CAM levels, respectively.

In SSC, we segment an image using SAM’s automatic

segmentation option (segment-everything), creating proto-

types for each segment by averaging the features of our

classifier. Through contrastive learning, we enforce each

feature to be close to the prototype of its segment and distant

from prototypes of other segments. Meanwhile, CPM lever-

ages SAM to directly refine the CAMs into self-supervisory

signals. CPM identifies local peaks in each class’s CAM,

using them as point prompts to generate class-wise masks

through SAM. We devise a reliability metric considering

both SAM’s stability score and CAM’s activation score, to

aggregate the masks into a unified self-supervision. Note

that our novelty stems not merely from the use of SAM it-

self, but mainly from the way we use it, effectively transfer-

ring SAM’s knowledge into the domain of WSSS.

Through comprehensive experiments, we analyze the

functioning of each component in S2C, presenting exten-

sive qualitative and quantitative results. Furthermore, we

compare the proposed framework with the state-of-the-art

(SoTA) WSSS methods on PASCAL VOC 2012 [16] and

MS COCO [36] datasets. Our S2C significantly outper-

forms all the other methods on both benchmarks. The sub-

stantial semantic segmentation results achieved by S2C also

can be shown in the bottom row of Fig. 1.

2. Related Work

2.1. Weakly Supervised Semantic Segmentation

The standard pipeline of WSSS is (1) training a model

with image-level class labels for obtaining CAMs of each

training image, (2) refining the CAMs into pseudo-labels,

and (3) training a semantic segmentation model using the

pseudo-labels. Some existing WSSS works aim to improve

phase (2), introducing post-processing techniques such as

dense conditional random field (denseCRF) [6], Affini-

tyNet [1] or AdvCAM [29]. These strategies have demon-

strated promising results and are still widely employed in

WSSS. Nevertheless, these offline post-processing methods

are susceptible to noisy and imprecise activations, heavily

reliant on the initial CAM quality. Hence, the majority

of existing WSSS studies primarily concentrate on phase

(1) to enhance the quality of CAMs (seeds) themselves.

Various approaches have been explored to achieve high-

quality CAMs, such as cross-attention across a set of im-

ages [33, 49, 58], adversarial erasing [26, 27, 64, 69], con-

sistency enforcement through data augmentation [52, 68],

boundary-aware mechanisms [17, 23, 45, 46], adjustment

of cross-entropy loss [12, 54], and the integration of Vision

Transformer (ViT) architecture [47, 60].

2.2. WSSS with Additional Source of Information

While the abovementioned methods have shown promis-

ing results, they still face challenges in learning segmen-

tation concepts without spatial supervision. To address this,

numerous studies have explored the utilization of external

sources of knowledge. Notably, numerous WSSS methods

have incorporated off-the-shelf pre-trained saliency mod-

ules [19–21, 28, 49, 53] to distinguish salient regions. Ad-

ditionally, Lee et. al. [31] have proposed using an external

dataset to facilitate the discrimination background regions,

while Kweon et. al. [25] leverages 3D point cloud data in a

joint manner. Furthermore, recent studies [37, 57, 61] have

attempted to integrate the Contrastive Language-Image Pre-

training (CLIP) [44] model into WSSS. These approaches

share a core strategy of leveraging the knowledge of pub-

licly available sources to address inherent challenges in

WSSS, without harming the cost-effective advantage. In

line with this philosophy, this paper proposes S2C, a novel

WSSS framework to fully utilize the semantic capability of

SAM by directly enhancing the quality of CAMs.

3. Exploring the Use of SAM for WSSS

In this paper, we propose a novel method to integrate the

SAM, a foundational model for generic promptable seg-

mentation, into the standard pipeline of WSSS. Before delv-

ing into our approach, as a preliminary, we provide a con-

cise overview of SAM and explore several primary methods

for employing SAM within the context of WSSS.

SAM [22] is composed of three modules: 1) an image

encoder for embedding an input image, 2) a prompt encoder

designed to embed various types of input prompts (e.g.,

points, bounding boxes, masks, etc), and 3) a decoder uti-

lized for predicting the mask using these embeddings. The

training objective of SAM is to generate a valid mask given

an input image and prompts. Here, it is noteworthy that

the training process does not involve explicit semantic su-

pervision at all. This enables SAM to attain a generalized

capability, focusing on the segmentation aspect rather than

being biased toward the semantic meanings of an image.

