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Abstract

We describe a method for recovering the irradiance un-
derlying a collection of images corrupted by atmospheric
turbulence. Since supervised data is often technically im-
possible to obtain, assumptions and biases have to be im-
posed to solve this inverse problem, and we choose to model
them explicitly. Rather than initializing a latent irradiance
(“template”) by heuristics to estimate deformation, we se-
lect one of the images as a reference, and model the de-
formation in this image by the aggregation of the optical
flow from it to other images, exploiting a prior imposed by
Central Limit Theorem. Then with a novel flow inversion
module, the model registers each image TO the template
but WITHOUT the template, avoiding artifacts related to
poor template initialization. To illustrate the robustness of
the method, we simply (i) select the first frame as the ref-
erence and (ii) use the simplest optical flow to estimate the
warpings, yet the improvement in registration is decisive in
the final reconstruction, as we achieve state-of-the-art per-
formance despite its simplicity. The method establishes a
strong baseline that can be further improved by integrat-
ing it seamlessly into more sophisticated pipelines, or with
domain-specific methods if so desired.

1. Introduction
Turbulent air motion, once temporally averaged and

sampled to yield a digital picture, causes space- and time-
varying blur. A model of the generative process for the mea-
sured data given the instantaneous “true” irradiance con-
sists of simple integration over the sampling time inter-
val resulting in discrete samples. Inferring the true irra-
diance is an ill-posed problem, for there is an equivalence
class of unknowns that yield the same measurements. We
can therefore choose any representative of the equivalence
class, for instance one that would yield the sharpest solu-
tion. Traditionally the representative element is chosen as
the (temporal) registered mean but since different images
are blurred differently in different locations, the deforma-
tion is not identifiable at all locations, causing the represen-

tative to not have desirable properties, such as being blurry.
Since the choice of representative is arbitrary, we can in-
stead select the sample that has the most desirable prop-
erties, for instance the sharpest image (“lucky frame”), as
a canonical reference from which to estimate the deforma-
tions. Thus, instead of solving the joint optimization for the
deformations and the resulting average, we select the base
frame I0 = Iτ to correspond to a given image for some τ ,
for instance one that has the desired properties. Note that
this choice is made without loss of generality for the pur-
pose of estimating the deformations ŵt mapping It to I0,
since the choice of canonical representative in an equiva-
lence class is arbitrary, so the mean has no more dignity
than any of the samples. Once we have estimated the de-
formations, however, there is a choice to be made on what
criterion to use to infer the approximation of the underlying
“true” irradiance I0. We stress that I0 is not just unknown,
but unknowable, and therefore disambiguation rests on the
choice of prior, or model, or complexity criterion.

Deep learning-based methods hide such arbitrary as-
sumptions in the choice of architecture [27,33,44,48] (class
of functions), or prior (loss function) [17, 32, 46, 47]. How-
ever, inductive prior based on data used for training can be
problematic for discovery, where by definition one is seek-
ing the unknown. Generic priors may therefore be better
suited for applications to computational astronomical imag-
ing. Among non-learning methods, many directly estimate
a reference image by using heuristics such as various forms
of averaging [29, 30, 38, 51], but mostly result in blurry ref-
erence images (Fig. 2). Computing deformation from this
blurry reference image to other images severely impacts the
quality of the deformation fields, which are sometimes of
independent interest. We instead use an input image as the
reference. By the Central Limit arguments, the mean of the
deformation from this frame to other frames converges to
the inverse of the deformation from the ground truth to this
frame (Eq. (5)). Although straightforward, this approach in-
volves inverting the optical flow field, which can be prone to
numerical instabilities. We tackle this flow inversion prob-
lem by hard-coding an interpolation scheme, a key contrib-
utor to the performance of our method (Sect. 3.1.1).
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Figure 1. Schematic for Diffeomorphic Template Registration. To mitigate atmospheric turbulence, one needs a “reference template”
to estimate distortions. Existing methods use simple heuristics (e.g. averaging) to initialize this reference template and are susceptible to
blurry artifacts due to a lack of registration. Instead, we select a keyframe and calculate warping from this keyframe to other frames by
optical flow. By the Central Limit Theorem, the average of these optical flows converges to the warping from the keyframe to the ground
truth reference template. With a novel flow inversion algorithm (detailed in Sect. 3.1.1), input frames can be registered to the reference
template by Eq. (6), even without explicit access to an initialized reference template. This registered reference template can seamlessly fit
into existing downstream atmospheric turbulence mitigation pipelines, such as blind deconvolution and lucky image fusion.

