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Abstract

Open-set recognition (OSR) methods aim to identify
whether or not a test example belongs to a category ob-
served during training. Depending on how visually sim-
ilar a test example is to the training categories, the OSR
task can be easy or extremely challenging. However,
the vast majority of previous work has studied OSR in
the presence of large, coarse-grained semantic shifts. In
contrast, many real-world problems are inherently fine-
grained, which means that test examples may be highly
visually similar to the training categories. Motivated by
this observation, we investigate three aspects of OSR: label
granularity, similarity between the open- and closed-sets,
and the role of hierarchical supervision during training. To
study these dimensions, we curate new open-set splits of a
large fine-grained visual categorization dataset. Our anal-
ysis results in several interesting findings, including: (i)
the best OSR method to use is heavily dependent on the
degree of semantic shift present, and (ii) hierarchical rep-
resentation learning can improve coarse-grained OSR, but
has little effect on fine-grained OSR performance. To fur-
ther enhance fine-grained OSR performance, we propose a
hierarchy-adversarial learning method to discourage hier-
archical structure in the representation space, which results
in a perhaps counter-intuitive behaviour, and a relative im-
provement in fine-grained OSR of up to 2% in AUROC and
7% in AUPR over standard training. Code and data are
available: langnico.github.io/fine-grained-osr.

1. Introduction
The goal of open-set recognition (OSR) is to distinguish
familiar or closed-set categories that were seen during
training from novel or open-set categories that were not
seen [45]. In other words, OSR focuses on detecting seman-
tic shifts between the training and test categories.1 How-
ever, not all semantic shifts are equal. Different open-set

1In this work, we use the taxonomic distance between categories in
a label hierarchy to quantify semantic dissimilarity. We assume that this
distance correlates with visual dissimilarity between the categories.
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Figure 1. Granularity and semantic similarity are understud-
ied confounders in open-set recognition (OSR). Given a taxo-
nomic label hierarchy, we curate open-set splits with increasing
semantic shifts (i.e., hops) to show that careful attention to these
factors is instrumental in answering questions such as: What is the
best OSR scoring method? Do hierarchical representations im-
prove OSR?

categories will have different degrees of visual similarity
to the familiar closed-set categories. Recently, Vaze et al.
[53] showed that OSR is harder for categories exhibiting
smaller semantic shifts relative to the training categories.
Intuitively, novel categories that are highly similar to the
training categories tend to be confused with familiar ones
with high confidence. We refer to this phenomenon as the
“familiarity trap”. Note that this is the opposite of what we
expect to see in zero-shot classification [42] and transfer-
learning [12], where smaller semantic shifts make the prob-
lem easier, not harder (see illustration in Figure 1). The vast
majority of the OSR literature has focused on investigating
coarse open-set splits [53] while the impact of finer-grained
splits is underexplored.

Unlike traditional (coarse-grained) OSR, fine-grained
OSR reflects realistic category discovery challenges in fine-
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grained domains like medicine [43], art [11], and the natural
world [51]. For example, in species monitoring [3, 27, 39,
51], we might expect to see new species that are highly visu-
ally similar to known species. While existing unlabeled data
might contain such examples, their similarity makes it dif-
ficult to detect them. In citizen science applications, auto-
mated vision systems can be used to distinguish poisonous
mushrooms from similar-looking edible ones [41]. Ensur-
ing that a novel, potentially dangerous mushroom species
is not confused with a previously observed safe one is cru-
cial. Fine-grained OSR problems may also be encountered
when digitizing museum collections, screening potentially
counterfeit goods, or identifying fashion trends.

Natural world image collections from citizen science
platforms like iNaturalist [1] are particularly well-suited
to studying fine-grained OSR thanks to their size, diver-
sity, and high-quality taxonomic structure (which provides
a proxy for semantic similarity). In this work, we use the
iNat2021 [52] dataset to investigate the challenges in fine-
grained OSR in terms of semantic similarity, supervision
granularity, and hierarchical representations. We explore
the role of semantic shift by studying progressively more
difficult open-set splits (Figure 1). In contrast to previous
work that uses fine-grained datasets with a limited number
of categories [53], we work with a large-scale benchmark
containing 10,000 categories and 2.7 million images. This
allows us to study diverse real-world OSR phenomena. By
training models from scratch on large splits of iNat2021,
we avoid the risk of leaking knowledge from pretraining
datasets like ImageNet [44] that might contain semantic
overlap with the open-set [7].