Another notable feature of SAM is its automatic segmen-

tation capability, referred to as “segment-everything”. This
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Figure 2. Limitations of inference-only use of SAM in WSSS.

SAM-enhanced refers to the outcome achieved through the SAM-

based post-processing method [9]. In the top row, the post-

processing exacerbates errors present in CAM, leading to an even

worse result. In the bottom row, the inherent ambiguity of SAM

results in an over-segmentation of the image, and thereby the en-

hanced result is still incomplete as well as the CAM.

method feeds multiple uniformly distributed points across

the image as input prompts for SAM.

Over the past few months, numerous works [66, 67] have

reported SAM’s ability to produce precise masks from or-

dinary images and to perform reasonably well, even in spe-

cialized domains like medical imagery [40, 41]. It appears

that SAM truly possesses foundational capability to some

extent, and could potentially address the long-standing chal-

lenge of WSSS. Then, how can we integrate SAM, this pow-

erful newcomer, into the standard pipeline of WSSS?

One of the most straightforward approaches is utiliz-

ing the segment-everything option for refining the pseudo-

labels obtained from CAMs [9]. In this method, each seg-

ment obtained by segment-everything is assigned to the

class of the pseudo label that overlaps with the segment

most. This refinement is simple yet effective, showing

consistent performance gain when integrated into the exist-

ing WSSS methods. Nevertheless, the post-processing ap-

proaches are sensitive to the noises stemming from pseudo-

labels, propagating the errors unintentionally as in Fig 2.

Besides, the masks predicted by SAM do not always cover

the entire object, due to the inherent ambiguity of prompt-

able segmentation task [22].

Another actively studied direction is a zero-shot ap-

proach [10, 35], collaborating with language-guided mod-

els, such as CLIP [44] or Grounding-DINO [39]. In these

methods, the image-level class labels in words are fed into

the referring object detection model. Then, the predicted

regions of each class are subsequently employed as bound-

ing box prompts for SAM to acquire precise masks. The

collaboration of two foundational models shows substantial

semantic segmentation results. Nevertheless, it is still diffi-

cult to recover the wrong initial prediction of the language-

based model or SAM-induced errors, similar to the afore-

mentioned SAM-based post-processing approaches.

Specifically, the language-based models may struggle to

be generalized, comprehending entirely new semantic con-

cepts not encountered during training, or the purpose of the

given task. Considering that WSSS is actively applied to

specialized and unique tasks lacking labels, such as med-

ical image segmentation [11, 18, 48, 62], these zero-shot

approaches are still insufficient for practical scenarios.

In summary, both approaches have presented the remark-

able potential of using SAM for WSSS. However, at the

same time, they share the main limitation of using SAM

for the inference phase only. This makes the system vul-

nerable to both errors stemming from SAM itself and noisy

seeds (i.e., CAMs) serving as input prompts. Against this

background, we conclude that the most effective way of in-

tegrating SAM into WSSS is directly using it to enhance

the quality of CAMs. This leads us to propose S2C, a novel

WSSS method that effectively transfers the knowledge from

SAM to CAMs during the training process.

4. Method

4.1. Obtaining CAMs

In this paper, we propose a novel WSSS method that effec-

tively leverages SAM’s segmentation capability for learning

CAMs. We first define a classifier G, primarily as a CAMs

generator. Our classifier consists of an encoder GE and a

classification head GH . The encoder is responsible for ex-

tracting a feature map F ∈ R
D×h×w from an input image

I ∈ R
3×H×W as follows:

F = GE(I). (1)

Then, with the classification head GH , which is a 1x1

convolutional layer, we generate CAMs A ∈ R
C×h×w as

A = GH(F), (2)

where C is the number of classes and the indices are

{1,2,. . . ,C}. Finally, by applying a Global Average Pooling

(GAP) layer to the CAMs along the spatial axes, we obtain

an image-level class prediction logit y ∈ R
C as follows:

y = GAP (A). (3)

For multi-label classification, we minimize LCLS , which is

a binary cross-entropy loss as

LCLS = ℓbce(y, t), (4)

where t is an image-level classification label.

