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Figure 1. Concept Weaver’s Generation Results. Our method, Concept Weaver, can inject the appearance of arbitrary off-the-shelf
concepts (from a Bank of Concepts) to generate realistic images.

Abstract

While there has been significant progress in customiz-
ing text-to-image generation models, generating images
that combine multiple personalized concepts remains chal-
lenging. In this work, we introduce Concept Weaver, a
method for composing customized text-to-image diffusion
models at inference time. Specifically, the method breaks the
process into two steps: creating a template image aligned
with the semantics of input prompts, and then personaliz-
ing the template using a concept fusion strategy. The fusion
strategy incorporates the appearance of the target concepts
into the template image while retaining its structural de-
tails. The results indicate that our method can generate
multiple custom concepts with higher identity fidelity com-
pared to alternative approaches. Furthermore, the method
is shown to seamlessly handle more than two concepts and
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closely follow the semantic meaning of the input prompt
without blending appearances across different subjects.

1. Introduction
Text-to-image generation models have shown impressive
capabilities [21, 23, 28] in the last few years. Existing
open source [21] and commercial solutions such as Adobe
Firefly have enabled aspiring creatives to generate images
with unprecedented quality by simply crafting text prompts.
Progress has also been attained in developing models that
can customize images for your own subjects or visual con-
cepts [3, 11, 22, 25]. These technologies have opened the
door for new ways of content creation, where aspiring cre-
ators can craft stories with personalized characters under
different scenes and styles.

While there has been significant progress in customizing
text-to-image generation models, generating images that
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combine multiple personalized concepts remains challeng-
ing. Several approaches [11, 25] offer the ability to jointly
train models for multiple concepts or merge customized
models, enabling the creation of scenes with more than one
personalized concept. However, it often fails to generate
semantically related concepts (e.g., cat and dog) and strug-
gles to scale beyond three or more concepts. More recently,
Mix-of-show [4] has addressed the issue of multi-concept
generation with disentangled Low-Rank (LoRa) [9] weight
merging and regional guidance at the sampling stage. How-
ever, the model still suffers from mixed concepts due to the
difficulty of weight merging.

In this paper, we propose a tuning-free method for com-
posing customized text-to-image diffusion models at infer-
ence time. We illustrate our key idea in Figure 2, where
the goal is to generate images featuring more than two cus-
tom concepts. Specifically, rather than generating a person-
alized image from scratch, we break the process into two
steps: first, we create a template image that aligns with the
semantics of the input prompt, and then we personalize this
template image using a novel concept fusion strategy. The
fusion strategy takes as input the non-personalized template
image along with region concept guidance (obtained auto-
matically) to generate an edited image that retains the tem-
plate’s structural details while incorporating the target con-
cepts’ appearance and style. This fusion approach injects
concept details into specific spatial regions, allowing us to
compose multiple concepts (from the Bank of Concepts) in
generated images without blending appearances across dif-
ferent subjects.

Our empirical evaluations show that the proposed
method is able to generate multiple custom concepts with
higher concept fidelity. In particular, as shown in Sec-
tion 4, we observe that our method can compose images
without blending appearances for semantically related con-
cepts (cats and dogs). Second, we notice that our model
can seamlessly handle more than two concepts, e.g., two
subjects and a custom background, while the baseline ap-
proaches struggle. Finally, we find that the images gener-
ated by our method closely follow the semantic meaning of
the input prompt achieving high CLIP scores [11]. Ours
also has robustness on architecture as it can be used in both
of full fine-tuning and Low-Rank adaptation, which is more
efficient in computation.

2. Related Work
Text-to-image Diffusion Models. Text-to-image genera-
tion models have made significant progress, starting from
early GAN-based models [2, 29] to recent diffusion-based
models [20, 21, 23, 28]. Various open source models and
commercial models like Adobe Firefly have contributed to
this development. The recent introduction of Stable Diffu-
sion models [21] has led to the exploration of various appli-

cations such as mask-based image editing [1], image trans-
lation [16, 18, 26], and style transfer based on text [30].
Moreover, the attention-based structure of stable diffusion
has inspired different editing methods [7, 17, 26].

Diffusion Model Customization. Building on the ad-
vancements of these T2I models, research on customizing
T2I models using user-prepared images or visual concepts
has gained attention. The seminal work of Textual Inver-
sion [3] has focused on finding optimized textual embed-
dings for custom concepts to generate concept-reflecting
images. Subsequent research has improved performance by
finding extended textual embeddings [12, 27] or fine-tuning
model parameters [11, 22], enabling more efficient and flex-
ible customization.

