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Abstract
The advancement of Zero-Shot Learning in the medi-

cal domain has been driven forward by using pre-trained
models on large-scale image-text pairs, focusing on image-
text alignment. However, existing methods primarily rely
on cosine similarity for alignment, which may not fully
capture the complex relationship between medical images
and reports. To address this gap, we introduce a novel
approach called Cross-Attention Alignment for Radiology
Zero-Shot Classification (CARZero). Our approach innova-
tively leverages cross-attention mechanisms to process im-
age and report features, creating a Similarity Representa-
tion that more accurately reflects the intricate relationships
in medical semantics. This representation is then linearly
projected to form an image-text similarity matrix for cross-
modality alignment. Additionally, recognizing the pivotal
role of prompt selection in zero-shot learning, CARZero in-
corporates a Large Language Model-based prompt align-
ment strategy. This strategy standardizes diverse diagnostic
expressions into a unified format for both training and infer-
ence phases, overcoming the challenges of manual prompt
design. Our approach is simple yet effective, demonstrat-
ing state-of-the-art performance in zero-shot classification
on five official chest radiograph diagnostic test sets, includ-
ing remarkable results on datasets with long-tail distribu-
tions of rare diseases. This achievement is attributed to
our new image-text alignment strategy, which effectively ad-
dresses the complex relationship between medical images
and reports. Code and models are available at https:
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Figure 1. Comparison of the alignment scheme in Visual Lan-
guage Pre-training: (left) handcrafted cosine similarity used in
CLIP [6] and CheXzero [33]; (right) our proposed cross-attention
alignment leveraging a novel similarity representation.

//github.com/laihaoran/CARZero.

1. Introduction

Deep learning (DL) has achieved remarkable success in
medical image recognition tasks. Prior studies [3, 18, 23,
34] have harnessed DL techniques for diagnosing diseases,
yielding impressive results. However, these efforts often
rely on laborious and costly annotations from clinical ex-
perts. Additionally, to reach an acceptable accuracy level,
model training requires an extensive collection of labeled
data for each specific disease, which can be both challeng-
ing and time-consuming. To address these issues, recent
works [1, 15, 33, 38, 41, 42] have utilized paired images and
reports for cost-effective disease diagnosis through zero-
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shot learning (ZSL) [29]. For rare diseases, where labeled
training data is particularly scarce and difficult to obtain,
ZSL emerges as a valuable tool for diagnosis.

Delving into the advanced medical ZSL methods, includ-
ing ConVIRT [42], GLoRIA [15], CheXzero [33], Med-
KLIP [38], and KAD [41], we discover that contrastive
learning serves as a foundational approach, aiming at min-
imizing the cosine similarity between paired image-text
samples and maximizing it between unpaired ones. How-
ever, compared to natural images and texts, the relationship
between medical images and reports is significantly more
complex. For example, radiologists tend to describe mul-
tiple findings, diseases, and their locations within a single
report, drawing upon various visual clues present in the cor-
responding medical images. Hence, we hypothesize that
relying solely on the hand-crafted cosine similarity to mea-
sure the complex relationships between medical reports and
images might be suboptimal.

To address this issue, we propose a CARZero method
that leverages cross-attention alignment for radiology dis-
ease diagnosis within the setup of ZSL, a simple yet effective
method of learning a similarity measurement that robustly
represents the similarity of the medical semantic context.
Specifically, as shown in Fig. 1, we use cross-attention [35]
to compute global and local features from both modalities
and result in features of mutual interaction, which is re-
ferred to the Similarity Representation (SimR). The SimR is
then processed by a linear projector to obtain the final logit
of similarity. Finally, we employ an InfoNCE loss [29] to
introduce comparisons between positive and negative pairs,
optimizing the model to learn discriminative features.