While the use of hierarchical labels has been studied in
closed-set recognition to reduce the severity of mistakes [6,
15, 17] in fashion [31], crop mapping [50], food [58] and
species recognition [14], the role of hierarchical represen-
tations for fine-grained OSR is underexplored. We find
that encouraging hierarchical structure in the representa-
tion space can be beneficial for closed-set classification
and coarse-grained open-set recognition, but surprisingly
it has a limited effect on fine-grained OSR. Motivated by
this finding, we explore whether implicit hierarchical struc-
ture should be reduced for fine-grained OSR. We propose a
hierarchy-adversarial learning approach that can improve
fine-grained OSR performance by discouraging hierarchi-
cal structure. By adapting the gradient reversal layer devel-
oped for unsupervised domain adaptation [20, 21], our ap-
proach learns representations that reward linear separability
of fine-grained categories while discouraging linear sepa-
rability of coarser-grained granularities. As we discourage
hierarchical structure, representations of instances from cat-
egories that share similar features are pushed away from
each other. To put it differently, we hypothesize that the
hierarchy-adversarial approach discourages features shared

across classes in favour of class-specific features. Thus,
fine-grained novel categories are less likely to get caught
by the “familiarity trap”, i.e., less likely to be misclassified
as a semantically similar category with high confidence.
We make the following contributions:
1. We demonstrate that the choice of the best scoring rule

for OSR depends on the semantic similarity between the
closed- and open-set and that familiarity scores perform
best in fine-grained OSR.

2. We investigate the impact of supervision granularity and
show that fine-grained supervision improves OSR per-
formance even for large semantic shifts.

3. We explore the role of hierarchical representations and
introduce hierarchy-adversarial learning to improve
fine-grained OSR by discouraging hierarchical structure.

4. We introduce iNat2021-OSR, a benchmark with curated
open-set splits for the iNat2021 dataset [52] for two taxa:
birds and insects. This enables the study of OSR along
seven discrete “hops” that encode the semantic distance
from coarse-grained (7-hop) to fine-grained (1-hop).

2. Related work

2.1. Open-set recognition

Open-set recognition (OSR) [45] is concerned with the
problem of identifying novel categories, i.e., semantic
shifts. A large number of OSR-specific deep learn-
ing methods have been proposed including OpenMax [4],
OSRCI [37], ARPL [8], and OpenHybrid [60]. However,
recently Vaze et al. [53] demonstrated that simple baselines
based on classifier confidence (i.e. logits) perform on par
and that the improvement in OSR performance is not nec-
essarily solely attributed to dedicated OSR approaches, but
can instead be explained by improvements in the closed-set
recognition accuracy, as the result of using more sophisti-
cated deep neural network architectures and training strate-
gies. In parallel, Dietterich and Guyer [18] proposed the
‘familiarity hypothesis’ to explain the observation that deep
networks can be interpreted as detecting the absence of fa-
miliarity, instead of the presence of novelty.

In this work, we are concerned with fine-grained OSR,
a setting which has been partially explored in existing
work [2, 13, 22, 48, 53]. Our goal is to investigate the im-
pact in performance resulting from changes in the semantic
similarity between the closed and open-sets. Many exist-
ing fine-grained approaches construct random data splits,
which will thus contain a mixture of hard and easy cat-
egories in the open-set [22], or they use splits with very
large semantic differences (e.g., using dogs as familiar and
cars as novel categories) Dai et al. [13]. Using manu-
ally annotated attributes, Vaze et al. [53] constructed easy,
medium, and hard open-set splits of three popular fine-
grained datasets (i.e., CUB-Birds [55], Stanford Cars [30],
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and FGVC-Aircraft [36]). We build on this work, by con-
structing dataset splits leveraging taxonomies to allow us to
explore the impact of a larger variety of split types.

There are two major limitations in prior OSR work that
can yield an overly optimistic impression of model perfor-
mance. First, the small size of existing OSR benchmark
datasets necessitates the use of pretrained models. This po-
tentially results in a semantic overlap between the pretrain-
ing categories (e.g., from ImageNet [44]) and the open-set
categories [25]. Hence, the open-set categories may already
be well separated from the closed-set ones. Second, the
experimental evaluation on random data splits can lead to
coarse open-set splits, which are not representative of real-
world open-set applications that can be finer-grained [53].
This work aims to overcome both limitations by conduct-
ing experiments on large-scale image datasets across a spec-
trum of coarse to fine open-set splits.