Extended from the previous single-concept frameworks,
customization involving multiple concepts has also been
attempted. These approaches include methods using
joint training for simultaneously embedding the multi-
concepts [5, 11], weight merging of single-concept cus-
tomized model parameters [11, 25], and spatial guid-
ance [13]. However, these approaches face challenges when
the number of concepts increases or when the semantic dis-
tance between the concepts is close, resulting in the disap-
pearance or blending of specific concepts. To address this,
recent work of Mix-of-show [4] applies regional guidance
during the sampling process using merged weights to re-
solve the issue of concept blending. However, the approach
still requires additional optimization steps for weight merg-
ing and may experience fluctuations in quality due to the
sensitivity to regional guidance.

3. The Concept Weaver’s Method

In this section, we introduce Concept Weaver, an innovative
method designed to generate high-quality images that incor-
porate multiple custom concepts. Traditional models often
struggle with generating complex, multi-concept images in
a single step. Concept Weaver addresses this by employing
a cascading generation process, which we illustrate in Fig-
ure 2. Consider the prompt: “A [C1]dog and a [C2]cat
playing with a ball, [C3]mountain background”, where
[C1,C2,C3] denote custom concepts. Our approach be-
gins by personalizing text-to-image models for each con-
cept (Step 1). Next, we select a non-personalized ’template
image’ using the given prompt, either from a text-to-image
model or a real-world source (Step 2). In the third step,
we extract latent representations from this template to aid
in later editing. The fourth step involves identifying and
isolating the specific regions of the template image that cor-
respond to the target subjects. Finally, our key contribu-
tion (Step 5) combines these latent representations, targeted
spatial regions, and personalized models to reconstruct the
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Figure 2. Concept Weaver’s Method. First, we fine-tune a text-to-timage model for each target concept in the bank (Step 1). Then we
source a template image (Step 2). Given the template image, we apply the inversion process with simultaneous feature extraction to save its
structural information (Step 3). In Step 4, we extract region masks from the template image with off-the-shelf models [10]. With extracted
features and masks, we generate the multi-concept image in Step 5.

template image, infusing it with the specified concepts. We
present each of these key steps in detail next.

Step 1: Concept Bank Training. In this step we fine-
tune a pretrained text-to-image model to embed each of
the target concepts in the bank. Among the various cus-
tomization strategies, we leverage Custom Diffusion [11]
as it does not change any residual network or self-attention
layers. In practice, Custom Diffusion only fine-tunes the
cross-attention layers of the U-Net model ϵθ. Specifically,
with the text condition p ∈ Rs×d and self-attention fea-
ture f ∈ R(h×w)×c, the cross attention layer consists of
Q = W qf,K = W kp, V = W vp.

We only fine-tune the ‘key’ and the ‘value’ weight pa-
rameters W k,W v of the cross-attention layers. Also, we
use modifier tokens [V*], which are placed ahead of the
concept word (e.g., [V*] dog) and operate as a constraint to
general concepts. We augment the fine-tuning process with
robust data augmentation techniques. Since we can incor-
porate an arbitrary personalization approach if the method
is only related to cross-attention layers, we can naturally
extend the approach to an efficient LoRA [9]-based fine-
tuning method. We will show the flexibility of the proposed
approach in our experiment part.
Step 2 : Template Image Generation. One of our key
insights is to cascade the multi-concept generation pro-
cess – we start from a template image that can be cus-
tomized/personalized with the target concepts in the given
prompt. To source a template image we can rely on exist-
ing text-to-image models but also on real images if given.
They should include the semantic objects (or characters)
with specific background desired in the prompt. In practice,
we generate template images using Stable Diffusion [21]
model version ≥2.0.
Step 3 : Inversion and Feature Extraction. After sourcing
a template image, we apply an inversion process to obtain
a latent representation that will help guide our generation

process. In this stage, we borrow the image inversion and
feature extraction schemes proposed in plug-and-play dif-
fusion (PNP) [26]. More specifically, as shown in Figure 3
(a), from the source image xsrc we generate the noisy latent
space zT with the DDIM [24] forward process. From the
inverted latent zT , we can accurately reconstruct the source
image using a reverse DDIM process [24]. We provide more
details about the inversion process in the supplementary ma-
terial. During the reverse reconstruction process, we extract
the features from the U-Net’s l-th layer f l