Furthermore, considering that medical reports are quite
specialized and complex, the task of human-designed
prompts poses an additional challenge to medical zero-
shot classification. Recently, there has been significant
research efforts [20, 21, 32, 45], dedicated to optimizing
prompts, mainly with strategies that adjust the adaptability
of prompts for downstream tasks. In our CARZero frame-
work, we tackle this issue by aligning diagnostic prompts
during both training and zero-shot inference phases. For-
tunately, recent advancements in Large Language Mod-
els (LLMs) [43] have demonstrated significant capabili-
ties in laguege comprehension and reformulation, enabling
CARZero to standardize the diverse expressions found in
reports into a cohesive and unified prompt format. This not
only mitigates the challenges of manual prompt design but
also unifies the format of diagnosis to improve zero-shot in-
ference performance.

Our CARZero has been evaluated on a total of five pub-
lic datasets. In particular, our CARZero achieves the state-
of-the-art (SOTA) AUC performance of 0.810 in PadCh-
est [2], which is a multi-label dataset with a long-tail dis-
tribution spanning 192 diseases. More surprisingly, our

CARZero achieves zero-shot performance scores of 0.811
on ChestXray14 [37], surpassing the SOTA performances
of 0.794 achieved with fine-tuning on 1% of the data.

To summarize, the contributions of this paper are listed
as follows:
• We propose a novel cross-attention alignment for medical

images and reports, utilizing SimR to articulate the com-
plex relationships between medical images and reports,
effectively aligning the features of both vision and text
domains.

• We employ LLM to reformulate medical reports into the
unified prompt template, ensuring the alignment of diag-
nostic expression during both the training and zero-shot
inference phases.

• Tremendous experiments on five large-scale radiology di-
agnosis datasets confirm the zero-shot capabilities of our
CARZero exceeding the SOTA zero-shot methods with a
notable performance gap. Impressively, a significant im-
provement is achieved in diagnosing rare diseases.

2. Related Work

2.1. Zero-shot classification

For Vision Language Pretraining (VLP) tasks, previous
works [24, 26] mainly use a fusion module to integrate
image and text features, employing binary cross-entropy
for classifying the combined features to determine if the
image-text pair matches. Recently, CLIP [29] introduced
contrastive learning, which measures the cosine similarity
between image and text features, aiming to maximize it be-
tween the matching image-text pairs and minimize the un-
paired ones. This work significantly advances the develop-
ment of VLP for ZSL in visual recognition tasks. Following
CLIP, many studies [4, 6, 8, 11, 14, 28, 31, 39] have utilized
contrastive learning for aligning image-text, demonstrating
the substantial potential of contrastive learning for VLP.

In the medical domain, VLP has demonstrated remark-
able performance in ZSL for disease diagnosis. There has
been a succession of outstanding works [15, 33, 38, 41, 42].
ConVIRT [42] first introduces contrastive learning to align
medical images and reports. CheXzero [33] leverages
the CLIP trained by nature data as pre-trained weights to
achieve commendable performance on medical data. GLo-
RIA [15] further introduces the integration of global and
local features alignment. MedKLIP [38] proposes the use
of prior knowledge in the form of disease descriptions
as an additional input to enhance representation learning.
KAD [41] introduces word-based entity extraction to ex-
tract report information, thus improving the model’s gener-
alizability. For medical zero-shot classification tasks, these
advancements represent meaningful progress. However, an
important consideration they overlook is the intricate and
nuanced relationship between medical images and reports,
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which is substantially more complex than the associations
found in natural images and texts. Therefore, capturing the
complex relationships between medical images and texts
is key to improving the performance of medical zero-shot
classification.

2.2. Cross-Attention in Modality Alignment

Existing works of cross-attention in modality alignment can
be divided into two types. The first type uses cross-attention
for modality fusion, optimizing the fused features with an
image-text matching loss (ITM). For example, ALBEF [24]
proposes a strategy of alignment before fusion, enabling the
cross-attention module to merge the features of two modal-
ities and optimize them using an ITM loss. BLIP [25] treats
the image features as hidden states of text encoder to ob-
tain fused modal features, which are then optimized with an
ITM loss. The second type involves using cross-attention
for modality projection transformation, followed by em-
ploying cosine similarity to calculate the similarity between
the projected modalities and optimizing with an InfoNCE
loss. For example, MGCA [36] employs cross-attention to
project local features of both modalities, aligning the pro-
jected features afterward by InfoNCE loss. TEFAL [16]
uses cross-attention to project video and audio on text, then
optimizes these projections with an InfoNCE loss. In con-
trast to these established methodologies, as shown in Fig-
ure 1, this paper introduces a novel third type, which em-
ploys cross-attention to directly generate a high-level Simi-
larity Representation between two modalities, subsequently
optimized using an InfoNCE loss. This high-level SimR
effectively captures the complex relationship between the
two modalities, especially for medical images and reports.
Moreover, InfoNCE loss, compared to the ITM loss, uses
more negative samples and a softmax that is highly com-
parative, along with a process of logit normalization, which
is more suitable for modality alignment.

