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Abstract

Manual annotation of every point in a point cloud is a
costly and labor-intensive process. While weakly super-
vised point cloud semantic segmentation (WSPCSS) with
sparse annotation shows promise, the limited information
from initial sparse labels can place an upper bound on per-
formance. As a new research direction for WSPCSS, we
propose a novel Region Exploration via Artificial Label-
ing (REAL) framework. It leverages a foundational im-
age model as an artificial oracle within the active learn-
ing context, eliminating the need for manual annotation
by a human oracle. To integrate the 2D model into the
3D domain, we first introduce a Projection-based Point-to-
Segment (PP2S) module, designed to enable prompt seg-
mentation of 3D data without additional training. The
REAL framework samples query points based on model
predictions and requests annotations from PP2S, dynami-
cally refining labels and improving model training. Fur-
thermore, to overcome several challenges of employing an
artificial model as an oracle, we formulate effective query
sampling and label updating strategies. Our comprehen-
sive experiments and comparisons demonstrate that the
REAL framework significantly outperforms existing meth-
ods across various benchmarks. The code is available at
https://github.com/jihun1998/AO.

1. Introduction

Point cloud semantic segmentation has been extensively

researched for robotics or autonomous driving applica-

tions. While fully supervised approaches [7, 10, 14, 28, 29,

35] utilizing deep learning have demonstrated remarkable

progress, the densely annotated point-wise labels required

for these methods pose a significant challenge due to the

labor-intensive and expensive annotation process. This ob-

stacle hinders the practical application of existing methods.

In response to this challenge, Weakly Supervised Point

Cloud Semantic Segmentation (WSPCSS) has gained atten-

tion, leveraging more affordable weak labels [15, 23, 24, 26,

40, 42, 47, 48]. Among various types of weak labels, sparse

annotations have become a widely adopted setting, where

only a tiny subset (e.g., 0.02%) of the entire point cloud is

Figure 1. Visualization of the proposed REAL framework. We

tackle the challenge of WSPCSS, leveraging a foundational im-

agery model as an artificial oracle within the context of active

learning. The below examples illustrate the evolving labels as

training proceeds.

labeled. Existing WSPCSS works have proposed remedies

focusing on two key aspects: 1) fully utilizing the limited

information from sparse labels and 2) learning the features

beneficial for segmentation from the data. The methods

based on self-labeling use the regions confidently predicted

by the model as pseudo-labels for training the model itself.

Meanwhile, various studies have proposed self-supervised

learning methods, such as consistency against data augmen-

tation, contrastive learning, or masked modeling.

While these approaches have shown substantial results,

the overall amount of information provided is constrained

by the initial sparse annotation, potentially placing an up-

per limit on performance. In this paper, instead of solely

focusing on how to exploit the given limited information,

we embark on a new and more challenging research direc-

tion. Specifically, we propose a novel WSPCSS method

using an additional publicly available source of informa-

tion—leveraging advancements in the 2D domain with the

Segment Anything Model (SAM) [19].

We begin by utilizing the promptable segmentation ca-

pability of SAM to enhance initially provided sparse anno-

tations. To bridge the gap between the 2D model and 3D

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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the final published version of the proceedings is available on IEEE Xplore.
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point cloud data, we introduce the Projection-based Point-

to-Segment (PP2S) module. This module comprises the

projection of weakly annotated points onto images, acquir-

ing 2D masks using SAM, and back-projecting these masks

into 3D, facilitating segmentation in the point cloud. The

proposed PP2S-based preprocessing effectively improves

label quality, resulting in significantly enhanced semantic

segmentation performance.

However, the labels preprocessed by PP2S remain in-

complete due to potential noises from calibration errors or

SAM ambiguity. To further enhance label quality during

training, we propose the Region Exploration via Artificial

Labeling (REAL) framework, utilizing PP2S as an artifi-

cial oracle within the context of active learning, as depicted

in Fig. 1. The REAL framework samples query points ac-

cording to model predictions and subsequently requests an-

notations from PP2S to dynamically enhance training la-

bels. Here, unlike general active learning methods relying

on a human oracle, our artificial oracle cannot directly as-

sign the classes of the requested query. Therefore, we de-

sign specialized strategies for query sampling and label re-

finement to unlock the segmentation capability of the PP2S.