The resulting method (Fig. 1) is simple and versatile
since it is not subject to domain shift effects or inductive
aberrations. To further emphasize the robustness of the
method to the arbitrary choice of reference, in the exper-
iments we simply use the first input frame as our refer-
ence frame. We also use a vanilla optical flow method, the
good old-fashioned Horn & Schunck (L2-regularized) op-
tical flow [16]. Yet, despite these simplistic choices, we
achieve state-of-the-art results on atmospheric turbulence
mitigation benchmarks. If one longs for more sophisti-
cation, our method can be seamlessly combined with any
existing sharpest image selection, optical flow estimation,
downstream deconvolution, lucky-image fusion, and dy-
namic object filtering scheme. Our main point is that we
do not need any of the heuristics underlying these methods
in order to obtain state-of-the-art results. Our processing
pipeline is generic and can be improved by replacing any
component with better ones, including domain-specific reg-
ularization if and when appropriate or desired.

2. Related Works

Beyond hardware methods (e.g. adaptive optics [42])
to mitigate atmospheric turbulent distortion, there have
been numerous software-based approaches. Some based on
“lucky image” selection [2, 13, 21, 22, 30] choose a set of
sharp images and compose them into a common frame; [45]
employed deformation-guided spatial-temporal kernel re-
gression to fuse the registered images together; [14] found
the sharpest turbulence patches and enhanced them. To han-
dle the blur artifacts within the composite frame, blind de-

convolution [10, 14, 15, 45] is typically used, assuming the
turbulence can be modeled as a spatially invariant linear
filter [20]. However, this assumption is often violated in
atmospheric turbulence images due to the spatial-temporal
changing displacements, leading to inaccurate results.

To address this issue, Zhu et al. [51] proposed registering
each frame using B-spline based non-rigid registration to
suppress geometric deformation, and then performs a tem-
poral regression process to produce an image for blind de-
convolution and generate the final output. [9] used a con-
volutional neural network (CNN) to reconstruct turbulence-
corrupted video sequence. [50] proposed a complex steer-
able pyramid framework to decompose the degraded image
sequence. [1] found that complex-valued convolutions bet-
ter capture phase information than typical real-valued con-
volution. Furthermore, [24] formulated geometric distor-
tions removal as an unsupervised training step for a deep
network, but must be repeated for each test image. [43] re-
constructed the wavefront aberration phase from the dis-
torted image of the object to perform aberration correc-
tion for mitigating atmospheric turbulence. [46] used Monte
Carlo dropout toestimate uncertainty maps to guide im-
age restoration; [47] modeled the geometric distortion and
blur at each pixel via variance maps and used to to aid the
restoration of face images. In the domain of fluids, [41] used
recurrent layers to recover a mesh model of water surface
from a monocular video, while [26] undistorted dynamic
refractive effects using warping network to remove geo-
metric distortion and a color predictor net to further refine
the restoration. Additionally, [48, 49] performed a number
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restoration tasks, including denoising, deblurring, and de-
hazing. Although untested on atmospheric turbulence miti-
gation, the method appears promising.

Recent studies [30, 32] have proposed physics-inspired
deep learning models that aim to capture the underlying
physical processes that cause atmospheric turbulence. For
example, TurbuGAN [8] incorporates physically accurate
simulation into the forward measurement model. These
models leverage knowledge of the statistical properties of
turbulence and use them to guide the restoration process.