t at each timestep
t. These features include intermediate outputs from residual
layers and self-attention activations. As proposed in PNP
diffusion, we extract the ResNet output from l = 4 and
self-attention maps from l = 4, 7, 9. Inspired by the recent
negative prompt inversion [6], we used the reference text
condition psrc during the inversion process.
Step 4 : Mask Generation. Given an inverted latent and
pre-calculated features, we can guide the structural infor-
mation of the subsequent generation process. However, we
using the structural guidance cannot guarantee the concept-
wise editing of each targeting concepts and generated im-
ages often yields mixed concepts. Therefore, we use the
masked guidance in which we apply the personalized gen-
eration model to the specific regions which already con-
tains the template objects. In order to obtain the semantic
mask regions, we leveraged the Segment Anything Model
[10]. To further avoid the manual seeding of segmenta-
tion model, we incorporated the pre-trained text conditional
grounding model [15] to obtain the bounding box regions
with given text prompts. We then obtain the box regions
giving single concept-wise words such as ’a dog’,’a cat’,
etc. For N different concepts, we extract concept-wise
masks M1,M2, . . .MN , and set the unmasked region as
background mask Mbg = (M1

⋃
M2

⋃
. . .MN )c.

We empirically discovered that when we use directly ob-
tained densely annotated masks, the final output often yields
deformed outputs. Therefore instead of using densely anno-
tated mask, we used dilated mask in which the mask region
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Figure 3. Image Inversion and Multi-Concept Fusion. (a) To extract and save the structural information of template images, we save
the intermediate latent of images during the DDIM forward process. With the fully inverted noise, we extract the feature outputs from
denoising U-Net during the DDIM reverse process. (b) From the noisy inverted latent, we start the multi-concept fusion generation. We
denoise the noisy image with fine-tuned personalized models. After obtaining multiple cross-attention layer features, we fuse the different
features from each masked region. In this step, we inject the pre-calculated self-attention and resnet features into the networks.

is expanded from the original area. To prevent confusion
between overlapping regions of concepts, we kept the orig-
inal dense mask only in such overlapped regions.
Step 5 : Multi-Concept Fusion. We now can generate the
images with multi-concept characters as described in Fig-
ure 3(b). Since our goal is to generate images without
any joint-training stage, we propose a novel sampling pro-
cess which can combine the multiple single-concept person-
alized models in unified sampling process. Starting from
inverted noisy latent zT , we denoise the noise component
from the latent. More specifically, we assume that there is a
bank of concepts which already contains parameter sets for
fine-tuned single-concept models. In practice, we select N
concepts for generation, of which the weight parameters are
θ1, θ2, . . . θN . Also, we pick one concept for background
generation, which have parameters of θbg . With the selected
models, we start our multi-concept fusion sampling.

One naive approach is to mix the multiple score estima-
tion outputs similar to compositional diffusion [14]. At each
time step t, the single score estimation is represented as:

ϵfuse =

N∑
i

ϵθi(zt, t, p+i)Mi + ϵθbg (zt, t, p+bg)Mbg,

where ϵθi(zt, t, p+i) is the model output from the ith con-
cept, and Mi is the corresponding mask region for each con-
cept. However, we found that naively mixing the different
models in score estimation shows limited performance as
the concepts of generated outputs are not smoothly mixed.

We address this problem by introducing multiple tech-
niques for realistic concept-fusion:
First, we inject the pre-calculated features f l

t to the U-net
models. Since the concept-aware parameters are only re-
lated to cross-attention layers, they are not related to saved
features f l

t as they are extracted from residual and self at-

tention layers. Therefore, we give the unified structural in-
formation to the entire sampling steps without deteriorating
the representation of custom concepts.
Second, we found that using same text condition input to
all networks yields severe artifacts and results in concept
leakage problems, i.e. the apperance of concepts is mixed
indiscriminately. Therefore, we propose a concept-aware
text conditioning strategy, in which our text condition input
p+i contains a sentence which only includes one concept-
indication modifier word. For example, if we combine two
concepts of [c1] dog, [c2] cat and [bg] mountain back-
ground, our prompt construction scheme is as follows. We
start from basic text prompt such as :

pbase = ”A dog and a cat playing with a ball, mountain background”

Then we place the placeholder token in front of the each
concepts for each text conditions such that:

p+1 = ”A [c1] dog playing with a ball, mountain background”

p+2 = ”A [c2] cat playing with a ball, mountain background”

p+bg = ”A dog and a cat playing with a ball, [bg] mountain background”

With the differently constructed text conditions, we can
sample the concept-specific image in the targeted regions.