4.2. SAMSegment Contrasting (SSC)

As we discussed in Section 3, the masks obtained by the

segment-everything option of SAM can be reliable segmen-

tation results of the given image. However, the predicted

masks lack explicit semantic information since the input

prompt is a set of locations without semantics. In addition,

the images often include more than one object of the same

19501



Figure 3. Visualization of the proposed SSC. First, SAM performs segment-everything to obtain a SE map of the given input image.

We then group the features of the classifier encoder according to the SE map. Segment-wise prototype features (stars) are computed by

averaging the features of each segment. For every feature, we perform regional prototype-based contrastive learning. Specifically, we make

the feature (pink circle) close to the prototype that the feature belongs to (red star) and far from all the other prototypes (red and blue stars).

class. Besides, the grid-like distribution of the points leads

to over-segmentation of the image even after the merging

process. For example, objects composed of various com-

ponents, such as bicycles or motorbikes, are usually seg-

mented separately, rather than captured as a whole object in

one segment. To sum up, the pixels located on the different

segments of the segment-everything do not always belong

to the different classes.

Therefore, instead of directly applying constraints using

the segment-everything at the logit level, we focus on guid-

ing the classifier to learn the concept of segmentation at

the feature level. Specifically, we propose SAM-Segment

Contrasting (SSC) to transfer the segmentation potential

of SAM to the classifier at a feature level. Our SSC is

mainly based on a regional prototype-based contrastive ap-

proach [38]. It aims to help the classifier understand which

pixels of the image should be grouped into one segment.

Specifically, in SSC, we exploit SAM from a clustering per-

spective, contrasting the classifier’s features according to

the given segments of the segment-everything.

Figure 3 illustrates the proposed SSC. To begin, we input

the image I into SAM and utilize the segment-everything

option to generate segments. Given that the predicted seg-

ments may overlap, we sort them based on area and prior-

itize smaller segments. Specifically, when a pixel belongs

to multiple segments, we select the segment with the small-

est area. This process results in a single segmentation map,

referred to as the SE map throughout this paper. The ith
segment of the SE map is formally denoted as SEi.

Simultaneously, our classifier produces a feature map F
as an intermediate outcome of classification, as explained in

Equ. (1). Due to the smaller spatial dimension of the feature

map, we resize it using bilinear interpolation to match the

size of the SE map. Subsequently, we generate a prototype

for each segment SEi by averaging the features of the pixels

located on the segment, as follows:

pti =
1

|SEi|

∑

(x,y)∈SEi

Fx,y, (5)

where pti is the prototype of the ith segment. Note that

we normalize the features/prototypes along the channel di-

mension before and after averaging, to ensure they are con-

strained to lie on the unit hypersphere.

Then, we enforce each feature to be close to the proto-

type of the segment it belongs to and distant from the proto-

types of other segments. This strategy encourages the fea-

tures of pixels within one segment to form clusters, facilitat-

ing the classifiers in distinguishing them from the features

of pixels in the other segments. Essentially, the proposed

SSC method transfers segmentation knowledge from SAM

to the classifier at the feature level.

We formalize this contrasting process with the InfoN-

CELoss [42] in the following manner:

LSSC = −

N
∑

i=1

∑

(x,y)∈SEi

Fx,y · pti/T
∑N

j=1 Fx,y · ptj/T
, (6)

where N is the total number of segments in the SE map, and

T is the temperature. Given the lack of pixel-wise dense

GT in WSSS, we guide the feature of every pixel as in [63],

instead of sampling hard negative pixels as in ReCo [38].

4.3. CAMbased Prompting Module (CPM)

CPM aims to leverage SAM’s promptable segmentation ca-

pability to enhance the CAMs dynamically during training.

Specifically, we utilize the CAM of each class (existing in

the input image) as a prompt for SAM and subsequently ob-

tain the corresponding class-specific mask. This mask can
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Figure 4. Visualization of the proposed CAMs-based Prompt-

ing Module (CPM). From the CAMs obtained by the classifier,

we extract multiple peaks (represented as colored circles). Subse-

quently, SAM predicts class-wise SAM masks using the peaks of

each class as point prompts. Using the confidence-based aggre-

gation, the masks are unified into a single semantic segmentation

map, which serves as self-supervision for training the CAMs.

be considered a SAM-refined version of the input CAM.