However, it is difficult to obtain aligned clean and cor-
rupted image pairs. Hence, there exists a very limited
amount of publicly available datasets for imaging through
atmospheric turbulence. Amongst them, the most widely
used ones are limited to few tens of images [2, 15, 24,
30]. More recently, [31, 32] proposed standardized bench-
marks to evaluate the effectiveness of existing methods.
Nonetheless, there remain challenges in collecting large-
scale datasets for training. The majority of them, such as
[25, 35], simulate realistic atmospheric turbulence effects;
yet, this process can be expensive. Another line of work fol-
lows optics and leverages split-step simulation, using ray-
tracing and wave-propagation [3, 12, 36, 37]. The less ex-
pensive synthesis techniques rely on random pixel displace-
ment and a blur model [4, 23], but are far from realistic. To
bridge this gap, [6] simulated anisoplanatic turbulence by
sampling intermodal and spatially correlated Zernike co-
efficients. [7] further improved the speed of simulation to
real-time by using a multi-aperture model [6], in conjunc-
tion with the phase-to-space transform [31], and an approx-
imation of the Zernike correlation tensor in order to provide
a scalable platform for evaluation.

Overall, while there have been significant advances in
software-based approaches for mitigating atmospheric tur-
bulence, there are still many challenges that need to be
addressed. These include accurately modeling the tur-
bulence, developing efficient and effective deep learning-
based methods, and creating large-scale benchmark datasets
that accurately reflect real-world scenarios.

3. Method
We consider an image sequence {It}Tt=1 with It : Ω 7→

Rn, where Ω is the image domain and n = 1 for gray-scale
or n = 3 for RGB color channels.

3.1. Modelling Deformation

We start from the standard Lambertian assumption, con-
sidering the case where there is no blur but only deformation
exists in the sequence. Given the original ground truth im-
age (without turbulence) I , for each time t, It is deformed
from I by a diffeomorphic warping wt, and

It(wt(x)) = I(x) + ηt(x), x ∈ Ω, (1)

Naive Averaging Space-time Ours Ours w/ deconvInput

a b c

a b c

a a b b c c

Figure 2. Sharper and more rigid reference template. Com-
pared with naively averaging and space-time non-local averag-
ing [30], our method improves the quality of the reference tem-
plate. Highlighted regions are zoomed-in and sharpened for the
sake of visualization, better viewed in 3×.

where η denotes i.i.d. zero mean Gaussian noise. We
assume each wt is drawn from an i.i.d. distribution.
With a stationary camera, by the Central Limit Theorem,
1
T

∑T
t=1 wi → 0 as T → +∞ assuming the deformation is

zero-mean. With Eq. (1), the turbulence mitigation problem
can be written as

minimize
I,{wT

t=1}

T∑
t=1

∫
x∈Ω

|It(wt(x))− I(x)|2 dx, (2)

in which I has an explicit optimizer

Î(x) =
1

T

T∑
t=1

It(wt(x)), x ∈ Ω, (3)

and wt can be estimated by the optical flow from I to It.
However, without a good initialization of I , optical flow

estimation for wt fails. Meanwhile, warping between two
frames wij , on the other hand, can be estimated by optical
flow between Ii, Ij . By choosing a key frame Ik, through
flow composition [18, 19], we have wt = wkt ◦ wk. In this
way, we decompose the estimation of warping wt for each
t into a composition of the warping wkt (directly estimated
by optical flow) and a single warping I to each Ik.

Recall 1
T

∑T
t=1 wi → 0. We assume that we have a suffi-

ciently large number of frames, so for simplicity we denote
1
T

∑T
t=1 wi ≈ 0. Therefore, given the composition of opti-

cal flow composition is a linear operation,

0 ≈ 1

T

T∑
t=1

wt =
1

T

T∑
T=1

wkt◦wk = (
1

T

T∑
t=1

wkt)◦wk. (4)

Therefore,

wk ≈ (
1

T

T∑
t=1

wkt)
−1, (5)
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Figure 3. Example of flow inversion and registration. Given the
flow w01, we map the non-integer endpoints to the four nearest
pixels, then construct an inverse flow w−1

01 by weighted averaging.
When the corresponding weight is zero in α, we fill in the missing
values by inpainting. This scheme successfully registers I0 to the
target frame I1, even without having access to the ground truth I1.

where the exponent denotes the inverse of the diffeomor-
phic warping. Note that, computing Eq. (5) is non-trivial,
as inverting a diffeomorphic warping (parametrized by 2-D
optical flow) has no explicit solution. We describe how we
implement this function in the Sect. 3.1.1.