Note that the main novelty of our approach lies in how

we effectively integrate the benefits of SAM into the realm

of WSPCSS. We analyze the REAL framework through

extensive experiments, including quantitative and qualita-

tive ablation studies. Furthermore, our method achieves

new state-of-the-art (SoTA) results on S3DIS [3] and Scan-

NetV2 [8] under all the tested settings, surpassing the exist-

ing WSPCSS methods. Remarkably, even with the 0.004%

setting, our method outperforms conventional methods us-

ing the 0.02% setting, underscoring the superiority of the

proposed approach.

2. Related Work

2.1. Weakly Supervised Approaches

Originating from weakly supervised learning in imagery

domain [2, 21, 22, 31, 39, 45], weakly supervised ap-

proach has emerged as a cost-effective approach to miti-

gate the challenges associated with acquiring fully labeled

data [15, 18, 23, 24, 26, 40, 42, 47, 48]. Xu and Lee [40]

first propose weakly supervised configurations involving

annotations of 10% of the data and a single point label for

each category. PSD [48] introduces a perturbed branch and

constraint self-distillation loss between the perturbed and

original branches. OTOC [26] utilizes pseudo-label meth-

ods and iteratively updates pseudo-labels through a self-

training strategy. MIL [42] proposes the transformer model

derived from multiple instance learning and integrates adap-

tive global weighted pooling to their model. HybridCR [23]

introduces an architecture that leverages pseudo-label meth-

ods and consistency regularization between the original and

augmented branches. CPCM [24] introduces a region-wise

masking strategy and contextual masked training method to

integrate the benefit of the masked autoencoder. Despite the

significant progress in WSPCSS, in this paper, we would

like to explore a new and more challenging research direc-

tion. In this light, we suggest a novel WSPCSS method,

using a publicly available additional source of information.

2.2. Point Cloud Segmentation Using 2D Models

There have been extensive efforts to achieve point cloud

segmentation in an image-based manner as in [12, 16, 20,

30, 43]. With the rapid advancement in the 2D domain,

multi-modal self-supervised approaches [1, 6, 13] and em-

ploying language-based model [9, 27, 34] have also been

particularly prevalent. Recently, there has been a surge

in attempts to address various point cloud tasks using the

Segment Anything Model (SAM) [19] The zero-shot ap-

proach [44, 46], which directly applies SAM to the image

corresponding to the point cloud, has demonstrated promis-

ing segmentation results. However, SAM’s lack of explicit

semantics limits its applicability to high-level perception

tasks. Adaptation-based approaches [11] can make SAM

directly learn 3D tasks; however, they necessitate dense

ground truth data during the learning process, rendering

them unsuitable for WSPCSS. To tackle the weakly super-

vised setting, this paper presents a novel WSPCSS method

that effectively refines weak labels using the foundational

2D model as an artificial oracle.

2.3. Active Learning for Point Cloud Segmentation

Active Learning (AL) aims to identify a subset of instances

that an oracle manually annotates during training. As in

[17, 32, 36, 41], AL has also been extensively explored for

WSPCSS. Given that the REAL framework actively em-

ploys SAM as an artificial oracle, it may share a conceptual

scheme with conventional AL-based methods to some ex-

tent. Nevertheless, note that our weakly-supervised setting

significantly differs from them. Our framework solely relies

on initial sparse labels and does not involve any additional

manual annotation within the training loop.

3. Method

3.1. Preliminaries

Problem setting. We denote an input point cloud as a set of

N points: X = {x1, . . . , xN}. In typical fully-supervised

point cloud semantic segmentation, the labels for all points

are provided as Y = {y1, . . . , yN} where yi ∈ {1, . . . , C}
and C is the number of classes. On the other hand, in

weakly-supervised point cloud semantic segmentation, only

a tiny subset of the points is labeled, and the other points

are unlabelled. We formulate this setting as (X,Y ) =
(XL, Y L) ∪ (XU , Y U ). Here, XL = {xL

1
, . . . , xL

n} is the
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points labeled with sparse annotations Y L = {yL
1
, . . . , yLn}.