Related to OSR is the more general task of out-of-
distribution (OOD) detection, also referred to as anomaly
or novelty detection [33, 47], which encompasses a set
of methods that explore problems such as detecting co-
variate or distributional shifts [23, 29, 40, 62], semantic
shifts [25], and combinations of shifts [26, 40, 49]. OSR
is concerned with semantic shifts, and can thus be inter-
preted as a particular case of OOD detection [59]. Dif-
ferent methods have been explored for OOD detection, in-
cluding score-based [24–26, 34], ensemble/disagreement-
based [32, 32, 40], and distance metric-based [28]. In
Sec. 5, we evaluate these three families of methods in the
context of OSR.

2.2. Granularity, similarity, and hierarchy

Our work is concerned with exploring OSR through the lens
of granularity, similarity, and hierarchy, we briefly summa-
rize relevant related works on these topics below.
Label granularity encodes how detailed a category label
is, and can range from coarse-grained (e.g., “animal”) to
fine-grained (e.g., “blue jay”). Granularity has been widely
studied in closed-set recognition [57]. Multiple granular-
ity supervision has been used to implicitly focus on differ-
ent parts of an image to improve fine-grained categoriza-
tion [56]. The granularity of supervision can impact perfor-
mance in different ways.Van Horn et al. [51] showed that
fine-grained training labels can hurt performance on coarse-
grained object detection. Cole et al. [9] demonstrated that
there is a “sweet” spot of granularity supervision for weakly
supervised object localization (i.e., not too fine and not too
coarse). Furthermore, it has been demonstrated that the ac-
curacy gap between self-supervised and supervised meth-
ods grows when evaluated using finer-grained labels [10].
Semantic similarity describes the distance between two
concepts (e.g., categories) in terms of their meaning. Vi-
sual similarity (or perceptual similarity [61]) can serve as

a proxy for semantic similarity. Selecting visually simi-
lar pretraining data has been shown to be effective for im-
proving transfer learning performance [12]. In fine-grained
domains, samples of the same category can be visually
very different (i.e., exhibit high intra-class variance) and
samples of different categories can be very visually sim-
ilar (i.e., exhibit low inter-class variance) [57]. Depend-
ing on the domain, nuisance variables such as object pose
and scene illumination [46, 62], or sex and age [51] can
amplify the discrepancy between visual and semantic sim-
ilarity. Additional metadata such as attributes or taxonomy
has been studied as an alternative proxy for semantic sim-
ilarity, for instance in zero-shot learning in ImageNet cate-
gories [19, 38] or for iNaturalist species [42]. Vaze et al.
[53] used labeled attributes to demonstrate that open-set
recognition performance depends on the semantic similar-
ity between the training and test categories. Interestingly,
the difficulty of a task is not consistently coupled with gran-
ularity or semantic similarity. While OSR becomes harder
for small semantic shifts, in contrast, zero-shot and transfer
learning becomes easier.
Label hierarchy has been incorporated in closed-set recog-
nition to reduce the severity of mistakes [6, 15, 17] in fash-
ion [31], crop mapping [50], food [58] and species recogni-
tion [14]. Similarly, in hierarchical OSR [5, 16, 33, 47, 54]
the aim is to find the closest ancestor, the ‘super-category’
of a novel category. This task turns the open-set problem
into a closed-set one by coarsening the granularity of the
predicted category. Our goal is not to advance hierarchical
OSR, but to instead study the role of granularity, semantic
similarity, and hierarchical structure in OSR, with the aim
of understanding how to advance performance in the pres-
ence of very small semantic shifts, i.e., fine-grained OSR.

3. Methodology

3.1. Scores for open-set recognition

For the task of binary OSR, i.e., familiar vs. novel, we model
a score S(x) to indicate if a test sample x belongs to the set
of familiar training categories F = {1, . . . ,K}. The score
S(x) should increase as p(y ∈ F|x) increases, i.e., there
should be a high rank correlation between the two. We
summarize three score methods from the OOD and OSR
literature that cover three families of methods [32, 49, 53].
For a given input image, we extract representations using
the encoder fθ, e.g., a trained deep neural network, param-
eterized by θ. A linear decoding function hω with parame-
ters ω maps the representations to a K-dimensional vector,
the logits, and the softmax function σ maps these logits to
probabilities. That is, the predicted probability of an input
image x belonging to class y is given by p(y|x;θ,ω) =
σy (hω (fθ (x))). We write p(y|x) for p(y|x;θ,ω) if the
model parameters are clear from the context.
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Figure 2. Training strategies. We train and compare learning strategies with (a) separate models for each level t in a hierarchy (super-
vision granularity), (b) single models that predict all levels of granularities (hierarchy-supportive), and (c) single models that discourage
prediction capabilities of all but the finest granularity (hierarchy-adversarial). To discourage hierarchical structure in the representations,
we use a gradient reversal layer from unsupervised domain adaptation [20] that reverses gradients for the classification heads of coarser
granularities, i.e., t > 0.