Finally, by Eq. (3) and Eq. (5), we have

Î(x) ≈ 1

T

T∑
t=1

It(wkt ◦ (
1

T

T∑
t=1

wkt)
−1(x)), x ∈ Ω, (6)

where we name Î(x) the template of the sequence.

3.1.1 Flow Inversion

Inverting optical flow seems natural but is seldom practiced.
When dealing with simple flow patterns like affine motion,
an explicit solution is easy to compute in closed form. How-
ever, for more complex scenarios, such solutions are gen-
erally ill-posed. When pixels from one frame are mapped
to non-integer positions in another frame, simply reversing
the direction in the target frame is not a practical approach.
Moreover, issues like occlusions at image boundaries and
motion boundaries can result in missing values at certain
pixel positions. One notable approach to inverting optical
flow is offered by SMURF [39], which proposes learning of
a flow inverting network on the fly. However, this method is
not suitable for atmospheric turbulence removal problems
with limited computational resources and processing time.

In this study, we propose a solution for estimating flow
inversion, which is detailed in Alg. 1. Our approach in-
volves determining the endpoint for each pixel in the refer-
ence frame and mapping the inverse flow from non-integer
endpoints in the target frame to the four nearest integer

Algorithm 1 Optical Flow Inversion.
Require: Input flow field w ∈ Rh×w×2

1: Initialize: w−1 = zeros(h,w, 2), α = zeros(h,w)
2: for each grid point (i, j) in the image domain, do
3: Compute endpoint (̂i, ĵ) = (i, j) + w(i, j)
4: Find four neighboring grid points of (̂i, ĵ): N (̂i, ĵ) =

{floor(̂i, ĵ), floor(̂i+1, ĵ), floor(̂i, ĵ+1), floor(̂i+1, ĵ+1)}
5: for each (i′, j′) ∈ N (̂i, ĵ) do
6: w−1(i′, j′) += −w(i, j)× (2− |(̂i, ĵ)− (i′, j′)|11)
7: α(i′, j′) += (2− |(̂i, ĵ)− (i′, j′)|11)
8: for each grid point (i,j) in the image domain, do
9: if α(i, j) ̸= 0 then w−1(i, j) = w−1(i, j)/α(i, j)

10: Inpaint w−1(i, j) by interpolation where α(i, j) = 0
11: return Inverse flow w−1

points where pixels are situated. Since multiple flow vectors
may map to the same target pixel, we calculate a weighted
average to derive the inverse flow. For pixels with zero
weights, we fill in the missing values in the inverse flow
using spatial interpolation (inpainting). An example is in
Fig. 3. Even without having access to the true target I1,
given only the forward flow w01, this scheme successfully
inverts the flow and registers I0 to the target frame.

The computation time for a 256× 256 frame on a laptop
CPU in MATLAB is less than 0.02 seconds, and with par-
allelization, we anticipate significant speed enhancements.
This suggests that our approach has the potential to be ap-
plied in real-time computational imaging applications.

3.2. Modeling Blur

Temporal atmospheric turbulence causes wavefront dis-
tortion, resulting in image blurring. The image forma-
tion model has been discussed extensively in [5]. Follow-
ing derivation shows that the per-frame degradation point
spread function (PSF) can be approximated as a parametric
Gaussian function.

3.2.1 Point Spread Function

In Fourier optics [11], the time-varying PSF pt(x) of an
ideal imaging system with an effective focal length f at
wavelength λ can be expressed as:

pt(x) = |ht(x)|2, ht(x) = F
{
A(u)eiWt(u)

}(
x

λf

)
.