2.3. Prompt Alignment

In VLP models, the performance of zero-shot classifica-
tion is highly dependent on the design of the prompt. Typ-
ically, human-designed prompts require extensive search-
ing to find the optimal template, which is time-consuming
and labor-intensive. To improve efficiency, CoOP [45]
introduced the concept of automatic prompts by learning
prompts for downstream tasks. MaPLe [21] proposes a
multi-modal prompt fine-tuning strategy, emphasizing the
interplay between text and images in prompt construction.
Imagic [20] proposes a novel framework for text-guided
image editing, enabling precise alterations that resonate
with the image’s semantic context. GALIP [32] utilizes
text-conditioned prompts to better adapt to downstream
tasks, thereby improving complex image synthesis capa-
bilities. Despite their effectiveness, these developments

mainly leverage natural data, underscoring the significance
of prompt design in the pre-training phase of cross-modality
learning. Intuitively, using prompt templates as training
data to align the training and testing prompts has been an ef-
fective method for prompt design. However, it is challeng-
ing to directly insert prompts into training data. Fortunately,
Recent progress in LLMs [43] have shown enormous po-
tential in semantic understanding, making it feasible to in-
troduce prompt information into training texts. Therefore,
leveraging large models for prompt alignment emerges as
another key aspect in advancing medical zero-shot classifi-
cation.

3. Method
In this section, we describe our proposed CARZero frame-
work for zero-shot classification. As illustrated in Figure 2,
first, we introduce a Cross-Attention Alignment that gener-
ates a SimR to represent the relationship between images
and reports. Then, a linear layer projects the SimR onto
a similarity matrix, which is then optimized using the In-
foNCE loss. Moreover, we propose an LLM-based Prompt
Alignment method that integrates prompt templates into the
training data.

3.1. Feature Extraction

Assume that the training dataset contains N samples de-
noted as Dtrain = {(x1, y1) , . . . , (xN , yN )}, where xi ∈
RH×W×C represents a CXR image and yi represents its
corresponding medical report. H , W , and C refer to height,
width, and channels, respectively. As illustrated in Figure 2,
we introduce individual components of our architecture for
feature extraction of different modalities, including an im-
age encoder Φimage and a text encoder Φtext.
Image Encoder The image encoder is utilized to extract
the image features at different levels, as shown in Eq. (1).

[xl
i,x

g
i ] = Φimage (xi) , (1)

where xl
i ∈ RL×D and xg

i ∈ RD represent the local and
global features, respectively. L represents the number of
local image patches and D refers to the dimension of image
features. The ViT-base [9] model is adopted as the visual
encoder in our experiments.
Text Encoder As illustrated in Eq. (2), the text encoder
is employed to extract text features from the given report.
For each sample, a sentence is randomly selected from the
report in each training iteration. In our experiments, to bet-
ter adapt the text encoder for medical-related information
extraction, we fine-tune BioBERT [22] with the clinical re-
ports and use it for text encoding.

[yl
i,y

g
i ] = Φtext (yi) , (2)

where yl
i ∈ RM×D, yg

i ∈ RD represent the word-based and
sentence-based features, respectively. M is the maximum
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Figure 2. The CARZero Network proposed in this paper consists of two stages. First, LLM is employed to generate prompt templates from
medical reports. Second, text and vision encoders are used to extract features from image and text, which are fed into a cross-attention
module to generate similarity for optimizing InfoNCE loss.

text length and D refers to the dimension of text features.
In our experiment, the dimensions of final output features
from both the image and text encoders are the same.