The masks of all classes are then aggregated into a single

map, serving as self-supervision to guide the input CAMs.

However, CAM is inherently a score map, which does not

align with the prompts used for training SAM (i.e., mask,

bounding box, and point). Therefore, to fully harness the

foundational capabilities of SAM, it is essential to convert

the CAM into the prompt type suitable for SAM.

The most straightforward approach is to threshold the

CAM to obtain a binary mask and use it as a mask prompt

for SAM. However, we empirically observe that the offi-

cially released version of SAM performs poorly when us-

ing mask prompts. Meanwhile, utilizing box prompts also

presents challenges from several aspects. First, convert-

ing the continuous score map into discrete bounding boxes

is sensitive to the threshold and requires extensive tuning,

which is undesirable in WSSS. Additionally, since we do

not know how many objects are in the image, images poten-

tially containing multiple objects bring about another issue.

For instance, when the CAM exhibits multiple local max-

ima (peaks), it becomes problematic to decide whether 1)

to use one large bounding box covering all peaks or 2) to

use individual bounding boxes for each peak, assuming the

presence of multiple objects. Please refer to the Supplemen-

tary Material for examples of difficulties when converting

CAM into the bounding box prompts.

Therefore, we opt for a point format rather than using

masks or bounding boxes to efficiently transform CAM into

SAM prompts. Specifically, we use a local maximum filter

LMF to extract multiple peaks from CAM as follows:

Pc = LMF(Ac), (7)

where Ac is the CAM of class c and Pc = {pc1, . . . , p
c
kc
} is

Figure 5. Illustration of the proposed aggregation approach for the

CPM. As shown on the leftmost side, the class-specific masks pre-

dicted by SAM may exhibit overlaps. To consolidate these masks

and assign each pixel to the correct class, we introduce a con-

fidence score that takes into account both the stability of SAM

masks and CAM scores. This aggregation method enhances the

reliability of self-supervision during the training of CAMs.

a set of the obtained peaks. We reject the peaks with CAM

scores lower than a certain threshold τ since they are often

located outside the target objects. In Fig 4, we visualize the

peaks as circles. Note that there can be multiple peaks, as

the input image may include more than one object of the

same class (person, in this case). Refer to Supplementary

Material for the details about LMF.

We then utilize the peaks as point prompts for the SAM

and obtain a refined class-specific mask as follows:

Mc, αc
sam = SAM(I;Pc). (8)

In addition to the SAM mask Mc, we also obtain the sta-

bility of the SAM mask αc
sam to preserve the reliability of

each pixel. Here, the pixels with higher stability scores are

highly probable (i.e., more confident) to be segmented along

the given prompt. We perform the above process for every

class existing in the input image. For efficiency, we run the

encoder of SAM only once and iteratively use the obtained

embedding for decoding with class-wise point prompts.

Finally, we aggregate the obtained class-specific masks

into a single semantic segmentation map. However, as il-

lustrated in Fig. 5, these masks are often not exclusive.

The overlaps are mainly due to the erroneous activation of

CAMs or SAM ambiguity, both challenging to mitigate di-

rectly. As a remedy, we introduce a novel confidence-based

aggregation method to accurately assign each pixel to the

appropriate class, even when the masks overlap.

In this aggregation method, we consider the reliability of

both the SAM masks and CAMs of the existing classes, We

use the obtained SAM stability αc
sam as a reliability score

map for the SAM mask. On the other hand, for the CAMs,

we average the activation of the CAM of each class on the

SAM mask of that class as follows:

αc
cam =

1

|Mc|

∑

(x,y)∈Mc

Ac
x,y, (9)
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where αc
cam denotes the reliability score map of the CAM.

Subsequently, the proposed confidence is defined as

αc = αc
sam ⊗ αc

cam, (10)

where ⊗ denotes element-wise product.

The unified segmentation map Ŝ is then acquired by

Ŝx,y =

{

0 if maxc α
c
x,y < τ

argmaxc α
c
x,y otherwise,

(11)

where x, y is the pixel coordinate and τ is the threshold for

discriminating background regions. Its value is the same as

the one used in the local maximum filter.