Conversely, XU = {xU
1
, . . . , xU

N−n} is not labeled, and we

represent it as Y U = {yU
1
, . . . , yUN−n}, where yUi = 0.

Segment Anything Model. SAM is a foundational model

for promptable segmentation, comprising 1) an image en-

coder, 2) a prompt encoder, and 3) a decoder predicting the

mask using the embeddings from encoders. We denote the

inference process of SAM as

M2D = SAM(I;Z), (1)

where I and Z are an input image and prompt, respectively.

M2D denotes a set of the pixels of the predicted mask. In

this paper, we use a point prompt (i.e., a pixel coordinate).

3.2. Projection­based Point­to­Segment

We begin by enhancing the initially given weak annotations

using SAM. However, SAM is a vision foundation model

designed and trained for 2D imagery. Therefore, to directly

process 3D point cloud data using SAM, it is necessary to

conduct additional adaptation or fine-tuning.

Instead, we propose to utilize image data that captures

the same scene as the provided point cloud data. We be-

lieve that incorporating image data is not overly restrictive

in practice. In fact, point cloud data is usually created from

RGBD frames using Structure from Motion (SfM) [3, 8] or

captured by LiDAR paired with RGBD cameras [4, 5, 33].

Hence, most point cloud datasets naturally contain RGB im-

ages, depth maps, and associated camera parameters. Under

this philosophy, we introduce a Projection-based Point-to-

Segment (PP2S) module, enabling promptable segmenta-

tion of 3D point cloud data using SAM via projection. It is

noteworthy that our method utilizes image data during the

training phase only and can perform semantic segmentation

using input point cloud data alone during testing.

Figure 2 illustrates the visualization of PP2S. Formally,

for each point cloud X , we assume that the model can ac-

cess data from J cameras: images, depth maps, and projec-

tion matrices. Initially, we project the set of weakly anno-

tated points XL = {xL
i } onto the image Ij as:

pi,j = projjx
L
i where i ∈ {1, . . . , n}, j ∈ {1, . . . , J}

(2)

where projj denotes the projection matrix, and pi,j repre-

sents the 2D coordinate of the ith weakly annotated points

on the jth image. After the projection, we discard points

that fall outside the image boundaries. We also filter out

occluded points using the depth map Dj , though alternative

visibility testing algorithms can be employed.

Then, SAM performs segmentation using the coordi-

nates of projected points as individual input prompts as

M2D
i,j = SAM(Ij ; pi,j), (3)

where M2D
i,j is a set of the pixels of predicted 2D mask on

Ij , given input point prompt pi,j . Since pi,j corresponds to

Figure 2. Visualization of the proposed Projection-based Point-

to-Segment (PP2S) module. The process begins by projecting the

weak labels onto images through projection matrices. Using these

projected points as point prompts, SAM predicts 2D masks, which

are subsequently back-projected onto the point cloud.

xL
i and is labeled as yLi , the pixels in M2D

i,j are also assigned

to yLi . As multiple cameras exist per a single point cloud,

we conduct the above process for all images in parallel.

Subsequently, we back-project the acquired 2D masks to

3D coordinates. Initially, similar to Equ. 2, we project the

point cloud onto the jth image as pk,j = projjxk, where

xk is the kth point in the point cloud and pk,j denotes the

projection of xk. If pk,j is an element of M2D
i,j , it means

that the projection result of xk belongs to the mask of the

weakly annotated point xL
i , within the image Ij . Therefore,

we define the 3D mask M3D
i,j as the set of xk such that its

projection pk,j is in M2D
i,j .

The above process can be formulated as

M3D
i,j = {xk|pk,j ∈M2D

i,j }, (4)

where M3D
i,j denotes the set of points predicted by SAM to

be the same segment with xL
i from the perspective of jth

image. Accordingly, y3Di,j , the class of M3D
i,j , is yLi .

However, the 3D masks are not mutually exclusive.