Third, we propose to mix the different concepts in the
feature space of cross-attention layers as shown in Fig. 3(b).
With the ith concept weight parameter θi and concept-aware
prompt p+i, we can extract output feature hl,t

i from the lth
cross attention layers and timestep t. For brevity, we remove
l, t as we use the feature in all layers and timesteps. With the
extracted features for each concept, we can calculate mixed
features such that:

hfuse =

N∑
i

hiMi + hbgMbg.
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We also propose a concept-free suppression method to
remove the concept-free features during sampling process.
Specifically, we calculate the cross attention features hbase

from a concept-free (not fine-tuned) model ϵθbase
with a ba-

sic text condition pbase, and extrapolate the concept-free
features with the initial fused features such as:

hfuse = (1 + λ)[

N∑
i

hiMi + hbgMbg]− λhbase.

We then calculate the fused score estimation, such that:

ϵfuse = ϵθ(zt, t;hfuse; ft),

where hfuse uses the fused features in cross attention lay-
ers, and ft uses the pre-calculated features in self attention
& residual layers.

In our model, the pre-calculated features ft influence
only the structural aspects of the image, while the fused
features, represented as hfuse, are exclusively concerned
with concept-wise semantic information. This clear distinc-
tion ensures there is no conflict between these two compo-
nents. As a result, our approach effectively accomplishes
two distinct objectives: maintaining the overall structure of
the template image and simultaneously altering the seman-
tics of the objects to align with custom concepts. This dual
functionality allows for a nuanced and precise manipulation
of images according to specific requirements.

It is widely known that only using the conditional score
estimation cannot produce proper generated outputs. There-
fore, we leverage classifier-free guidance [8] to extrapolate
the output from unconditional text condition p∅ = ∅. In
practice, we use the recent ‘negative’ prompt strategy in-
stead of unconditional text condition, so that the output
generated images will not contain the unwanted attributes
described in the negative prompt pneg . In our case, the
negative-guidance score output is represented as:

ϵ = ω · ϵfuse + (1− ω) · ϵθbase
(zt, t, pneg; ft).

Implementation Details For the step 1 single-concept
personalization, we adopted the official repository of Cus-
tom Diffusion [11]. We used the pre-trained Stable Dif-
fusion V2.1(SD2.1) as our starting point for fine-tuning as
the model showed improved quality. For a fair compari-
son, we adopted SD2.1 for all of the baseline methods. For
each concept, we fine-tuned the models with 500 steps using
learning rate of 1e-5. For step 2 template image generation
part, we used images generated from Stable Diffusion XL
with 50 sampling steps, higher resolution of 1024×1024
which takes 10 seconds for generating the image. The
source image for this step can be a real images which con-
tains the multiple objects. For step 4 mask generation, we

leveraged the pipelines from langSAM1. For step 3 and 5,
we followed the official source code of Plug-and-Play dif-
fusion features [26]. In this stage, we also used SD2.1 as
our generation backbone. We set the resolution size of gen-
eration process as 768×768, and used sampling step of 50.
The entire process (from step 1 to 5) takes about 60 seconds
with single RTX3090(VRAM 24GB) GPU. More sampling
protocol details in the supplementary material.

4. Experimental Results

In this section, we evaluate our multi-concept fusion ap-
proach. First, we present qualitative and quantitative results
that highlight our method’s effectiveness in generating mul-
tiple concepts in challenging scenarios. We then discuss
our ablation, which examines the impact of different design
choices. Finally, we show how our method can also be ap-
plied to edit and personalize real images.
Baselines. We compare our approach with several methods
for concept personalization. We include early approaches
such as Custom Diffusion [11] and Textual Inversion [3].
Moreover, we include recent approaches such as Perfu-
sion [25] and Mix-of-show [4]. These approaches use a
weight merging approach in which the model uses an op-
timization process to mix multiple single-concept weights
into a unified set of weights. Since the Mix-of-show model
uses a region-based sampling approach, we manually set
the different regions for each concept for a fair comparison.
Datasets. We use diverse data sources for both quantitative
and qualitative analyses. For quantitative evaluation, we se-
lect 15 distinct concepts from the Custom Concept dataset,
arranged into five unique combinations. These concepts en-
compass a wide range of categories, including animals, hu-
mans, natural scenes, and objects. For qualitative analysis,
we extend the bank of concepts with 3 animated characters
concepts extracted from YouTube. The Custom Concept
101 dataset offers a wide variety of images, with each con-
cept containing approximately 3 to 8 images. For the ani-
mated character concepts from the Blender Open Movie2,
we curated a collection of around 5 images per concept.
The supplementary material showcases examples of all used
concepts in our evaluations.
Evaluation metrics. Following [11], we assess our method
against baseline approaches by measuring Text-alignment
(Text-sim) and Image-alignment (Image-sim) using CLIP
scores [19]. Text-alignment computes the cosine similar-
ity between the CLIP embedding of the generated image
and the CLIP embedding of the text prompt. To accurately
reflect our model’s performance in generating multiple con-
cepts, we have adapted the standard Image-alignment met-
ric. This involves computing cosine similarity between vi-

