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Figure 1. A panoramic frame (bottom) and panoptic annotation (top) from our JRDB-PanoTrack dataset. Our dataset features multi-label
panoptic annotations, highlighted by the striped areas where multiple objects coexist. JRDB-PanoTrack also provides consistent tracking
IDs for all thing classes across long periods of occlusion.

Abstract

Autonomous robot systems have attracted increasing re-
search attention in recent years, where environment under-
standing is a crucial step for robot navigation, human-robot
interaction, and decision. Real-world robot systems usu-
ally collect visual data from multiple sensors and are re-
quired to recognize numerous objects and their movements
in complex human-crowded settings. Traditional bench-
marks, with their reliance on single sensors and limited
object classes and scenarios, fail to provide the compre-
hensive environmental understanding robots need for ac-
curate navigation, interaction, and decision-making. As
an extension of JRDB dataset, we unveil JRDB-PanoTrack,
a novel open-world panoptic segmentation and tracking
benchmark, towards more comprehensive environmental
perception. JRDB-PanoTrack includes (1) various data in-
volving indoor and outdoor crowded scenes, as well as

comprehensive 2D and 3D synchronized data modalities;
(2) high-quality 2D spatial panoptic segmentation and tem-
poral tracking annotations, with additional 3D label pro-
jections for further spatial understanding; (3) diverse ob-
ject classes for closed- and open-world recognition bench-
marks, with OSPA-based metrics for evaluation. Extensive
evaluation of leading methods shows significant challenges
posed by our dataset.

1. Introduction
With the increasing demands for autonomous robots in
human-crowded environments, environment understanding
becomes paramount, which serves as a vital step in many
robotic systems, such as navigation and human-robot in-
teraction. Specifically, human-centric environment under-
standing can be mainly divided into two aspects: spatial
and temporal understanding. Spatial understanding aims to
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Data Domain No. Class

Dataset Data Temp Pano
Cov.

In
door

Out
door

Platform Thing Stuff Open
world

Trk
Len

No.
Seq

No.
Smp

No.
M

PanopticCOCO [20] I ✓ ✓ Int 80 91 - 164k
Cityscapes [9] I ✓ ✓ Car 8 11 500 3k 10k
VIPSeg [25] I ✓ ✓ ✓ Int 58 66 ≤10s 3536 85k 926k

MOT-STEP [32] I ✓ ✓ Int 1 6 ≤19s 4 2k 17k
KITTI-STEP [32] I ✓ ✓ Car 2 17 ≤65s 50 19k 126k

Waymo [24] I ✓ 220° ✓ Car 8 20 ≤1.2s 2060 100k
SemanticKITTI [3] P ✓ ✓ Car 14 11 21 43k

Nuscenes [12] P ✓ 360° ✓ Car 23 6 1000 40k 1.2M

JRDB-PanoTrack I/P ✓ 360° ✓ ✓ Rob 60 11 ✓ ≤117s 54 20k 428k

Table 1. Typical datasets for 2D-3D panoptic segmentation and tracking. Abbreviations: I (Image), P (Point Cloud), Car (Autonomous
Car), Rob (Mobile Robot), Int (Internet images/videos), Temp (Temporal data), Pano Cov. (Panoramic Coverage), No. Class (The number
of classes), Trk Len (Track Length), No. Seq (The number of sequences), No. Smp (The number of samples) and No. M (the number of
masks).

distinguish objects in human-crowded environments, while
temporal understanding expects to recognize temporal rela-
tions of such objects.

The existing datasets for environment understanding,
sourced primarily from self-driving vehicles [3, 9, 12, 24],
or internet images/videos [20, 25], exhibit clear domain
gaps when applied to robotic environments. These sources
typically offer different perspectives from robots, and fail
to encapsulate the challenges and interactions specific to
robotic systems. As shown in Tab. 1, most of the exist-
ing datasets only contain a single data modality (RGB im-
ages or point clouds) [9, 25] and a small number of classes
[9, 32]. They also lack temporal information [20] or 360-
degree panoramic spatial perspectives [9, 24, 32]. In con-
trast, real-world applications where the robotic agents are
deployed, usually involve multi-modal data, diverse classes,
and both spatial and temporal understanding.