Given that a single 3D point could be observed from multi-

ple images, it may be shared by more than one 3D mask. To

address this, we establish a consensus among the 3D masks

through a mask-wise voting system. In our system, each

3D mask M3D
i,j casts a vote for its points being set to y3Di,j .

Therefore, from the perspective of each point, its class is

determined by the voting of the 3D masks that include the

point. The above process can be formulated as

vk = {y3Di,j } ∀ i, j such that xk ∈M3D
i,j , (5)

where vk is a multiset of the voted classes. Finally, we as-

sign the class with the highest number of votes among vk as
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Figure 3. Possible sources of noise in PP2S. (A): The 3D door

point is projected onto the chair in the image, resulting in an incor-

rect 2D mask. (B): Erroneous back-projection causes wall points

in 3D to be mislabeled as chair. (C) Above: The 2D mask of the

ceiling covers only a small portion of the entire object. (C) Below:

The 2D mask of the wall encroaches into the regions of column.

the artificial label ak for kth point xk:

ak =

{

0 if vk = ∅

Mode(vk) otherwise,
(6)

where the Mode operator returns the most frequent element.

The proposed PP2S module effectively leverages the

segmentation capability of SAM to expand the sparsely an-

notated initial labels. These resulting artificial labels, de-

noted as A = {ak}, can directly serve as a supervised sig-

nal for training. Notably, we have observed that training

with A yields significant performance improvements com-

pared to using initial Y . The detailed experimental results

are demonstrated in Section 4.

3.3. Region Exploration via Artificial Labeling

As mentioned, the proposed PP2S effectively enhances the

initial sparse annotations, resulting in a substantial im-

provement in segmentation performance. However, we also

have recognized several limitations associated with this pre-

processing approach. The PP2S-enhanced labels can serve

as better guidance than the initial sparse labels. Neverthe-

less, they are still fixed during the entire training phase and

thereby impose an upper bound on performance. Notably,

we cannot guide the regions not covered by the 2D masks

obtained within PP2S. Furthermore, even if we assume that

the initially provided sparse annotations are perfectly cor-

rect, errors stemming from factors such as noises of camera

projection matrices (Fig. 3 A, B) or inherent ambiguity of

SAM (Fig. 3 C) are inevitable. While the voting system

can mitigate some of these, it cannot completely eliminate

them.

Algorithm 1 Region Exploring via Artificial Labeling

Require: Segmentation model fθ, Training dataset D =
{(X,Y )}, Learning rate η, Number of epochs T

Ensure: Optimized fθ
1: for (X,Y ) in D do

2: Y ← PP2S(X;XL)
3: end for

4: Initialize the model parameter θ.

5: for t← 1, 2, . . . , T do

6: for (X,Y ) in D do

7: Y t−1 ← Y

8: S ← softmax(fθ(X))
9: Ŷ ← argmax(S)

10: Q← QuerySampling(X,S, Y t−1)
11: A← PP2S(X;Q)
12: Y t ← LabelUpdate(Y t−1, A, Ŷ )
13: Y ← Y t

14: θ ← θ − η∇θL(S, Y )
15: end for

16: end for

Then, how can we further improve label quality, espe-

cially during training? We draw inspiration from the con-

cept of active learning. In active labeling, the model iden-

tifies a set of instances, known as a query, during train-

ing and requests human annotators (i.e., oracle) to label

these points. Typically, the query consists of instances that

confuse the model at a given timestep, making annotating

the query highly effective for the model to learn decision

boundaries. However, active learning requires manual an-

notation within the training loop, potentially making it even

more expensive than WSPCSS.

To address this challenge, we present the Region Ex-

ploration via Artificial Labeling (REAL) framework—a

novel WSPCSS method utilizing the PP2S module as an

artificial oracle, as depicted in Fig. 4. Specifically, the pro-

posed PP2S module serves as an oracle in the REAL frame-

work, responding to requests to annotate the query. Given

that the artificial oracle is, in fact, a pretrained network, the

REAL framework is completely relieved of the necessity for

manual annotation, except for the initial sparse labels.

However, unlike a human oracle in conventional meth-

ods, our artificial oracle lacks explicit semantic knowledge.