The obtained Ŝ is a self-supervisory signal for training

the CAMs. Unlike CAMs defined for C foreground classes

only, Ŝ inherently includes the background class (index 0, in

our implementation). To involve the concept of background

in training the CAMs, we define the background score map

A0 using CAMs as follows:

A0
i,j = 1−max

c
Ac

i,j . (12)

Then, we concatenate A0 with the original CAMs to ob-

tain A+0, score maps regarding both background and fore-

ground classes. We define the loss function for CPM as a

standard cross-entropy loss between A+0 and Ŝ as

LCPM = ℓce(A
+0, Ŝ). (13)

Finally, the overall loss function of the proposed S2C frame-

work can be summed up as follows:

LS2C = LCLS + LSSC + LCPM . (14)

5. Experimental Results

5.1. Dataset and Evaluation Metric

We evaluate the proposed method on PASCAL VOC

2012 [16] and MS-COCO [36] datasets. The PASCAL

VOC dataset comprises 1464/1449/1456 images for the

train/val/test sets, respectively, and includes 20 foreground

classes and a background class. Following the standard

practice of conventional WSSS studies, we adopt the ad-

ditionally augmented dataset for training our models. It

consists of 10582 images along with image-level classifica-

tion labels. On the other hand, MS-COCO dataset contains

around 80k/40k images for the train/val sets, respectively,

with 80 foreground classes and a background class. As an

evaluation metric, we use the mean Intersection over Union

(mIoU) between the prediction and the GT.

5.2. Implementation Details

We use ResNet38 [56] as the feature encoder of our classi-

fier, followed by a 1×1 convolution layer as the classifica-

tion head to generate CAMs. For the final semantic segmen-

tation model, we use Deeplab [4] with ResNet38 backbone

Table 1. Results from ablations studies on SSC and CPM. The

baseline is a setting with mere image-level classification loss only.

SSC (logit-level) and SSC (feature-level) denote that the contrast-

ing performed at the logit-level and feature-level, respectively.

Bold number represents the best result.

Baseline
SSC

(logit-level)

SSC

(feature-level)
CPM

mIoU

(%)

✓ 50.1

✓ ✓ 57.3

✓ ✓ 63.2

✓ ✓ ✓ 76.1

Figure 6. Qualitative comparison between the features of the base-

line classifier and those of our model with SSC.

as in [1, 26, 34, 50, 60, 64, 68]. For SAM [22], we utilize

the officially released version with ViT-H model.

As data augmentation, we apply horizontal flipping, ran-

dom cropping/resizing, and color jittering [24] to the input

image. We use a poly learning rate [7], which multiplies

(1 − iter
max iter

)0.9 to the initial learning rate (0.02). For

PASCAL, the classifier is trained for six epochs, which took

around 8 hours with two Tesla V100s. As the classification

accuracy is low at the initial stage of training, the sampled

query from CPM can be erroneous. Therefore, we do not

apply LCPM on the first epoch. We set both τ and T to 0.5

by default. Additional details can be found in the Supple-

mentary Material.

5.3. Ablation Studies

Comparative analysis in Table 1 demonstrates the signif-

icant performance improvement by SSC compared to the

baseline, which solely relies on a classification loss. The

result also confirms that the proposed feature-level contrast-

ing strategy is notably more effective than the naive logit-

level contrasting approach. As explained in Section 4.2,

when the input image is over-segmented in the SE map, the

pixels of the different segments do not always belong to dif-

ferent classes. Therefore, as a more flexible criterion, we

perform contrast at the feature level rather than directly uti-

lizing pixel-wise classification logits for contrast. Finally,

CPM contributes further to enhancing the quality of CAMs,

resulting in a remarkable increase in mIoU.

To provide a more intuitive grasp of SSC’s functional-

ity, we present a comparison of classifier features between

the baseline classifier (without SSC) and ours (with SSC)
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Table 2. Results from ablations studies on the components within

CPM. Multi-peaks: sampling multiple local peaks from the CAM

in Equ. 7. Aggregation SAM&CAM: using SAM stability score

and CAM activation score for confidence score in Equ. 10, respec-

tively. Using BG: incorporating background score map in Equ. 12.