Built on top of JRDB dataset [11, 23, 30], inheriting its
comprehensive annotation suite for human bodies, we in-
troduce JRDB-PanoTrack, a novel comprehensive dataset
for human-crowded environment understanding. Firstly,
JRDB-PanoTrack offers a comprehensive dataset from var-
ious indoor and outdoor crowded scenes with 2D and 3D
synchronized data modalities, supporting visual and robotic
applications. Secondly, high-quality 2D panoptic segmen-
tation and tracking annotations are provided for both spatial
and temporal environment understanding, including 428K
panoptic masks, 27K tracking labels and 7.3B annotated
pixels. Additional 3D label projections are also presented
for further spatial understanding. Thirdly, we introduce di-
verse objects and open-world benchmarks for generaliza-
tion research. Finally, JRDB-PanoTrack annotates multiple
classes for some areas, such as objects behind glass or hang
on wall in Fig. 1. We propose metrics based on optimal
sub-pattern matching (OSPA) to deal with such evaluation.

Based on the JRDB-PanoTrack dataset, we present sev-
eral benchmarks, including Closed-world (CW) and Open-
world (OW) panoptic segmentation and tracking. We ex-
tensively evaluate state-of-the-art (SOTA) methods on these
benchmarks. Moreover, SOTA methods are also esti-
mated on our 3D label projections. The results under-
line the imperative need for advanced methodologies that
can adeptly handle the complexities presented by complex
human-crowded environments. Our main contributions are:
• We present JRDB-PanoTrack, an extensive new dataset

for spatial and temporal robotic environment understand-
ing. In JRDB-PanoTrack, high-quality panoptic segmen-
tation and tracking annotations are provided. We em-
ploy comprehensive data collected by a mobile robot, in-
cluding 2D&3D modalities as well as indoor&outdoor
human-crowded scenes.

• Closed- and open-world benchmarks are proposed for
generalizable environment understanding. Our dataset
also contains multi-class annotations and OSPA-based
metrics for evaluation.

• We conduct extensive evaluations of SOTA closed- and
open-world segmentation/tracking methods on JRDB-
PanoTrack, and discuss their strengths and weaknesses.

2. Related Work
Panoptic Segmentation and Tracking Datasets. Panop-
tic segmentation, as introduced in [17], is a task to gener-
ate instance-level masks for thing objects (countable, dis-
tinct entities) and class-level masks for stuff objects (amor-
phous and uncountable regions) to achieve a more complete
visual understanding. Datasets like PanopticCOCO [20],
ADE20K [41] and Cityscapes [9] are widely popular in this
space, primarily focusing on 2D images. However, these
datasets only support spatial understanding.
Panoptic tracking further integrates multi-object tracking
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Figure 2. Distribution of object masks of thing (brown) and stuff (green) classes in JRDB-PanoTrack train and test sets, where x and y-axis
indicate the class names and mask counts, respectively. Best viewed in color and zoomed in.

into panoptic segmentation, as seen in datasets like MOT-
STEP [32], VIPSeg [25], and Waymo [24] for 2D track-
ing, and SemanticKITTI [3], Panoptic Nuscenes [12] for
3D tracking. However, these datasets, often sourced from
self-driving cars [3, 12, 15, 24, 32], single-view surveil-
lance cameras [32] or miscellaneous internet videos [25].
These datasets, although useful and large-scale, fall short in
representing complex, human-centric environments for au-
tonomous robotics due to the lack of synchronized multi-
modal multi-view data, diverse object classes, complex
human-crowded scenes, and domain consistency. Our
JRDB-PanoTrack dataset addresses this gap by providing
synchronized 2D and 3D data from a social mobile manip-
ulator, capturing the complexity of crowded human spaces,
offering diversity in objects and unique challenges in both
closed-world and open-world settings.
OW Benchmarks. The development of OW benchmarks is
crucial for assessing the generalization capabilities of mod-
els in diverse and unpredictable environments. Large-scale
segmentation datasets such as COCO [20] and ADE20K
[41] and OW segmentation datasets [27] are usually used
for OW spatial understanding, while several datasets like
TAO-OW [21] and OVTrack [19] are introduced for OW
bounding box tracking. Moreover, these datasets are all
from internet images/videos. Different from them, JRDB-
PanoTrack introduces a unique and challenging OW bench-
mark for panoptic segmentation and tracking in robotic en-
vironments, with both 2D and 3D data modalities.
Previous JRDB Datasets. JRDB [23] is a large-scale and
comprehensive dataset for autonomous robot research in
human-centric environments. It collects 2D and 3D point
cloud videos, audio as well as GPS positions by a so-
cial manipulator robot. In previous JRDB [23], JRDB-Act
[11] and JRDB-Pose [30], 2D-3D human detection, track-
ing and forecasting, body skeleton pose estimation, human
social grouping and activity recognition annotations have
been introduced. In JRDB-PanoTrack, we complement this
JRDB by providing new open-world panoptic segmentation