Familiarity scores. These methods use either the logits of a
classifier or the softmax confidence scores. It has been em-
pirically shown that the unnormalized maximum logit score
(MLS) can outperform the maximum softmax probability
(MSP) as an open-set scoring function [53]. The MLS score
is defined as:

SMLS(x) ≜ max
y∈F

[hω (fθ (x))]y, (1)

where [·]y denotes the y-th component of a logit vector.
Disagreement scores. We consider an ensemble of M clas-
sifiers with parameter θm and ωm for m = 1, . . . ,M , and
write pm(y|x) = p(y|x;θm,ωm). We can compute not
only the average confidence pE(y|x) = 1

M

∑
m pm(y|x)

and average logits lE(y|x) = 1
M

∑
m hωm

(fθm
(x)), but

also an alternative score that quantifies the disagreement
(i.e., variance) between the individual member outputs. The
negative KL-disagreement [32], SKLD is used as an indica-
tion that a high score denotes familiar categories:

SKLD(x) ≜ −
M∑

m=1

KL (pE(·|x)∥pm(·|x)) , (2)

where KL represents the Kullback-Leibler divergence be-
tween the predicted class distribution of the ensemble
pE(y|x), i.e., the average confidence over the M mem-
bers, and the predicted class distribution of each member
pm(y|x).
Distance metric scores. Finally, distance in representation
space can be combined with k-nearest neighbours (KNN) to
formulate an OSR score. We adopt the nearest-neighbour
approach from [49], originally proposed for general OOD
detection. The method takes the L2-normalized represen-
tations of the encoder f̃θ(x) = fθ(x)/∥fθ(x)∥2 and com-
putes the shortest distance to the images in the training data
set {(x1, y1), . . . , (xN , yN )} in the normalized representa-
tion space:

SNN(x) ≜ min
i=1,...,N

−∥f̃θ(x)− f̃θ(xi)∥2. (3)

3.2. Hierarchy-supportive learning

One of our objectives is to study the role of label training
granularity and hierarchy in OSR. Among many existing
approaches [6, 14, 15, 17, 31, 50], we chose a simple hi-
erarchical multi-task approach [58]. This provides us with
a framework for exploring representations where the hier-
archical structure is either encouraged or discouraged. We
follow the notation in [58] and define a hierarchy of a given
label space as T = {Yt}Tt=0, where Yt defines the set
of categories at the t-th level in the hierarchy and the leaf
nodes at t = 0 correspond to the fine-grained categories.
From this, we can formulate a hierarchy-supportive multi-
task loss that optimizes the cross-entropy at every level t in
the hierarchy, where yti denotes the true label for sample i
at the t-th hierarchy level and pt(yti |xi) = p(yti |xi;θ,ω

t):

LHS =

T∑
t=0

N∑
i=1

− log pt(yti |xi). (4)

To optimize this training loss, we append additional classi-
fication heads hωt with parameters ωt to the encoder, one
for each level t in the hierarchy as illustrated in Figure 2b.

3.3. Hierarchy-adversarial learning

Similarly, we can formulate a multi-task loss for fine-
grained classification that discourages hierarchical structure
in the representation space. We are interested in learning an
encoder fθ that yields a representation suitable for classify-
ing fine-grained categories – but is agnostic to coarser hier-
archical labels at levels t > 0 in the hierarchy. We hypoth-
esize that this encourages salient features specific for fine-
grained categories rather than relying on coarse-grained fea-
tures for distinguishing groups of fine-grained categories.
This can be achieved by minimizing the cross-entropy for
the finest granularity L0, but maximizing the cross-entropy

17807



for the coarser granularities Lt with t > 0,

LHA =

N∑
i=1

− log p0(y0i |xi)︸ ︷︷ ︸
L0

−λ

T∑
t=1

N∑
i=1

− log pt(yti |xi)︸ ︷︷ ︸
Lt

.