3.2. Cross-Attention Alignment

Due to the complex relationship between medical images
and reports, a cross-attention alignment module is proposed
to align the feature spaces between images and reports. The
objective is to employ cross-attention to obtain the SimR,
which serves as a high-level representation of the correla-
tion between the images and reports. During the training
phase, the number of images and texts in a batch is equal,
denoted as I for the number of images and T for the num-
ber of texts. For text-to-image (‘t2i’) alignment, sentence-
based features yg ∈ RT×D are used as the query. To calcu-
late SimR, the dimension of yg is expanded and repeated to
match the number of images, resulting in ŷg ∈ RT×I×D.
Then, the local features of images, xl ∈ RL×I×D are
used as key and value. Finally, the output from the cross-
attention module is SimR, SRt2i ∈ RT×I×D. This high-
dimensional, learned representation is considered as a rich
descriptor of the similarity between texts and images, effec-
tively capturing their complex relationship.

[Q,K, V ] = [WQŷg,WKxl,WV xl]; (3)

CrossAtt(Q,K, V ) = Softmax
(
QKT

√
dk

)
V ; (4)

SRt2i = Feedforward (CrossAtt(Q,K, V )) . (5)

where WQ, WK , and WV are the weights for linear pro-
jection. dk is the feature dimension of K, which is equal
to D. Following this, a linear projection is applied to map
this high-dimensional representation to a low-dimensional
space to derive the similarity matrix.

St2i = Linear(SRt2i) ∈ RT×I ; (6)

Optimization is performed using the InfoNCE loss.

Lt2i = − log
eS

i,i
t2i∑I

k=1 e
Si,k

t2i

− log
eS

i,i
t2i∑T

k=1 e
Sk,i

t2i

; (7)

Si,i
t2i refers to a specific element in the similarity matrix, rep-

resenting the similarity score between the ith image-text
pair in the batch. Similarly, Si,k

t2i indicates the similarity
score between the ith text and the kth image in the batch.

Similarly, for image-to-text (‘i2t’) alignment, global fea-
tures from images are used as the query, and the word-based
features of texts serve as the key and value. This process
also yields a high-dimensional SimR, SRi2t ∈ RI×T×D, for
image-to-text, which is then projected using a linear layer to
obtain the image-to-text similarity matrix for computation
of InfoNCE loss.

Li2t = − log
eS

i,i
i2t∑T

k=1 e
Si,k

i2t

− log
eS

i,i
i2t∑I

k=1 e
Sk,i

i2t

; (8)
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The final objective function for the CARZero model is the
summation of Lt2i and Li2t, given by:

L = Lt2i + Li2t. (9)

3.3. LLM-based Prompt Alignment

To align the prompts used during training and inference
phases, we incorporate prompt templates into the training
data using LLMs. Prompting instruction is utilized to gen-
erate the prompt template within the training data, with de-
tails shown in the supplementary. By leveraging the LLM’s
exceptional capability for semantic understanding, fixed
prompt templates are introduced into the training data. The
templates generated by the LLM are then merged with the
original reports to create enhanced reports for training. Dur-
ing the inference phase, the prompt template, “There is [dis-
ease].”, is employed for zero-shot classification. This strat-
egy leverages the LLM’s advanced capabilities in semantic
comprehension to ensure that the training data is enriched
with consistent and relevant prompt templates, thereby fa-
cilitating a more effective and aligned application during
both training and inference stages.