and tracking annotations for more comprehensive human-
centered scene understanding.
SOTA Frameworks. For panoptic segmentation, initial
approaches [16, 17, 33] handle semantic and instance seg-
mentation as separate tasks by using dual sub-networks.
Max-deeplab [31] introduces transformer-based architec-
tures, moving away from bounding box-dependent models.
Recent developments, including K-net [39], MaskFormer
[6], Mask2Former [8] and Mask DINO [18], unifies seman-
tic, instance and panoptic segmentation into a singular mask
proposal prediction framework. In the OW domain, meth-
ods like [10, 28, 34, 35] generate mask proposals for all
panoptic objects, and then align them with object names via
large vision-language pre-training.
For multi-object tracking, traditional motion-model-based
algorithms often outperform modern integrated systems.
SORT [4] exemplifies this with its linear-motion-based
track association. ByteTrack [40] introduces low-
confidence detection associations to improve tracking. OC-
SORT [5] enhances filters and recovery strategies to solve
the non-linear motion problem. More recently, BoT-SORT
[1] advances the field by optimizing the Kalman filter state
and incorporating camera-motion compensation. Notably,
to the best of our knowledge, there is no available OW
panoptic tracking method. We use those strong and popular
trackers as baselines in our experiments.

3. The JRDB-PanoTrack Dataset
3.1. Dataset and Statistics

Data. JRDB-PanoTrack encompasses 20,000 images, sam-
pled at 1Hz from 54 videos in the original JRDB dataset
[23]. 4,000 360-degree panoramic images can be gener-
ated by merging 5 original images from 5 different camera
views. 4,000 point clouds are also provided for 3D under-
standing.
Annotation. JRDB-PanoTrack retains all annotations from
JRDB[23] and further enhances the dataset by introducing
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Figure 3. Word cloud of the most frequent classes seen through
glass in JRDB-PanoTrack, with the size of the word proportional
to the frequency of the class.

428K 2D panoptic segmentation and 27K tracking annota-
tions to enable environment understanding.
Annotation process. The annotation process starts with an
unlimited list of classes which can be extended by all anno-
tators, any clearly visible and semantically meaningful ob-
jects would be annotated, objects that are behind the glass
or being hang on wall will be annotated with multiple la-
bels. Then annotators produce labels and senior annotators
control the quality by multiple inspection rounds.
Object Class. There are 72 objects in JRDB-PanoTrack,
which are classified into 61 thing (such as pedestrians, cars
and laptops) and 11 stuff (like sky and walls) classes. Fig. 2
depicts the distributions of classes.
Special Class Labeling. Our dataset aims to analyze
common environments for autonomous robots. There are
some differences from traditional environment understand-
ing datasets. (1) Floor differentiation: human-robot inter-
action and navigation require robots to distinguish different
floors. To address this, we provide instance segmentation
labels for floors and regard them as thing objects. (2) Multi-
class segmentation: In modern environments, objects are
often seen behind windows and glass, and sometimes be-
ing hang on walls (most frequently seen objects are shown
in Fig. 3). Traditional datasets usually simply ignore these
objects or interaction, while they might be crucial for en-
vironment understanding. In JRDB-PanoTrack, there are
9% of objects belonging to such cases. Therefore, we la-
bel multiple classes for pixels belonging to these objects,
i.e., including the front windows or glass, and the behind
objects. We hope this will encourage the community to de-
velop more robust models for better scene understanding.
Tasks. Our dataset supports panoptic segmentation and
tracking tasks. Panoptic segmentation [17] expects to spa-
tially understand environments, which generates masks for
all the thing and stuff objects. Panoptic tracking [14] un-
derstands environments on both spatial and temporal as-
pects. It segments both thing and stuff objects, and tracks
thing objects throughout a video. As shown in Fig. 4, there
are up to 81 masks in an image, and the average number
of masks is 22. In panoramic views, the maximum and av-

Figure 4. Analysis of Track length distribution (top) and Number
of masks per frame (bottom) in the JRDB-PanoTrack dataset. Best
viewed in color.