Therefore, we cannot expect the PP2S module to directly

label the classes for the confusing points. Instead, we focus

on leveraging what PP2S can provide to us. PP2S cannot

directly annotate the given points; however, it can precisely

predict which points should be grouped into a segment. To

fully utilize this attribute, we define the query Q = {qi} to

consist of the confidently identified points, instead of am-

biguous ones from the perspective of the model. Trusting

the prediction of the model on these points, we can self-

label the query with minimal risk. We represent this pro-
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Figure 4. Visualization of the proposed Region Exploration via Artificial Labeling (REAL) framework. The objective is to dynamically

enhance the quality of labels for weakly supervised point cloud semantic segmentation. In the REAL framework, the model fθ takes the

point cloud X as input and predicts semantic segmentation logits S. We then sample the most confident points from the unlabeled regions

of the previous label Y t−1 based on the predictions Ŷ and reliability scores R. The sampled points then serve as prompts for the proposed

PP2S module, producing artificial labels A. Finally, by combining the model prediction and A, we refine Y t−1 into the updated labels Y t,

which serve as pseudo-ground truth for training the logits.

cess as QuerySampling in Algorithm 1, which will be thor-

oughly discussed in Section 3.4.

Subsequently, we request the PP2S module to act as an

artificial oracle, annotating the unknown regions using the

given query. For this, the self-labeled query serves as an

input prompt for the PP2S module as follows:

A = PP2S(X;Q), (7)

where A represents the artificial label obtained by PP2S

from the given query Q. This approach is akin to using a

set of sparsely annotated points (XL) for PP2S in the pre-

processing phase, as described in Section 3.2. The primary

distinction in the REAL framework is that the input prompt

is self-labeled, not manually annotated.

With the obtained artificial label A, we update the label

of the previous step, Y t−1, into Y t. However, A may not

be entirely reliable, as it could be more prone to noise com-

pared to labels provided by a human oracle. This potential

for noise could arise from inaccuracies in the self-labeled

input query or the issues highlighted in Fig. 3.

To mitigate the risk of incorporating errors during the

label-updating process, we devise a cautious approach us-

ing the prediction of the model. Specifically, if a discrep-

ancy exists between the class assigned by the artificial label

A and the model’s prediction Ŷ for a specific point, we ex-

clude that point from the updating process. This conserva-

tive update process can be formulated as:

yti =

{

ai if ai = ŷi

yt−1

i otherwise.
(8)

Finally, the model fθ is optimized by minimizing the cross-

entropy loss between Ŷ and Y t.

3.4. Query Sampling Strategy for REAL

In the REAL framework, query sampling is a critical com-

ponent, as the quality of the artificial label depends on the

quality of the input query. We posit that an effective query

must meet two key criteria: 1) it should exhibit a high level

of confidence, and 2) it should aid the model in acquiring

new knowledge. To address the first criterion, we design

a margin-based reliability metric for evaluating the confi-

dence of the model’s prediction for each point as follows:

ri = Max(si)−Max2(si), (9)

where si ∈ R
C is the predicted logit of the ith point xi,

and ri denotes its reliability. Max and Max2 are opera-

tors that return the maximum and the second maximum el-
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Figure 5. Verification of the reliability metric. The points present-

ing higher reliability show higher semantic segmentation accuracy.

ements of the input vector, respectively. We verify a ro-

bust correlation between the devised reliability metric and

the accuracy of model predictions, as illustrated in Fig. 5.

For instance, among points with reliability scores exceed-

ing 0.5, the model correctly predicts the class for 84.5% of

them. We set the threshold for query sampling at 0.95, cor-

responding to around 94% accuracy.

On the contrary, directly quantifying the utility of a

query for the second criterion is inherently elusive. In

this context, we propose an intuitive hypothesis: if the

model has successfully leveraged the labels from the pre-

vious timestep, Y t−1, the regions previously annotated in

Y t−1 are expected to contribute less novel information dur-

ing the current timestep, t. Therefore, the focus of new

queries should be on effectively exploring the regions not

previously or incorrectly labeled in Y t−1.