4. Experiments
4.1. Dataset

MIMIC-CXR [19] In our experiments, we conducted
model pretraining using the MIMIC-CXR dataset, a pub-
licly available collection of chest radiographs paired with
radiology text reports. The MIMIC-CXR dataset com-
prises 377,110 images corresponding to 227,835 radio-
graphic studies conducted on 65,379 patients. Each radio-
graphic study is accompanied by a radiology report and the
corresponding chest X-ray image, which may be in either
frontal or lateral views. The radiology report serves as a
comprehensive summary provided by radiologists, encom-
passing various sections such as examination, indication,
impression, findings, technique, and comparison. In our
methodology, we selectively retain only the findings and
impressions sections from these reports. Moreover, only
frontal views of CXRs are used for CARZero training.
Open-I [7] Open-I contains 3,851 reports and 7,470 Chest
X-ray images, which includes manual annotations for 18
different multi-label diseases. We evaluate the CARZero
for zero-shot classification on Open-I.
PadChest [2] PadChest has 160,868 chest X-ray images la-
beled with 192 different diseases, which is a long-tailed dis-
tribution dataset. 39,053 (27%) samples are manually an-
notated by board-certified radiologists. For evaluation pur-
poses, we only test on samples annotated by board-certified
radiologists. Additionally, we select categories with fewer
than 10 samples, totaling 20 classes, designated as PadCh-
est20, to evaluate the performance of CARZero on rare dis-
eases.

ChestXray14 [37] NIH ChestXray14 has 112,120 chest
X-ray images with 14 disease labels from 30,805 unique
patients. The official test set released by the NIH, com-
prising 22,433 images, are distinctively annotated by board-
certified radiologists. For evaluation purposes, we only test
on the official test set.
CheXpert [17] CheXpert has 224,316 CXRs collected
from 65,240 patients. The official test set contains 500 pa-
tients annotated by a consensus of 5 board-certified radiolo-
gists [30]. We evaluate on 5 observations: Atelectasis, Car-
diomegaly, Consolidation, Edema, and Pleural Effusion.
ChestXDet10 [27] ChestX-Det10 is a subset of NIH
ChestXray14, which is consisting of 3543 CXRs with box-
level annotations provided by 3 board-certified radiologists
of 10 diseases. The official test set contains 542 CXRs with
10 diseases and corresponding box-level annotations. We
evaluate the zero-shot classification and grounding ability
in the official test set.

4.2. Evaluation Metric

For the multi-label test dataset, we adopt Area under
the ROC Curve (AUC), Matthews Correlation Coefficient
(MCC), F1 score (F1), and Accuracy (ACC) as metrics for
evaluating zero-shot classification tasks. For assessing zero-
shot grounding tasks, we specifically utilize the Pointing
Game [40] metric.

4.3. Implementation Details

In our experiments, ViT-B/16 is used as the image encoder,
which utilizes M3AE [5] for pretraining on the MIMIC
dataset. For the text encoder, BioBERT is fine-tuned using
texts from both MIMIC and PadChest datasets. Given that
PadChest reports are in Spanish, they are translated into En-
glish. The LLM named Spark1 is employed to intelligently
insert prompt templates into the training dataset.

The cross-attention module shares weights for ‘i2t’ and
‘t2i’ alignments. The images are resized to a uniform shape
of 224×224. Commonly used data augmentation including
random horizontal flips, random affine transformations, and
color jittering are adopted. For each report, we divide it
into multiple sentences with a maximum length of 97, and
one of the sentences is randomly selected at each training
iteration. The optimizer used is Adam with a learning rate
set to 5e-5. The code is based on the PyTorch framework.
All experiments are conducted with an A800 GPU.

During the inference phase, when prompt alignment
strategy is applied, we set the prompt template as “There
is [disease]”, denoted as P1. Without prompt alignment, an
empirically optimized prompt “A disease of [disease]”, de-
noted as P2, is found to yield the best performance.

1https://xinghuo.xfyun.cn/
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Method Open-I PadChest PadChest20 ChestXray14 CheXpert ChestXDet10

MedCLIP [12] 0.551 0.508 0.501 0.564 0.744 0.571
BiomedCLIP [13] 0.577 0.513 0.510 0.639 0.677 0.630
GLoRIA [15] 0.589 0.565 0.558 0.610 0.750 0.645
BioViL [10] 0.702 0.655 0.608 0.729 0.789 0.708
CheXzero [33] 0.726 0.648 0.644 0.712 0.889 0.640
MedKLIP [38] 0.759 0.629 0.688 0.726 0.879 0.713
KAD [41] 0.807 0.750 0.735 0.789 0.905 0.735
CARZero 0.838 0.810 0.837 0.811 0.923 0.796

Table 1. Comparative analysis of existing zero-shot classification approaches on five official multi-label CXR datasets evaluated by AUC.