Aggregation
Multi-peaks

SAM CAM
Using BG

mIoU

(%)

✓ ✓ ✓ 73.0

✓ ✓ 72.7

✓ ✓ ✓ 73.2

✓ ✓ ✓ 74.9

✓ ✓ ✓ ✓ 76.1

in Fig. 6. We apply Principal Component Analysis (PCA)

to reduce the channel dimension of the features from 256

to 3. Subsequently, these channels are used to represent

RGB colors for visualization. As shown in Fig. 6, the fea-

tures with SSC are precisely aligned along objects, while

the baseline classifier’s features exhibit indistinct and coarse

boundaries. The results strongly support the effectiveness

of SSC in enabling the classifier to comprehend the concept

of segmentation, leading to better CAMs.

In Table 2, we analyze various components within CPM.

Initially, we experiment with extracting a single global peak

from the CAM of each class in Equ. 7, instead of sampling

multiple local peaks originally. However, this configuration

results in a performance drop (-3.1%). This implies that it

is essential to extract multiple peaks per CAM, particularly

for images containing multiple objects.

Secondly, we validate the effectiveness of the proposed

score-based aggregation strategy by ablating the use of the

SAM stability score and CAM activation score in Equ. 10.

The results show that both SAM stability and CAM acti-

vation scores meaningfully contribute to the reliable aggre-

gation process, resulting in a high-quality self-supervisory

signal within CPM.

Finally, we confirm the advantage of including a back-

ground score map in Equ. 12. To verify this, we obtain

class-wise binary masks from the unified self-supervision

and then minimize the L1 loss between the CAMs and these

masks. While this setting yields substantial CAMs, the re-

sults indicate that incorporating BG is even more beneficial.

5.4. Comparisons to StateofTheArts

In Table 3, we present a comparative analysis of the CAMs

obtained by conventional methods and our S2C. Addition-

ally, we conduct a comparison of the masks derived from

these CAMs, which serve as pseudo-labels for training a

semantic segmentation model. The masks are obtained

through post-processing following the standard protocols.

The results demonstrate a significant performance im-

provement in our CAMs over the CAMs of the conventional

methods. This improvement is maintained through the post-

Table 3. Comparisons between the proposed framework and the

conventional WSSS methods. We evaluate mIoU (%) performance

on the PASCAL VOC 2012 train set at CAMs and Mask (pseudo-

label) levels. Bold numbers represent the best results.

Methods Backbone CAMs Mask

W-OoD [30]CV PR22 RN50 53.3 -

ReCAM [13]CV PR22 RN50 54.8 70.5

SIPE [8]CV PR22 RN50 58.6 -

MCT [60] CV PR22 ViT 61.7 69.1

PPC [15]CV PR22 WRN38 61.5 70.1

Spatial-BCE [55]ECCV 22 WRN38 68.1 70.4

AEFT [64] ECCV 22 WRN38 56.0 71.0

ACR [27] CV PR23 ViT 65.5 70.9

BECO [45] CV PR23 RN101 65.5 70.9

USAGE [43] ICCV 23 WRN38 67.7 72.8

MAT [51]ICCV 23 WRN38 62.3 72.9

CLIMS [58]CV PR22 WRN38 56.6 70.5

Xu et. al. [58]CV PR23 ViT 66.3 -

CLIP-ES [37]CV PR23 RN101 70.8 75.0

S2C (Ours) WRN38 76.1 81.7

processing step, resulting in the masks of substantial qual-

ity. Specifically, our S2C achieves a performance gain of

more than 5% and 6% at the CAM and mask levels, respec-

tively, surpassing the previous SoTAs.

Furthermore, we evaluate the performance of semantic

segmentation models trained using pseudo-labels from each

method, as shown in Table 4. The proposed S2C demon-

strates superior performance, surpassing the other methods

by a significant margin, around 5% across all benchmarks.

These results strongly support the effectiveness of our ap-

proach in integrating SAM into the WSSS pipeline.

We acknowledge that the comparisons may not be en-

tirely fair, given that the proposed method leverages SAM

as a powerful source of information, unlike previous meth-

ods. To address this, we conduct additional comparisons be-

tween our framework and existing works enhanced by [9].

Table 5 shows that, even after SAM-based post-processing,

the masks generated by our method still outperform those

of other approaches. These results suggest that SAM’s seg-

mentation capability is effectively transferred to our classi-

fier within the S2C framework, proving more advantageous

than using SAM solely for inference.