To this end, we narrow the sampling range of the query

to the points that are predicted by the model differently from

the previous label. We formulate the above constraint as

Zc = {xi} ∀ i such that ŷi = c and yt−1

i ̸= c. (10)

Here, Zc is the mother set for sampling qc, the query point

of the class c. Considering the first criterion, we sample qc
as the most reliable point among Zc, and Q is the set of qc.

We formulate the above processes as

Q = QuerySampling(X,S, Y t−1). (11)

4. Experiments

4.1. Experimental settings

Datasets. We conduct experiments on S3DIS [3] and Scan-

NetV2 [8]. S3DIS comprises 6 areas with 272 rooms and

13 categories. We use the area 5 for evaluation following

previous studies. ScanNetV2 includes 1613 3D scenes with

20 categories. We follow the official split (1201 training,

312 validation, and 100 test scenes). In addition to the

point cloud data, the proposed REAL framework requires

the data from cameras (i.e., images, depth maps, and cam-

era projection matrices) to leverage SAM. The datasets in-

herently include such data since they are reconstructed from

the sequence of RGBD frames. During training, we utilize

the data from 48 and 17 cameras per scene on average for

S3DIS and ScanNetV2, respectively. Note that our frame-

work does not require 2D data at inference time.

Table 1. A quantitative comparison between the initially sparse

annotations (Initial) and the artificial labels from PP2S (PP2S).

Pre, Rec, and # denote precision, recall, and the proportion of an-

notated points relative to the total number of points. The perfor-

mance of the point cloud semantic segmentation model trained by

each model is represented as Model mIoU. Every metric is in %.

Labels mIoU Pre Rec # Model mIoU

Initial 0.004 100 0.004 0.004 39.7

PP2S 30.4 83.1 32.4 38.4 53.0

Figure 6. Validation of our query sampling strategy. Setting I

samples the queries following our strategy while setting II samples

from the entire point set. We present the improvement obtained by

artificial labels in terms of precision (Prec) and recall (Rec).

Evaluation protocols. Previous studies [23, 24, 42, 48]

have conducted experiments with various levels of sparsity.

We believe that the most cost-efficient yet practical setting

involves labeling only one point per object. Accordingly,

our experiments mainly target the 1pt weak setting, which

corresponds to 0.004% of points in S3DIS. For a fair com-

parison, we also conduct experiments under the 0.02% set-

ting, which is the most widely used. For ScanNetV2, we

follow the conventional works, using 20pt per scene. The

overall performance is assessed on all points within the test

set. Following the standard practice, we employ the mean

Intersection over Union (mIoU) as our quantitative metric.

Implementation details. We choose PTv2 [37] network as

our main backbone. To verify the effect of the backbone,

we additionally test Closer [25] backbone for the 0.004%

setting on S3DIS. Training details are the same as standard

settings of the backbones. We employ a pretrained ViT-H

model for SAM. Further details are in the Supp.

4.2. Analysis on REAL

PP2S-based preprocessing. We first validate the prepro-

cessing strategy built upon the proposed PP2S. This strategy

aims to enhance the initial sparse annotations into artificial

labels by harnessing the promptable segmentation capabil-

ity of SAM via projection. Table 1 provides various met-
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Figure 7. Progressive visualization of the behavior of the proposed REAL framework throughout training. A is the artificial label, and Y

denotes the subsequent label updated at timestep t. The highlighted boxes indicate newly explored regions by artificial oracle, which were

unknown (red, blue) or wrongly labeled (green) in earlier timesteps.

rics of the initial labels and those of the labels enhanced

by PP2S. Furthermore, we compare the performance of the

point cloud semantic segmentation model when trained with

the original sparse annotations and artificial labels enhanced

by PP2S. The results demonstrate that our PP2S signifi-

cantly improves the quality of the label, consequently boost-

ing the model’s performance. This analysis supports the

validity of PP2S as a bridge for transferring the segmenta-

tion capability of SAM into the realm of weakly supervised

point cloud semantic segmentation.