(7)
where A(u) represents the camera’s entrance pupil at aper-
ture coordinate u, Wt(u) is the instantaneous wavefront that
varies with time, and F denotes the Fourier transform. As-
suming non-dispersivity, the wavefront remains unchanged
with respect to the spectrum wavelength λ, and we will drop
λ in the followings.
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Figure 4. Approximating blurring kernels as Gaussians. Given
a set of instantaneous wavefronts (visualized within a modulo of
2π) and their PSFs, the per-frame PSF is approximated as a Gaus-
sian function, characterized by shifts and a standard deviation.

3.2.2 Turbulence Wavefront Decomposition

Wavefront Wt(u) is typically decomposed into polynomial
orders, e.g. the Zernike polynomials [34]. Here we are most
interested in the following decomposition:

Wt(u) = atu︸︷︷︸
1st order

+ btu
2︸︷︷︸

2nd order

+ ctVt(u)︸ ︷︷ ︸
≥3rd orders

, (8)

where at, bt, and ct are time-varying parameters due to tur-
bulence, and Vt(u) contains higher-order residuals.

3.2.3 Blurring Kernels Approximated as Gaussians

By substituting Eq. (8) into the kernel ht(x) in Eq. (7) and
utilizing the convolution theorem with ⊗ being the convo-
lution operator, we can rewrite ht(x) as follows:

ht(x) = F
{
A(u)eiatueibtu

2

eictVt(u)
}

= F
{
eiatu

}
⊗F

{
A(u)eibtu

2
}
⊗F

{
eictVt(u)

}
= gairy(x−∆xt;σt)⊗F

{
eictVt(u)

}
, (9)

where it is assumed that A(u) is a circular aperture, as in
most situations. Optically, gairy(x−∆xt;σt) is the spatially-
shifted (∆xt), defocused (σt), amplitude Airy disc diffrac-
tion pattern of the imaging system, and it is a real number
due to symmetry regarding u. By assuming in Eq. (8):

ct ∼ N (0, σ2
c ) and Vt(u) ≪ 1,

we obtain:

F
{
eictVt(u)

}
≈ δ(x) + ictF {Vt} (x). (10)

This allows rewriting Eq. (9) to approximate pt(x) as:

pt(x) = |ht(x)|2 = ℜ{ht(x)}2 + ℑ{ht(x)}2

≈ Jairy(x−∆xt;σt) + ot(x)

≈ Jairy(x−∆xt;σt), (11)

because ot(x) is small, where:

Jairy(x−∆xt;σt) = |gairy(x−∆xt;σt)|2

ot(x) = |ct|2 · |gairy(x−∆xt)⊗F {Vt} (x)|2 .

Jairy(x − ∆xt;σt) is the intensity Airy disc function, with
defocus σt and shift ∆xt. For each frame, the per-frame
PSF is the aggregation of multiple instantaneous PSF pt(x),
and thus we can approximate it as a Gaussian function, of
mean µ and standard deviation σ:

p̄(x) =
∑

t∈frame

pt(x) ≈ G(x− µ;σ). (12)

The approximation in Eq. (12) is illustrated in Fig. 4.

3.3. Blind Deconvolution of A Uniform Kernel

The degradation of each frame can thus be described as:

Î(x) ≈ p̄(x)⊗ I(x). (13)

With the proposed diffeomorphic template registration, the
template of the sequence is obtained, and Eq. (13) is solved
as a blind deconvolution problem. The problem is typically
addressed using total variation (TV) regularization or other
possible regularizers. The objective is to minimize:

minimize
I

∫
x∈Ω

|Î(x)−p̄(x)⊗I(x)|2+α|∇I(x)|dx, (14)

where α > 0 is a tradeoff parameter. The problem is triv-
ially solved using automatic differentiation engines.

There are two sources of blur in the template. The first
source is caused by optical flow end-point error, which is
typically assumed to be a zero-mean Gaussian distribution.
With a sufficiently large number of frames, this results in a
Gaussian blur being applied to the image. It can be proven
that the two sources share the same Gaussian kernel. The
second source of blur is the inherent blurring caused by at-
mospheric turbulence, which cannot be explicitly measured.
Other methods simply apply a training loss. By the Central
Limit Theorem, with a sufficiently large number of frames,
we assume that the blur adds up to a Gaussian distribution.