Atelectasis Calcification Consolidation Effusion Fibrosis Mass Nodule PneumothoraxAtelectasis Calcification Consolidation Effusion Fibrosis Mass Nodule Pneumothorax

Figure 3. Visualization of attention map in CARZero on ChestXDet10. The red boxes indicate the corresponding ground truth of detection.
Highlighted pixels represent higher activation weights correlating specific words with regions in the image.

Method ChestXray14

GLoRIA [15] 0.707
MedKLIP [38] 0.772
MGCA [36] 0.782
KAD [41] 0.787
MRM [44] 0.794

CARZero 0.811

Table 2. Comparison of the performance of existing methods fine-
tuned on 1% data versus CARZero in zero-shot classification on
ChestXray14 by AUC.

4.4. Comparison with State-of-the-art Methods

As shown in Table 1, we compare the performance of ex-
isting SOTA methods in CXR zero-shot classification on
five officially released test sets. All test sets are manually
annotated to ensure reliability. To ensure a fair compari-
son, all methods use their respective published models for
inference. Among these, GLoRIA [15], MedKLIP [38],
KAD [41], and our CARZero all utilize both global and lo-
cal feature information for alignment. Ultimately, our pro-
posed CARZero achieves better performance on the AUC
metric across all test sets. Particularly for the PadChest
dataset, which includes a long-tail distribution of 192 dis-
eases, our method achieves an AUC of 0.810, indicating
its good generalization performance on long-tail distribu-
tion data. Specifically, we achieve exceptional performance

in rare disease zero-shot classification on PadChest20, at-
tributable to our effective image-text alignment method.
This demonstrates the significant potential of our approach
for diagnosing rare diseases. Moreover, we compare zero-
shot classification performance of our method with the re-
sults of existing works using 1% labeled data for fine-
tuning. As shown in Table 2, our zero-shot classification
performance even surpasses that of the existing methods
fine-tuned on 1% data, demonstrating the strength of our ap-
proach. This might be due to cross-attention alignment used
in CARZero generates high-level SimR to represent the re-
lationships between medical images and reports, effectively
measuring their complex relationships. Furthermore, the
process of projecting SimR from high to low dimension
using a learnable projection matrix fully exploits the as-
sociative information in SimR, thereby effectively aligning
the feature spaces of images and texts. Additionally, our
proposed prompt alignment strategy aligns prompts during
the training and inference phases, eliminating the need to
search for prompts, thereby enhancing the generalizability
of CARZero to the prompts and improving zero-shot clas-
sification performance.

Additionally, we test the performance of CARZero in
zero-shot grounding. We use the attention map from the
cross-attention for grounding prediction. The aim of zero-
shot grounding is to match prompt tokens with image to-
kens. As shown in Table 3, our CARZero achieves the best
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Method Mean ATE CALC CONS EFF EMPH FIB FX MASS NOD PTX

GLoRIA [15] 0.367 0.479 0.053 0.737 0.528 0.667 0.366 0.013 0.533 0.156 0.143
MedKLIP [38] 0.481 0.625 0.132 0.837 0.675 0.734 0.305 0.224 0.733 0.312 0.229
KAD [41] 0.391 0.646 0.132 0.699 0.618 0.644 0.244 0.199 0.267 0.316 0.143
CARZero 0.543 0.604 0.184 0.824 0.782 0.846 0.561 0.184 0.700 0.286 0.457

Table 3. Comparison of various methods on the ChestXDet10 dataset for zero-shot grounding using the pointing game. The abbreviations
ATE, CALC, CONS, EFF, EMPH, FIB, FX, MASS, NOD, and PTX correspond to Atelectasis, Calcification, Consolidation, Effusion,
Emphysema, Fibrosis, Fracture, Mass, Nodule, and Pneumothorax, respectively.

performance. This is likely because our method directly
uses SimR, generated by cross-attention alignment, to rep-
resent the similarity between images and texts. Therefore,
the attention map in cross-attention effectively reflects the
association between images and texts. The outstanding per-
formance of our CARZero demonstrates that our method
can effectively align the feature spaces of images and re-
ports, and successfully match the lesion areas in the images
with the prompts.