Query sampling strategy. We conduct ablation studies re-

garding the proposed query sampling strategy introduced in

Section 3.4. In this section, we compare two settings: (I)

using the proposed strategy sampling from the narrowed

mother set of Equ. 10 and (II) sampling the most reliable

point among every point without any constraint. Figure 6

provides both qualitative and quantitative comparisons be-

tween (I) and (II), displaying the improvement achieved by

the artificial labels of each setting. (I) outperforms (II) in

terms of recall while maintaining precision. This distinction

primarily arises from the fact that most query points of (II)

are already labeled in Y t−1, limiting their potential for ex-

ploring into unknown regions. On the other hand, the query

of (I) is explicitly restricted to represent genuinely novel in-

formation compared with previous labels Y t−1, even with-

out compromising precision. This implies that the proposed

query sampling strategy yields better labels, facilitating the

model to learn segmentation effectively. Accordingly, the

performance with our query sampling strategy (62.7%) is

significantly higher than without using it (59.8%). Addi-

tional results are in Supp.

Active label enhancement. To demonstrate the behavior

of the proposed REAL framework intuitively, Fig. 7 depicts

progressive visualization throughout training. The labels

are significantly improved as training proceeds, thanks to

the artificial labels from our artificial oracle. Notably, the

highlighted boxes indicate newly explored regions, which

were unknown (red, blue) or wrongly labeled (green) by

the labels in earlier timesteps. The REAL framework effec-

tively integrates these regions into the current label.

4.3. Comparison with State­of­the­arts

We compare our method with SoTA methods on S3DIS, as

shown in Table 2. The proposed REAL significantly en-

hances performance across all settings. Specifically, REAL

with PTv2 [37] outperforms CPCM by 2.9% in mIoU under

the 0.02% setting, which is even comparable to the SoTA

results of the 1% setting. Furthermore, REAL with PTv2

surpasses the other SoTA methods under the 0.02% setting,

using only 1pt for each object (0.004%). We also observe a

significant performance improvement when employing the

REAL in Closer [25]. These results imply that the gain of

REAL is not restricted by the backbone.

Besides, Fig. 8 provides a qualitative comparison. No-

tably, the semantic confusion in the baseline is remark-

ably improved in ours. Furthermore, REAL demonstrates

a meaningful enhancement in its ability to group the points

of each object precisely. Consequently, REAL achieves

remarkable semantic segmentation results even in compli-

cated scenes, using only 0.004% of annotations.

Furthermore, we evaluate the performance of our method

against SoTA methods on ScanNetV2 [8], as detailed in Ta-
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Table 2. Comparisons of the proposed methods with SoTA methods on S3DIS test set. Every metric is in mIoU (%). Bold number

represents the best result. † denotes the results from our reimplementation.

Settings Methods mIoU ceil. floor wall beam col. wind. door chair table book. sofa board clutter

Fully

RandLA [14] 62.4 91.2 95.7 80.1 0.0 25.2 62.3 47.4 75.8 83.2 60.8 70.8 65.2 54.0

KPConv [35] 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9

RFCR [10] 68.7 94.2 98.3 84.3 0.0 28.5 62.4 71.2 92.0 82.6 76.1 71.1 71.6 61.3

Closer† [25] 66.0 93.2 98.2 81.2 0.0 24.8 49.9 69.3 90.4 80.4 72.0 74.6 68.0 55.8

PTv2† [38] 70.9 93.8 98.5 86.1 0.0 29.5 60.5 78.0 93.2 81.8 76.6 79.2 83.0 61.7

1%

SPT [47] 61.8 91.5 96.9 80.6 0.0 18.2 58.1 47.2 75.8 85.7 65.3 68.9 65.0 50.2

PSD [48] 63.5 92.3 97.7 80.7 0.0 27.8 56.2 62.5 78.7 84.1 63.1 70.4 58.9 53.2

HybridCR [23] 65.3 92.5 93.9 82.6 0.0 24.2 64.4 63.2 78.3 81.7 69.0 74.4 68.2 56.5

0.03%
PSD [48] 48.2 87.9 96.0 62.1 0.0 20.6 49.3 40.9 55.1 61.9 43.9 50.7 27.3 31.1

HybridCR [23] 51.5 85.4 91.9 65.9 0.0 18.0 51.4 34.2 63.8 78.3 52.4 59.6 29.9 39.0