3.4. Implementation Details

The full algorithm pipeline is presented in Alg. 2. Our
algorithm offers flexibility in choosing the optical flow for
estimating warpings. In our experiments, we use Horn-
Schunk [16] optical flow as a default choice, unless spec-
ified otherwise. The computation of optical flow is effi-
ciently parallelized using MATLAB’s parfor function.
Flow composition and image interpolation follow [19].

One notable advantage of our approach is that it does not
require a predefined reference template, so one is free to se-
lect any frame from the image sequence as the keyframe. In
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Algorithm 2 Full Algorithm.
Require: Input image sequence {Ii, i = 1, 2, . . . , t}

1: Choose the reference frame Iref
2: for i = 1, . . . , t do ▷Can be parallelized
3: Estimate wi = Flow(Iref , Ii)

4: Compute w̄ = 1
t

∑t
i=1 wi

5: Compute w̄−1 by Alg. 1
6: for i = 1, . . . , t do
7: Compose flow: ŵi = w̄−1 ◦ wi

8: Compute Itemplate =
1
t

∑t
i=1 ŵi

−1(Ii)
9: Blind deconvolution I = Deconv(Itemplate)

10: (Optional) Iref = I , repeat Step 2 to 9
11: Return I

our experiments, we simply use the first frame for demon-
stration. However, one can also choose the sharpest image
in the sequence as the reference frame or iterate by using
intermediate results as in Step 10.

For blind deconvolution, we have incorporated the
ADMM blind deconvolution method from the public code-
base in [30]. The template then be integrated with a ma-
jority of turbulence mitigation pipelines. We demonstrate
this by combining our method with the lucky image fusion
module of [30], as in Sect. 4. A demo code is available in
the supplementary material.

4. Experiments

Experimental Settings. Due to the nature of the task of
atmospheric turbulence mitigation, there is a limited choice
of datasets with available ground truth for quantitative eval-
uation. We employed two datasets: HeatChamber [32] and
CLEAR-sim [2]. HeatChamber contains 200 sequences of
90 images each at 220 × 220 pixel resolution, along with
corresponding ground truth images. It was captured by dis-
playing ground truth images on a screen 20 meters from
the camera while inducing controlled turbulence using heat
sources. To our knowledge, HeatChamber is the only real-
world public dataset that provides ground truth for this pur-
pose. In contrast, CLEAR-sim is a simulation dataset with
23 image sequences, featuring resolutions ranging from
256 × 256 to 1024 × 1024 pixels. Each sequence contains
96 to 100 frames with ground truth images.

We evaluate the results on both datasets using standard
reconstruction metrics: Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM). Additionally, we
present quantitative results on datasets, such as the one in-
troduced by [15], where ground truth is not available.

In our experimental comparisons, we focus on two repre-
sentative methods: model-based methods TurbRecon [30],
and learning-based method NDIR [24]. TurbRecon gen-
erates a reference template through space-time non-local
averaging, followed by registration using optical flow and

Single Frame Multi Frame
Method PSNR SSIM Method PSNR SSIM
TRDN [46] 18.42 0.642 CLEAR [2] 18.91 0.757
Uformer [44] 18.68 0.658 NDIR [24] 20.08 0.763
Restormer [48] 19.12 0.684 Ours-template 20.30 0.780
TurbNet [32] 19.76 0.693 TurbRecon [30] 20.62 0.787
PiRN [17] 20.59 0.712 Ours-lucky 20.74 0.789

Table 1. Comparison on HeatChamber dataset. While single-
image methods can attain competitive PSNR, they exhibit low
SSIM due to limited ability to handle deformation. Among multi-
frame methods, our reference template (Ours-template) surpasses
NDIR even without additional downstream processing. When in-
tegrated with the lucky image fusion pipeline (Ours-lucky), our
approach enhances TurbRecon in both PSNR and SSIM metrics.

lucky image fusion. For a fair comparison, we adopt the
same optical flow method [28] as TurbRecon, and kept all
the hyper-parameters consistent with it. NDIR models non-
rigid distortions as deformable grids and utilizes deep neu-
ral networks to optimize both the grids and the underlying
clean image simultaneously. NDIR initializes the reference
template using the mean of the input images.