1https://github.com/luca-medeiros/lang-segment-anything
2https://www.youtube.com/watch?v=WhWc3b3KhnY&t=52s
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Figure 4. Qualitative Evaluation of Multi-Concept Generation. We assess the quality of image generation by our method compared
to baseline approaches, using prompts that incorporate every concept from a predefined concept bank (shown on the left). First row: our
method successfully preserves the appearance of the target concepts while all baselines fail. Second row: here Mix-of-show is able to
preserve the identity but struggles when the prompt includes a close interaction. Third row: all baseline approaches fail to generate the
prompted action or to preserve the concept’s attributes; our model instead generates an image that follows the prompt while preserving the
appearance of the concepts. Overall, our model generates concept-aware outputs without any concept mixing problems.

sual embeddings from designated concept regions and the
embeddings of corresponding target concepts. We com-
pute these metrics over 200 unique images generated by
each model. We use 5 combinations of multiple concepts in
which each combination includes more than 3 concepts. We
use varied text prompts, from simple text such as “photo of
dog and a cat standing, mountain background’, to complex
interactions between the concepts like “photo of dog and a
cat kissing, mountain background’. We report the average
Text-alignment and Image-alignment scores computed over
all the generated images.

4.1. Multi-Concept Generation Results

Qualitative Evaluation. We compare our method against
the baselines in generating images from three-concept
prompts. We include simple prompts such as “A photo of
a [C1] cat and a [C2] woman standing with a [3] light-
house background.”. We also study the generation quality
for prompts involving concept interactions, for instance, “A
photo of a [1] cat and a [C2] woman hugging with a [3]
lighthouse background.”. We pick the images with the im-
age with largest CLIP score for a fair comparison.

Figure 4 summarizes our qualitative evaluation. Most
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Figure 5. Towards More Complex Multi-Concept Generation. We compare our method against Mix-of-show at generating images
with prompts involving four challenging concepts. Mix-of-show exhibits severe problems of concept missing. Our method, instead, can
successfully generate realistic concept-aware images when using a larger number of concepts.

Method CLIP score
Text sim↑ Image sim↑

Textual Inversion 0.3423 0.7256
Custom Diffusion 0.3595 0.7875

Perfusion 0.3182 0.7563
Mix-of-show 0.3634 0.7984

Concept Weaver (ours) 0.3804 0.8124

Table 1. Quantitative Evaluation of Multi-Concept Genera-
tion. Our model outperforms the baselines in both CLIP scores,
indicating that our outputs have better text and concept alignment.

baseline approaches [3, 11, 25] struggle to generate high-
quality images, often failing to accurately capture the ap-
pearance of all target concepts and frequently mixing dis-
tinct features such as appearance, texture, or details between
concepts. Mix-of-show [4] tends to generate realistic im-
ages for multi-concept prompts. However, we observe a
common failure mode that mixes the concept’s appearance
when the concept locations are close in space, e.g., when
prompted to generate subjects that are “kissing”. In con-
trast, our method can successfully generate the custom con-
cepts, even when prompted to generate interactions between
these concepts, without mixing or missing concepts, there-
fore properly reflecting the given text prompts.