0.02%

MIL [42] 51.4 86.6 93.2 75.0 0.0 29.3 45.3 46.7 60.5 62.3 56.5 47.5 33.7 32.2

CPCM [24] 62.3 92.6 95.6 79.4 0.0 17.8 49.3 59.4 85.7 75.6 69.1 60.7 68.2 55.8

PTv2† [38] 55.1 80.5 94.7 73.9 0.0 21.7 42.9 38.9 81.4 59.2 62.5 52.9 66.1 42.1

+PP2S 60.0 79.0 93.1 77.5 0.1 31.5 49.7 61.4 70.0 73.7 69.9 56.9 71.0 45.6

+REAL 65.2 86.9 95.8 80.2 0.0 27.0 60.3 77.8 72.3 79.9 70.8 64.7 77.4 54.1

0.004%

Closer† [25] 38.7 82.5 92.4 69.4 0.1 15.0 23.3 35.6 50.9 47.8 0.3 19.1 37.3 29.1

+PP2S 44.9 62.9 88.8 67.9 0.0 11.7 29.2 44.7 46.4 63.2 53.5 25.7 50.7 38.6

+REAL 57.8 79.0 97.7 70.8 0.1 24.4 50.4 60.1 84.5 64.6 64.8 66.8 39.9 48.7

PTv2† [38] 39.7 76.6 87.2 65.4 0.0 9.4 30.6 22.3 61.7 50.3 41.7 14.6 22.4 34.1

+PP2S 53.0 65.9 93.1 68.9 0.0 27.3 42.7 55.8 68.4 63.7 58.2 52.5 50.5 41.8

+REAL 62.7 84.0 95.7 80.3 0.0 31.1 57.4 63.7 75.5 76.9 68.7 70.0 65.4 46.8

Figure 8. Qualitative comparisons between the semantic segmen-

tation results of the baseline and ours on S3DIS under 0.004% set-

ting. The displayed boxes indicate the regions where significant

improvements are achieved by the proposed method.

ble 3. Our method demonstrates superior performance on

both the validation and test splits. Notably, REAL outper-

forms CPCM by 3.6% in the validation set and 2.7% in the

test set. These results imply that our method effectively uti-

lizes the potential of weak labels. The qualitative results for

ScanNetV2 can be found in Supp.

5. Conclusion

Expensive and labor-intensive point-wise annotation hin-

ders the practical application of point cloud semantic seg-

mentation. While conventional WSPCSS methods have ex-

hibited promising results, the fixed input sparse label po-

tentially constrains the achievable performance. In pur-

suit of a novel research direction, we propose the utiliza-

tion of an additional source of information, introducing the

Region Exploration via Artificial Labeling (REAL) frame-

work. This framework aims to harness the power of the im-

age foundational model, SAM, within the context of active

learning. To establish the connection between the 2D model

Table 3. Comparisons of the proposed methods with SoTA meth-

ods on ScanNetV2 val/test set. The results are in mIoU.

Settings Methods Val. Test

Fully
KPConv [35] - 68.4

RFCR [10] - 70.2

1%

SPT [47] - 51.1

PSD [48] - 54.7

HybridCR [23] 56.9 56.8

20 pts

MIL [42] 57.8 54.4

CPCM [24] 62.7 62.8

Ours (REAL) 66.3 65.5

and 3D data, we designed the Projection-based Point-to-

Segment (PP2S) module. The PP2S is employed as an artifi-

cial oracle in the REAL framework, dynamically enhancing

labels during training. Although using an artificial oracle

eliminates the burden of manual annotation, it introduces

some drawbacks due to the model’s imperfections. As a

remedy, we devised several strategies for query sampling

and label updating. Through extensive experiments, we

demonstrated the working logic of our framework in detail.

Finally, the proposed REAL framework achieved new SoTA

on various datasets, surpassing existing works. We believe

that our approach pioneers the effective integration of the

foundational image model into the realm of WSPCSS.
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