Quantitative Results. We present results on HeatCham-
ber in Tab. 1 and also compare with five deep-learning-
based single-image reconstruction methods. Although
single-image approaches can achieve competitive PSNR
due to their capability to generate realistic reconstructions,
their effectiveness is limited in capturing deformation. This
limitation results in generally poor SSIM scores, as infer-
ring deformation from a single image is suboptimal.

In comparison to multi-frame methods, our reference
template (referred to as Ours-template) outperforms NDIR
even without any subsequent processing steps. Notably,
the SSIM exceeds that of NDIR by 0.018, indicating that
the diffeomorphic registration scheme better captures the
scene’s structure. We also test our method with a range of
input frames as a sensitivity study (Fig. 5), where we con-
sistently improve over temporal averaging and also NDIR
for 10 input frames. As stated in Sect. 3.4, our template
seamlessly integrates into a majority of existing pipelines.
By replacing TurbRecon’s space-time non-local averaging
scheme with our approach and adopting its lucky image
fusion pipeline, the results (labeled as Ours-lucky) also
demonstrate improvements over the original TurbRecon in
both PSNR and SSIM metrics. In addition, we present re-
sults comparing our approach with NDL [51], which also
suggests a registration-deconvolution process. However,
they employ a different registration strategy by using the av-
erage of input frames as a reference template and utilizing
B-spline for deformation modeling instead of optical flow.
Due to the extensive computational time (exceeding 1 hour
for a 220 × 220 gray-scale image) required by NDL, we
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Figure 5. Sensitivity to the number of input frames. Left: Our
method yields improvements over temporal averaging with respect to
the number of frames. Right: Using 10 frames as input, ours outper-
forms NDIR in PSNR and SSIM.

NDIR Ours
PSNR 20.08 20.28
SSIM 0.763 0.770

Time (sec.) 1800 16

Key frame Unlucky Arbitrary (1st frame) Lucky
SSIM 0.770 0.771 0.771

Table 2. Sensitivity to frame selection. We evaluate the registered
template (before deconvolution) using the sharpest (“lucky”) and
blurriest (“unlucky”) and show that our method is not sensitive.

conduct comparisons on gray-scale images. Our method en-
hances the PSNR from 20.65 to 20.84 and SSIM from 0.715
to 0.723, while achieving a speed improvement of ∼ 100×.

Our experiments on the CLEAR-sim dataset consistently
support our prior findings. It is important to note that
CLEAR-sim and HeatChamber differ in resolution. Utiliz-
ing an Nvidia GTX 1080Ti GPU with 11 GB of memory,
our experiments reveal that NDR, can only process 10 input
frames at a low spatial resolution of 220× 220. In contrast,
both our approach and TurbRecon, which employ optical
flow to explicitly address deformation, can handle the full
resolution of 1024 × 1024. This highlights the versatility
of leveraging optical flow, eliminating the need for joint op-
timization that is computationally expensive. The quanti-
tative results align with those from HeatChamber, demon-
strating that TurbRecon outperforms NDR, with our method
yielding the best performance among the three approaches.

Qualitative Results. Fig. 6 presents qualitative results
from both datasets. The images are zoomed-in to highlight
intricate reconstruction details. Our approach consistently
produces reconstructions with minimal distortion compared
to the baselines, exhibiting a crisper appearance. It is im-
portant to note that we maintain consistent parameters with
TurbRecon in optical flow and deconvolution, ensuring that
the enhanced reconstruction quality is not a result of pa-
rameter selection but stems from superior registration. This
also emphasizes that improved registration not only leads to
rigid reconstruction with reduced distortion, but also miti-
gates blur caused by misalignment. A key comparison is in
HeatChamber (row 1, Fig. 6), where existing methods intro-
duce blurring of lights (highlighted in red) in different direc-
tions. Unlike them, we do not rely on an averaging scheme,
which enables us to improve on the registration step to yield
sharper results. Similar blurring artifacts can be observed in
row 2 on the poles of the gate and row 3 (CLEAR-sim) on