(5)
To ensure that the Lt for t > 0 are not maximized by the
decoding functions, but by the representation, we solve a
min-max optimization problem:

min
θ,ω0

max
ω1,...,ωT

LHA(θ,ω
0,ω1, . . . ,ωT ). (6)

That is, we obtain the parameters of the encoder θ and the
fine-grained decoder ω0 that minimize L0 (i.e., the repre-
sentation is discriminative for fine-grained labels). At the
same time, for t > 0, we obtain the decoders ωt that maxi-
mize Lt, i.e., the representation is regularized to not capture
coarser-grained hierarchical labels. To train a deep neural
network with this min-max objective using stochastic gra-
dient descent (SGD), we adapt a gradient reversal layer-
based approach inspired by the domain adaptation litera-
ture [20, 21]. By swapping the sign of the gradient corre-
sponding to the Lt terms before back-propagating into the
encoder (see Figure 2c), all learnable parameters can be up-
dated in an otherwise standard forward- and backward-pass.

4. Experimental setup
4.1. The iNat2021-OSR dataset

While existing OSR benchmarks for coarse-grained labels
contain many samples, the fine-grained ones are small in
size [53]. This limitation of the fine-grained datasets makes
it impossible to train models from scratch on them, which
we require to have full control over a realistically plausible
setting for OSR. We are also interested in having a gran-
ular label hierarchy that can serve as a proxy for seman-
tic similarity. Motivated by this, we look to the iNat2021
dataset [52] which contains over 2.5 million images of
10,000 different plant and animal species (i.e., categories)
as a benchmark for fine-grained OSR.

Our experimental setup is inspired by the zero-shot
learning work of Rodrı́guez et al. [42], who use the taxon-
omy of iNat2021 to evaluate zero-shot performance at dif-
ferent semantic distances to the training data, measured in
the number of edges to the lowest common ancestor in the
hierarchical graph, we simply refer to this distance as hops
(see Figure 1). We develop two curated open-set data splits
of iNat2021 (see Table 1) and group open-set categories by
the smallest hop distance to any sample in the training data,
ranging from 1–7 hops. The two splits provide a closed-set
for the super-categories “birds” (Aves in biological classifi-
cation) and “insects” (Insecta) at the hierarchy level t = 5
(i.e., “class”). The closed-set consists of a subset of species

from the respective super-category, i.e., the familiar cate-
gories. The remaining categories are used as the open-set
test sets with semantic distances ranging from 1-hop (fine-
grained OSR) to 7-hop (coarse-grained OSR). While hops
1–4 correspond to relationships within the super-categories
(i.e., novel bird or insect species), hops > 4 correspond to
open-set categories outside these super-categories. Full de-
tails about the iNat2021-OSR dataset are given in the sup-
plementary material.

Train Test Open-set test
familiar familiar 1-hop 2-hop 3-hop 4-hop 5-hop 6-hop 7-hop

Aves
Categories 745 745 297 180 170 94 930 2972 4607
Samples 210323 7450 2970 1800 1700 940 9300 29720 46070

Insecta
Categories 1501 1501 505 333 99 88 226 2636 4587
Samples 398952 15010 5050 3330 990 880 2260 26360 45870

Table 1. iNat2021-OSR data split statistics. Based on the
iNat2021 benchmark dataset [52], we curate two new large-scale
OSR benchmark datasets for the super-categories “birds” (Aves)
and “insects” (Insecta). Both versions contain seven open-set
splits of increasing semantic distance (fine to coarse).

4.2. Implementation details

Training. We use a ResNet-50 backbone and train all mod-
els from scratch for 100 epochs using SGD with a base
learning rate set to 0.1, which is multiplied by factor 0.1
every 30 epochs, and weight decay of 1e−4. We train five
models for the ensemble disagreement score (Sec. 3.1) start-
ing from different random initializations following prior
work [40]. To train the hierarchy-adversarial approach
(Sec. 3.3), we gradually increase the weight of the adver-
sarial gradient λ starting from zero to α by the end of the
training process similar to [20].
Evaluation. Open-set performance is reported using an
equal number of samples in the closed-set and open-set by
sub-sampling the larger set. For all evaluation metrics, a
higher score means better performance. More details can
be found in the supplementary material. Closed-set accu-
racy of coarser granularities is evaluated using hard pool-
ing, based on a single predicted category and the given hi-
erarchy. We did not observe a difference using soft pooling,
i.e., aggregating the probabilities of multiple categories.