When composing more than 3 concepts, our method
also outperforms the competing method of Mix-of-show as
shown in Figure 5. Mix-of-show [4] requires weight mix-
ing for multi-concept fusion, making its generated images
severely deteriorated when including more concepts due to
the complexity of weight optimization.
Quantitative Evaluation. Table 1 reports the CLIP scores
for our method and the baseline approaches. The re-
sults showed that our method outperformed in both text-
similarity and image-similarity scores which indicates that
our generated outputs show better quality in both text se-
mantic alignment and concept appearance preservation.
Human Preference Study. To further assess the percep-
tual quality of our generated images, we conducted a user
study with 20 participants. We summarize the results in
Table 2. The study was designed to capture detailed opin-
ions along three different axes: 1) Alignment with the given
text prompt (Text match), 2) Inclusion of all target con-

Method User Study
Text match↑ Concept match↑ Realism↑

Textual Inversion 2.28 1.89 2.55
Custom Diffusion 2.73 2.11 2.64

Perfusion 2.22 1.84 2.70
Mix-of-show 3.44 3.39 3.78

Concept Weaver (Ours) 4.70 4.64 4.43

Table 2. Human Preference Study. We assess three different
axes. Text match: evaluates how closely the images follow a given
text prompt. Concept match: measures the quality of preserving
the appearance and attributes of target concepts. Realism: captures
the overall quality of the generated images. We use a 5-point scale,
where 1 represents “strongly disagree” and 5 “strongly agree”, and
report the average across all responses.

Settings CLIP score
Text sim ↑ Image sim ↑

(a) Only mask guidance 0.3140 0.7544
(b) w/o feature injection 0.3489 0.7739

(c) eps mix 0.3677 0.8023
(d) w/o concept-free suppresion 0.3727 0.7936

Concept Weaver (Ours) 0.3804 0.8124

Table 3. Ablation Study. Quantitative comparison on ablating
components of our method. We validate that each of our design
choices make our model better at multi-concept generation.

cepts (Concept match), and 3) Overall quality and real-
ism of the generated images (Realism). The participants
were asked to score 20 images on each of these axis us-
ing a 5-point scale, where 1 represents “strongly disagree”
and 5 “strongly agree”. More details about the protocol in
the supplementary material. These results validate that our
proposed method can generate perceptually better outputs
when compared to the baseline methods, as consistently in-
dicated by a broad range of human evaluators.

4.2. Ablation Study

We ablate our method and show a qualitative comparison
between different settings in Figure 6. When we only use
mask guidance similar to the approach of Mix-of-show (a),
the output’s structures are severely deformed, and the image
does not contain the proper concepts. (b) When we remove
the feature injection, the output image again shows concept
leakage and the quality is lowered. (c) When we use epsilon
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Figure 6. Ablation Study. (a) Results with only using mask guidance. (b) Results without using feature injection strategy. (c) Results of
direct mixing on score estimation output. (d) Results without using concept-free suppression approach. (e) Ours (full).

Figure 7. Customizing Real Images. Our method can also edit
real images to inject the appearance of target concepts.

space mixing, the output image shows unwanted artifacts
on the boundary area. (d) If we do not use the suppression
method, the generated object does not fully reflect the con-
cept appearance, especially for the plushie concept. We also
show a quantitative comparison between the different set-
tings in Table 3. We followed the same experiment protocol
used in our quantitative comparison. The results validate
our design choices and expose their benefits in generating
images that have the highest correspondence between the
text condition and the target concepts.

4.3. Applications and Potential Extensions

Customizing Real Images. Since our sampling approach
starts from initial template images, we can easily extend our
method into real image editing by substituting the generated
template images with real ones. As shown in Figure 7, our
method can edit real images with multiple custom concepts.
It accurately injects the appearance and attributes of the tar-
get concepts into the existing objects in the real image.
Extension to LoRa Fine-tuning. Instead of using Custom
Diffusion fine-tuning on the single-concept personalization
step, we can easily adapt our approach to the more effi-
cient scheme of Low-Rank adaptation fine-tuning. Differ-
ent from the basic approach of fully fine-tuning the key and
value weight W k,W v , we can use LoRA-based fine-tuning
in which only ∆W is updated such that Wnew = W+∆W .

Figure 8. Extension to LoRa Fine-tuning. Our method also sup-
ports bank of concepts trained with efficient LoRA fine-tuning.

Figure 8 illustrates that our method can easily extended
to leverage the more efficient LoRA fine-tuning. We show
more generated samples in Supplementary Materials.

5. Conclusion

We introduced a novel framework to generate high-fidelity
images which contain multiple custom concepts. Our pro-
posed approach fuses multiple personalized single-concept
models during the sampling stage without any additional
optimization process. The experimental results showed
that our method outperforms state-of-the-art customization
methods in multiple axes. In general, our proposed method
can generate a larger number of concepts together, includ-
ing complex interactions between them. We also showed
that our approach can be applied to customize real images
and be easily extended to efficient LoRA fine-tuning.
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