Method NDIR [24] TurbRecon [30] Ours-lucky
PSNR 24.13 24.73 25.95
SSIM 0.871 0.897 0.906
Resolution 220× 220 1024× 1024 1024× 1024

Table 3. Results on CLEAR-sim. Our method and TurbRecon
can handle higher resolutions than NDIR by using optical flow,
which avoids the computationally intensive joint optimization. We
outperform NDIR and TurbRecon on both PSNR and SSIM.

the logo for both NDIR and TurbRecon.
To provide a comprehensive view, we include two ad-

ditional examples from the CodedTarget1 and the HotAir
dataset [15]. While these sequences lack a ground truth for
quantitative evaluation, a visual comparison indicates the
consistent superiority of our method.

5. Discussions and Conclusions
Conclusions. We have presented a simple method; its

simplicity makes it easy to extend, and serves as a founda-
tion for more intricate approaches. The crux of it relies on
an observation that the mean of the deformation induced by
turbulence will converge to the inverse deformation of the
flow by the Central Limit Theorem. This assumption makes
it possible to register the frames to the latent irradiance to be
solved (the “template”) but without the template. Counter
to current trends, our method does not rely on any data-
driven processes, but rather an analytical solution. Hence,
it is not subject any form of learning bias. Given that the
problem is inherently ill-posed, such biases will result in
hallucinations, which translates to artifacts and aberrations
in the output. Yet, we do make an assumption, which is
most generic, making the method widely applicable, and
can be seamlessly integrated into mainstream atmospheric
turbulence mitigation pipelines. Because of its simplicity,
the method is robust and does not exhibit high sensitivity
to the choice of frame, i.e. we achieve state-of-the-art per-
form by using just the 1st frame as the reference frame and
the use of simple optical flow. Of course, more informed
choices of frame (prior, e.g. sharpest frame) can naturally
lead to improved results. We leave the trade-off between
performance and generality of the method up to the user.

Limitations and future works. While we are able
to achieve state-of-the-art performance on standard bench-
marks, admittedly the run time remains a limitation of our
approach. The main speed bottleneck of our approach is in
the optical flow estimation. The processes of flow inversion
and image aggregation involve primarily straightforward in-
terpolations without iterative optimization and contribute
negligible computational overhead. Presently, when utiliz-
ing the same optimization-based optical flow as TurbRecon,

1https://cvpr2023.ug2challenge.org/
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Figure 6. Representative qualitative results on various datasets. Our approach yields crisper and less distorted reconstructions. Note
that enhanced registration not only results in reduced distortion, but also mitigates blur caused by misalignment.

the processing time for 100 frames sized at 220× 220 is 17
seconds on an Intel i9-8950hk laptop CPU. When combined
with ADMM blind deconvolution, the total processing time
is 31 seconds. We anticipate a substantial speed acceler-
ation by employing contemporary deep learning methods,
such as RAFT [40], as a substitute for Horn & Schunck.
This is expected to reduce the total processing time by half.
For reference, TurbRecon requires an additional spatial-
time nonlocal averaging module, and the total processing
time is 42 seconds. NDIR requires 30 minutes to handle a
duration of 10 minutes.

At the core of our method is optical flow, yet mainstream
optical flow methods are not specifically tailored for atmo-
spheric turbulence data. Nonetheless, as turbulence simula-
tors advance [32], training a flow customized for air turbu-

lence becomes feasible. This limitation is anticipated to be
transformed into a strength, since flow integrates as a plug-
and-play module, allowing for straightforward upgrades to
our method without alterations to the pipeline.

Finally, we currently do not consider dynamic scenes.
Although occlusion induced by motion violates the diffeo-
morphic assumptions, in Eq. (13) there is in fact no re-
striction posed on w. By strategies like outlier rejection,
adjustments can be made to Eq. (4), enabling the formu-
lation to effectively accommodate scenarios involving ei-
ther a moving camera or moving objects. Nevertheless, the
main goal of this paper is to show that registration can be
achieved without the need for an explicit template. Chal-
lenges related to dynamic scenes and moving objects will
be addressed in future extensions.
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