4.5. Visualization

As shown in Figure 3, we present the visualization results
of CARZero. We perform linear interpolation on the at-
tention map from the cross-attention alignment to obtain
a pseudocolor image of the same size as the original im-
age. At the same time, we display the names of the lesions
and their corresponding locations. From Figure 3, it is ev-
ident that CARZero effectively captures the correlation be-
tween disease-related words and the corresponding lesion
areas in the images, providing strong interpretability for our
method. For small lesions, our method can also precisely
detect them from the images. For example, as shown in
Figure 3, for pneumothorax, CARZero accurately locates
the corresponding lesion areas and localizes the full lesion.
This may be attributed to the attention mechanism. In this
paper, we propose a cross-attention alignment strategy, us-
ing the attention mechanism to directly align images and
texts. This method can effectively capture text-related in-
formation from images based on a given prompt, which is
demonstrated by Table 3 and Figure 3.

4.6. Ablation Study

Ablation Study of Modules To validate the effectiveness
of the prompt alignment and cross-attention alignment pro-
posed in this paper, we design experiments using the CLIP
framework as the baseline, incorporating each of these mod-
ules separately. In scenarios without prompt alignment, we
compare the performance of using different prompts P1 and
P2. As shown in Table 4 (a vs. c and b vs. c), the prompt
alignment strategy aligns the CARZero with P1, achieving
performance comparable to the empirically tuned one. This
improvement is attributed to the model’s alignment during
the training phase with prompt P1, leading to stronger gen-
eralization on P1.

# PT PA CA AUC MCC F1 ACC

a P1 0.764 0.230 0.247 0.792
b P2 0.796 0.255 0.271 0.821
c P1 ✓ 0.795 0.288 0.290 0.866
d P1 ✓ 0.781 0.217 0.230 0.816
e P2 ✓ 0.801 0.241 0.253 0.821
f P1 ✓ ✓ 0.810 0.257 0.270 0.867

Table 4. Results on ChestXray14 for the ablation study of various
modules. Here, ’PT’ denotes the prompt template used in the in-
ference stage, ’PA’ represents prompt alignment, and ’CA’ stands
for cross-attention alignment.

The comparison in Table 4 (a vs. d and b vs. e) demon-
strates that introducing cross-attention alignment further en-
hances model performance. While CLIP utilizes global
features from images and texts for alignment using cosine
similarity, our method employs both local and global fea-
tures for alignment. Additionally, high-level SimR is used
to decipher the feature associations between images and
texts, effectively aligning them and achieving superior per-
formance. Table 4 (f) highlights the effectiveness of com-
bining prompt alignment and cross-attention alignment for
zero-shot classification. The integrated use of these tech-
niques not only consolidates the strengths of each individual
component but also helps the model to effectively general-
ize to diverse zero-shot scenarios.
Ablation Study of Feature In the context of cross-attention
alignment, the query must utilize global features, while the
key and value have three options: global only, local only,
or a combination of both global and local features. We ex-
periment with all three choices, as demonstrated in Table 5.
The results show that using only global features yields the
worst performance, while combining global and local fea-
tures achieves optimal performance. The performance of
using only local features is close to that of combining both
global and local features. First, global features are an aggre-
gation of local features, and this aggregation process may
lead to the loss of detailed information. Hence, relying
solely on global features is insufficient. Compared to global
features, local features encompass richer semantic informa-
tion, including details and positional information, thereby
ensuring the completeness of feature information. More-
over, since global features are the aggregation of local fea-

11143



Global Local AUC MCC F1 ACC

✓ 0.799 0.248 0.264 0.856
✓ 0.810 0.257 0.270 0.867

✓ ✓ 0.810 0.259 0.276 0.880

Table 5. Results on ChestXray14 for key and value choice in cross-
attention alignment.