5. Results
Our experiments investigate the role of semantic similarity,
supervision granularity, and hierarchical structure in OSR.

5.1. What is the role of semantic similarity in OSR?

Fine-grained OSR is hardest. We observe a large
performance gap between fine-grained (1-hop) and coarse-
grained OSR (7-hop) (Figure 3). Hence, OSR performance
correlates positively with semantic distance. One exception
is the performance drop from 6-hop to 7-hop, where the
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Figure 3. Comparison of OSR score methods. MLS: Maximum
logit score [53], KLD: KL-disagreement [32], and NN: Nearest
neighbour [49]. OSR results for the MLS are averaged over 5 re-
sampled ensembles trained on the finest granularity on iNat2021-
OSR. Each ensemble consists of 5 randomly sampled members
drawn without replacement from a pool of 10 models. The shaded
area indicates the min and max AUROC.

familiar categories from “birds” and “insects” are tested
against “plants” and “fungi”. A possible explanation for
this drop could be that plants are often seen during training
in the background for the closed-set categories. This may
increase familiarity scores, making these samples harder to
detect as novel categories. Similar issues have been found
to impair the evaluation of OOD detection [7].

The choice of OSR score depends on semantic sim-
ilarity. All scores follow the same general trend that
OSR performance improves with larger semantic distance
(Figure 3). However, none of the scoring rules consistently
performs best across the spectrum of semantic similar-
ity. For fine-grained OSR (1-hop) and up to 6-hop, the
maximum logit score (MLS) performs best. However, for
coarse-grained OSR, the KL-disagreement outperforms the
logit score in our experiments. Moreover, as birds and in-
sects contain category relationships up to 4-hops, open-sets
with hops >4 are completely outside the classifier’s domain
expertise. This explains the discontinuity from 4- to 5-hop,
where the performance gap between the KL-disagreement
and the logit score is reduced. The nearest neighbour
approach performs worst for both extremes. Interestingly,
the L2-distance on unnormalized representations yields
a lower performance on 1-hop, but higher performance
on 7-hop OSR (see supplementary Figure A6). As the
MLS performs best in fine-grained OSR, we will focus our
analyses on this score.

5.2. What is the impact of supervision granularity?

Closed-set accuracy increases for coarser granularities.
By pooling both the fine-grained prediction and the target
label to coarser granularities, the closed-set accuracy
improves (Figure 4b). This confirms the observation that
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(b) Closed-set performance

Figure 4. Supervision granularity. Performance for the Aves
split when training on granularities that are finer than used for
testing for both (a) open-set and (b) closed-set recognition. The
reference at zero is the performance of the model trained on the
same granularity as the test granularity (corresponding to open-set
distance). For context, the performance of this baseline model is
provided above the test granularity label. The error bars indicate
the standard deviation over 5 training runs. For the closed-set,
we report the macro accuracy (averaging per-class) to account for
class imbalance in coarser granularities.

the closed-set problem is easier for coarser granularities
with fewer categories [10].

Overly fine-grained supervision improves closed-
set accuracy. Closed-set accuracy is highest when we pool
the model trained on the finest granularity to the coarser
test granularity. Training on the matching granularity dete-
riorates performance (Figure 4b). This contradicts results
in both object detection, where overly fine supervision
deteriorates performance for coarser super-categories [51],
and weakly supervised localization where a “sweet spot”
of medium-grained supervision performs best [9]. The
iNat2021 dataset is approximately class-balanced at the
finest granularity, but is imbalanced at coarser levels as the
number of leaf nodes varies in the hierarchy. Therefore, we
average the per-category accuracies, which shows a sub-
stantial performance gap between the matching granularity
and the pooling of the finest supervision granularity.

17809



1 2 3 4 5 6 7
Open-set distance [hop]

60

70

80

90

100

AU
RO

C

Aves

Hierarchy-adversarial ( =0.25)
Hierarchy-supportive
Cross-entropy

1 2 3 4 5 6 7
Open-set distance [hop]

60

70

80

90

100

AU
PR

Aves

Hierarchy-adversarial ( =0.25)
Hierarchy-supportive
Cross-entropy

1 2 3 4 5 6 7
Open-set distance [hop]

60

70

80

90

100

AU
RO

C

Insecta

Hierarchy-adversarial ( =0.25)
Hierarchy-supportive
Cross-entropy

1 2 3 4 5 6 7
Open-set distance [hop]

60

70

80

90

100
AU

PR

Insecta

Hierarchy-adversarial ( =0.25)
Hierarchy-supportive
Cross-entropy

Figure 5. Hierarchy-aware training strategies. OSR results for
Aves (top) and Insecta (bottom) using the maximum logit score
(MLS) of ensembles with 5 models. We compare the training
strategies: Cross-entropy on the fine-grained labels, hierarchy-
supportive (Eq. 4) and hierarchy-adversarial (Eq. 5).