Finally, Fig. 7 presents the qualitative comparisons with

the baseline. In contrast to baseline CAMs, the CAMs gen-

erated by S2C exhibit precise boundaries while effectively

covering the entire object. Notably, our framework excels

even in challenging scenarios, such as thin objects (e.g.,

horse legs) or widely distributed small objects (e.g., cows).

The semantic segmentation network trained by our high-

quality pseudo-labels yields remarkable results, accurately

capturing fine details without semantic confusion. Addi-

tional results can be found in Supplementary Material.
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Figure 7. Qualitative comparison between the results of the baseline and the proposed method on PASCAL VOC 2012 dataset. Left:

CAMs of the vanilla classifier and ours. Right: semantic segmentation results of AffinityNet [1] and ours. Our CAMs not only activate the

entire regions of each object but also present precise boundaries, ultimately achieving remarkable semantic segmentation results.

Table 4. Comparison in mIoU (%) performance between ours and

the existing WSSS methods. We evaluate the methods on both the

PASCAL VOC 2012 and MS-COCO 2014 datasets.

Methods Backbone VOC val VOC test COCO val

AffinityNet [1]CV PR18 WRN38 61.7 63.7 -

IRNet [2]CV PR19 RN50 63.5 64.8 41.4

W-OoD [30]CV PR22 WRN38 70.7 70.1 -

MCT [60] CV PR22 WRN38 71.9 71.6 42.0

ReCAM [13]CV PR22 RN101 68.5 68.4 42.9

AEFT [64]ECCV 22 WRN38 70.9 71.7 44.8

OCR [14]CV PR23 ViT 72.7 72.0 42.5

ACR [27]CV PR23 WRN38 72.4 72.4 45.3

BECO [45]CV PR23 RN101 72.1 71.8 45.1

USAGE [43] ICCV 23 WRN38 71.9 72.8 44.3

FPR [5] ICCV 23 WRN38 70.0 70.6 43.9

MAT [51] ICCV 23 RN101 73.0 72.7 45.6

CLIMS [58]CV PR22 RN50 69.3 68.7 -

CLIP-ES [37]CV PR23 RN101 71.1 71.4 45.4

Xu et. al. [61]CV PR23 WRN38 72.2 72.2 45.9

S2C (Ours) WRN38 78.2 77.5 49.8

6. Conclusion

This paper addresses the challenges in WSSS by leveraging

the recently published foundation model for segmentation,

SAM, to enhance the quality of CAMs during the training

process. Our main novelty lies in how we effectively trans-

fer the knowledge of SAM into WSSS. While recent works

have demonstrated promising results using SAM during in-

ference, either as post-processing or in a zero-shot manner,

we have identified their potential vulnerabilities to noise in

CAMs used as initial seeds. To address this, we propose

the S2C framework, facilitating direct knowledge transfer

from SAM to the classifier, thereby improving the quality

of CAMs. Within S2C, SSC performs prototype-based con-

trasting with SAM’s automatic segmentation results, guid-

Table 5. Comparisons between our framework and the existing

WSSS methods enhanced by SAM-based post-processing [9]. We

compare the quality of the pseudo-labels on the PASCAL VOC

2012 train set. VOC val denotes the performance of the final seg-

mentation model trained by the pseudo-labels.

Methods Backbone Pseudo-label VOC val

TransCAM [32] Conf.-S 75.2 69.9

SIPE [8] RN50 73.8 69.7

L2G [21] WRN38 77.8 72.4

CLIMS [58] RN50 75.2 71.1

CLIP-ES [37] RN101 79.7 73.1

Baseline WRN38 68.6 65.2

S2C (Ours) WRN38 81.7 78.2

ing features to be close to their segment prototype and dis-

tant from others. Simultaneously, CPM extracts prompts

from CAMs, generating class-specific segmentation masks

through SAM. These masks are aggregated into unified self-

supervision, guided by a novel reliability score considering

both SAM and CAM confidence. Through extensive exper-

iments, we demonstrate the working logic of the proposed

S2C in both qualitative and quantitative manners. Further-

more, S2C establishes a new state-of-the-art performance

across all benchmarks, surpassing existing studies by sig-

nificant margins. We believe that our approach pioneers the

effective utilization of SAM in the domain of WSSS.
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