Method AUC MCC F1 ACC

cos(xy, yx) 0.804 0.225 0.228 0.813
cos(xy, y) + cos(yx, x) 0.805 0.111 0.130 0.420
Linear(SR) 0.810 0.259 0.276 0.880
MLP(SR) 0.811 0.265 0.284 0.878

Table 6. Results on ChestXray14 for Processing of SimR. Here,
cos (·) denotes cosine similarity, xy refers to SRi2t as the pro-
jection of image features onto text, and yx indicates SRt2i as the
projection of text features onto image.

tures and match the global features of the query, integrating
both global and local features can achieve the best perfor-
mance, which aligns with intuition.

4.7. Processing SimR

To further explore the role of SimR in image-text alignment
and validate the rationale behind using SimR in our study,
we conduct the following investigations: (1) Cosine simi-
larity computation. We consider SimR as a modality pro-
jection transformation. Following this, we can calculate the
alignment of two modalities using cosine similarity, similar
to the methods described in [16]. Consequently, we design
two sets of experiments: one directly computes the cosine
similarity between two projected features, while the other
computes the cosine similarity between each projected fea-
ture and the original global features of images and texts,
respectively. (2) Direct projection to low-dimension simi-
larity. We continue to treat SimR as a high-level associative
representation between images and texts. To more effec-
tively extract the relationships between images and reports
from SimR, we replace the simple linear layer with a multi-
layer perceptron (MLP).

As shown in Table 6, cosine similarity computation
proves less effective than direct projection to low-dimension
similarity. This may be caused by the fact that the fea-
tures obtained through cross-attention alignment, as high-
level SimR, can effectively represent the relationship be-
tween images and medical reports, eliminating the need
for further similarity calculations, which is the core of our
method. Moreover, cosine similarity, a non-parametric sim-
ilarity metric, is less effective compared to our learnable
similarity strategy, which better captures the complex rela-
tionships between images and medical reports, thus achiev-
ing superior performance. This indicates that using cosine
similarity alone may not adequately measure the complex

relationships between medical reports and images. Lastly,
compared to simple linear projection, MLP employs more
complex non-linear projection to reduce SimR from high
to low dimensions. Experimental results demonstrate that
MLP outperforms simple linear projection. This suggests
that a simple linear layer might not be sufficient to fully ex-
tract the relationships between images and texts from SimR,
which contains complex image-text relationships. There-
fore, a complex MLP better leverages SimR’s advantages.

5. Conclusion, Limitation and Impact

This paper proposes CARZero that achieves high-
performing zero-shot classification. First, we propose a
novel cross-attention alignment strategy, innovatively using
the features generated by cross-attention as the SimR be-
tween images and reports. Subsequently, we use a linear
layer to project SimR into a low-dimension similarity for
aligning images and reports. Extensive experiments prove
that the information contained in this SimR is highly ef-
fective for image-text alignment. Moreover, we propose
a novel LLM-based prompt alignment strategy, integrating
prompt templates into the training data to achieve train-
ing and inference prompt alignment. Finally, CARZero
achieves SOTA performance on five publicly released of-
ficial test sets, demonstrating its effectiveness.
Limitations and Future Work First, our method mainly
focuses on zero-shot classification. The CARZero frame-
work employs a cross-attention module as the core mech-
anism for aligning images and texts, which can be directly
used as a classifier, thus offering certain advantages in fine-
tuning. Therefore, future work could involve experiments in
fine-tuning tasks. Secondly, our method primarily focuses
on the complex relationship between medical images and
reports, introducing a cross-attention alignment strategy to
address it. We believe this method also has excellent gen-
eralizability to natural data. Hence, we plan to experiment
with natural data in the future to further validate the effec-
tiveness of the cross-attention alignment strategy.
Impact The CARZero proposed in this paper achieves
state-of-the-art performance in CXR zero-shot classifica-
tion tasks, including excellent performance on the long-tail
dataset, PadChest, which includes 192 categories. This is
significant for the diagnosis of rare diseases. In addition,
ZSL greatly reduces the manpower cost of radiology ex-
perts and allows for low-cost acquisition of more training
data, which is crucial for advancing chest AI diagnostics.
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