Overly fine-grained supervision improves OSR. Like the
closed-set accuracy, OSR performance is higher for models
trained on the finer granularities (Figure 4a). Even if the
familiar and novel data is separated at coarser granularities,
i.e., hop distances >1, training models on finer granularity
is still beneficial. It is also best for finest-granularity
supervision across the entire spectrum of shifts. This
behaviour can be explained by the phenomena observed
by Vaze et al. [53] whereby better closed-set accuracy
improves OSR performance.

5.3. How does hierarchical structure affect OSR?

Hierarchical representations can improve coarse-
grained OSR. First, we look at the closed-set accuracy
when using hierarchy-supportive learning, which is unaf-
fected at the finest granularity (Figure 5 and Table 2), likely
because the coarse supervision does not help the learning
of features to resolve confusions within very similar cate-
gories. However, closed-set accuracy improves for coarser
granularities (see supplementary), which means that the
severity of mistakes is reduced and is in line with previous
work [6, 15, 17]. Furthermore, the hierarchical structure
can also improve coarse-grained OSR performance (see
Figure 5), which might be explained by the correlation
between closed-set and open-set performance [53].

Hierarchy-adversarial learning can improve fine-
grained OSR. Based on these observations, we study an
alternative direction and turn to the hierarchy-adversarial
training strategy, which aims to reduce hierarchical struc-
ture in the learned representation. This approach improves
fine-grained OSR for 1-hop open-sets across several

Aves Insecta

Training strategy ACC AUROC AUPR ACC AUROC AUPR

Cross-entropy 67.4 (0.3) 68.0 (0.3) 64.8 (0.3) 82.9 (0.3) 75.3 (0.3) 74.5 (0.3)
H-supportive 66.6 (0.4) 69.3 (0.5) 65.9 (0.5) 82.3 (0.1) 76.6 (0.3) 74.9 (0.4)
H-adversarial (α=0.25) 67.6 (0.3) 69.9 (0.5) 69.1 (0.5) 82.7 (0.3) 76.6 (0.4) 75.9 (0.5)

Table 2. Fine-grained OSR (1-hop) and closed-set perfor-
mance. MLS for single models averaged over 5 models trained
with cross-entropy and hierarchy-aware strategies. OSR perfor-
mance (AUROC, AUPR) and the corresponding closed-set accu-
racy (ACC) are reported with standard deviations in parentheses.

Aves Insecta

Score Training strategy AUROC AUPR AUROC AUPR

MLS Cross-entropy 70.1 65.5 78.0 76.4
Hierarchy-supportive 71.1 66.2 79.2 76.4
Hierarchy-adversarial (α=0.25) 72.7 70.2 79.5 77.9

NN Cross-entropy 64.1 61.7 72.6 68.0
Hierarchy-supportive 65.6 60.8 74.0 68.2
Hierarchy-adversarial (α=0.25) 67.8 62.6 76.4 72.1

KLD Cross-entropy 67.0 59.4 74.6 65.7
Hierarchy-supportive 66.0 58.2 73.7 65.3
Hierarchy-adversarial (α=0.25) 66.1 59.1 72.0 63.8

Table 3. Fine-grained OSR (1-hop) ensemble performance. Re-
sults for ensembles with 5 models trained with cross-entropy and
hierarchy-aware strategies. MLS: Maximum logit score [53], NN:
Nearest neighbour [49], KLD: KL-disagreement [32].

metrics for both the MLS and NN score, but not for the
KL-disagreement (see Figure 5 and Tables 2,3). However, it
consistently impairs coarser OSR performance (Figure 5).
Qualitative examples where the hierarchy-adversarial
approach improves the “familiarity trap” w.r.t. the baseline
are included in the supplementary material.

To empirically analyse this strategy’s effect, we com-
pute the L2-distance between category centroids from the
1-hop open-set categories and the training categories in the
learned representation space (Figure 6 a,b). We observe that
hierarchy-adversarial learning pushes fine-grained open-
set categories away from their most related training cate-
gories (1-hop). This contrasts hierarchy-supportive learn-
ing, which pulls the fine-grained open-set closer to its most
related training categories but pushes categories at larger
distances even further away.

We study the sensitivity of the hyperparameter λ from
Equation 5, which controls the weight of the adversarial
gradient and gradually increases from zero to α. We demon-
strate that this parameter controls both the closed-set ac-
curacy and the open-set performance (Figure 6 c). First,
by increasing α, we see an improvement in open-set per-
formance, but at the cost of closed-set accuracy. This be-
haviour contradicts the observation from Vaze et al. [53]
as it shows that there is an underlying role of hierarchi-
cal structure in OSR that cannot necessarily be explained
by improved closed-set accuracy. However, open-set per-
formance drops at a point, most likely due to the drop in
closed-set accuracy.
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Figure 6. Hierarchy-adversarial learning analyses. To analyze how hierarchy-aware training affects the relationship between classes
in feature space, we plot (a) the L2-distance between novel and familiar category centroids in representation space and (b) the change
of the L2-distance w.r.t. the cross-entropy baseline (derived from a). We expect that the hierarchy-supportive learning pulls fine-grained
open-set categories (1-hop) closer to the familiar categories and amplifies the distance between coarse-grained categories. In contrast, the
hierarchy-adversarial learning is expected to push fine-grained categories away from familiar categories, but roughly preserve the distance
of coarse-grained categories. Our empirical analyses confirm these expectations on the Aves dataset. (c) Hyperparameter study for the
weight of the hierarchy-adversarial gradient on the fine-grained open-set (1-hop). With increasing α, open-set recognition performance
improves at the cost of closed-set accuracy. However, there is a tipping point when the weight α is too high, and open-set performance
drops. This behaviour contradicts with the observation of Vaze et al. [53] as closed-set and open-set performance do not correlate.

5.4. Limitations

While our study presents a step towards understanding OSR
under challenging fine-grained shifts, some limitations ex-
ist. First, we rely on a taxonomy as a proxy for concept
granularity and semantic similarity to study our research
questions. To fit our needs, we have curated a new large-
scale open-set benchmark dataset using “birds” and “in-
sects” from iNat2021 as the training domains. It remains
to be tested if our observations hold for other domains, such
as food, art, or medicine. However, Cole et al. [9] have
demonstrated that the existing ImageNet hierarchy is not a
good proxy for concept granularity. Thus, ImageNet is not
a likely candidate for our OSR setting either. An additional
challenge is the irregular depth of the ImageNet categories.

Second, controlling the degree of hierarchical structure
in learned representations is non-trivial. Some hierarchi-
cal structure is essential to solving fine-grained problems
and is learned implicitly, as shown in our experiments (see
Figure 4). We study the “opposite” of hierarchical struc-
ture with a hierarchy-adversarial approach. Our hyperpa-
rameter study shows that there is a sweet spot for selecting
the weight of hierarchy-adversarial gradients. If chosen too
high, closed-set and consequently open-set performance is
impaired. One approach to selecting this weight, without
an open-set validation, is to select a conservatively small α
that still preserves closed-set validation accuracy.

Third, existing fine-grained OSR benchmarks are based
on attribute labels [53]. Our presented hierarchy-adversarial
approach relies on hierarchical labels and cannot make
use of attribute labels. A more general formulation of a
“similarity-adversarial” approach would benefit from sup-

porting any proxy for semantic similarity, e.g., attributes.
Finally, the benefit of pretrained models for fine-grained

OSR requires further investigation. While prior work pre-
trained on different domains [53], pretraining on Ima-
geNet would require the removal of 269 wild animal cat-
egories [35] that potentially overlap with iNat2021.

6. Conclusion
While previous work has mostly addressed coarser OSR we
propose a new large-scale OSR benchmark which allows
us to study OSR across a range of increasingly challeng-
ing semantic shifts, from coarse to fine-grained. Our results
demonstrate that fine-grained OSR remains a very challeng-
ing task for current methods. We show that there are ma-
jor underlying disruptive factors that hinder improved OSR
performance, e.g., supervision granularity and the amount
of semantic shift present in the open-set. Furthermore, hi-
erarchical structure in the learned representation plays an
important, and possibly counter-intuitive, role. We propose
a hierarchy-adversarial learning strategy to discourage hi-
erarchical structure which improves fine-grained OSR by
attempting to address the “familiarity trap”. However, our
analysis shows that there is still more to be done to close the
gap between coarse and fine-grained OSR performance.
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