# Inst. / img # Trk. / seq. Track length

Mean Max Mean Max Mean Max

Train 22 /
78*

57 /
144*

87 /
178*

249/
420*

17 /
27*

116/
116*

Test 22 /
80*

81 /
245*

105/
217*

564/
1010*

14 /
24*

117/
117*

[*] statistics for panoramic images
Table 2. The number of masks per image, the number of tracklets
per sequence, as well as track lengths (in seconds).

erage mask counts per image are 245 and 80, respectively.
Fig. 4 also highlights the track length distribution in JRDB-
PanoTrack. The maximum and average track lengths are
117s and 16s, respectively. The most populated scene in
our dataset comprises a staggering 564 tracklets (1010 in
panoramic views) in a single sequence, compared to the av-
erage 101 tracklets (198 in panoramic views) per sequence.
According to Fig. 4, the testing set is more crowded than the
training set with more masks per image and more tracklets
per sequence.
Thing and Stuff classes. Following [17], we divide the ob-
ject classes into thing and stuff classes. Thing classes are
objects that can be segmented and tracked, such as person,
car, bicycle, chair, table, laptop, bottle, etc. Stuff classes are
background classes that can be segmented but not tracked,
such as sky, ground, wall, etc. Fig. 2 shows the distribution
of object instances in JRDB-PanoTrack, where pedestrian is
the most frequent class with more than 40k instances, fol-
lowed by the commonly seen objects in human-centric en-
vironments such as chair, bag, table, door, board, machines,
etc. with 10k to 50k instances.
CW and OW. Based on class distributions shown in Fig. 2,
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80695
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29.40%

39.39%

31.21%

Train

77980

82217

62655

34.99%

36.89%

28.12%

Test

small
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large

Figure 5. The count (top) and percentage (bottom) of Small,
Medium and Large masks in JRDB-PanoTrack training and test-
ing sets. Small and Large masks are the masks ≤ 322 and ≤ 962

pixels, and the sizes of Medium masks are in between. Image size
is 752x480 (W x H).

we divide our 72 panoptic classes into two sets: 43 common
and 29 long-tail classes as known and unknown classes, re-
spectively. The 43 known classes can be used for training
and evaluation at the closed-world (CW) scenario. At the
open-world (OW) scenario, the 43 known classes can be em-
ployed for training, while 28 unknown classes are for testing
(there is one class that occur in training set only).
Tracklet statistics. Tab. 2 offers detailed statistics on the
number of masks per image, tracklets per sequence, and
track lengths in the JRDB-PanoTrack dataset. It under-
scores the dataset’s depth and diversity, with some tracks
extending up to 117 seconds across multiple camera views.
According to Tab. 2, the testing set is more crowded than the
training set with more masks per image and more tracklets
per sequence.
Mask Size. The distribution of mask sizes in JRDB-
PanoTrack are as presented in Fig. 5. We have balanced
mask sizes in both training and testing sets, which bring
challenges to panoptic segmentation and tracking methods
to carefully deal with objects of various sizes.

3.2. Benchmark and Metrics

Benchmark. Based on our JRDB-PanoTrack dataset, we
propose several benchmarks for environment understand-
ing, the four categories are:
• CW panoptic segmentation.
• OW panoptic segmentation.
• CW panoptic tracking.
• OW panoptic tracking.
In all benchmarks, we use half of our dataset for training,
i.e., 9365 images in 27 sequences. For testing, we employ
9280 images in the other 27 sequences. Panoramic images
and point clouds corresponding to the 9365/9280 images
can be used for panorama and 3D understanding. In CW
benchmarks, we release annotations of the 43 known classes
for both training and testing. In OW benchmarks, methods
can use known classes for training, while being tested on all

Method PQ↑ OPS↓ PQTh↑OTh
PS↓ PQSt↑ OSt

PS↓

kMaX[37] 32.52 0.67 27.96 0.72 45.81 0.53
2Former[7] 33.25 0.66 28.74 0.71 46.38 0.52
DINO[18] 36.57 0.64 33.07 0.68 46.74 0.51

Table 3. Results of CW panoptic segmentation methods on
JRDB-PanoTrack. All methods use ResNet-50 backbone and
COCO pre-training. There are 43 classes, 32 Thing and 11 Stuff.
(Kmax for Kmax-Deeplab, 2Former for Mask2Former and DINO
for mask DINO.)

of the classes.

Metric. Current evaluation methods for panoptic segmen-
tation, despite their utility, exhibit limitations that can skew
method rankings, due to:
• Threshold-based, where the choice of the threshold can

change the ranking of the methods, making it unreliable
[26]: VPQ [15] and PTQ [14].

• Inadvertently penalizing the rectification of errors (ID re-
covery): VPQ [15] and PTQ [14].

• Inability to handle multi-label scenarios: VPQ [15],
PTQ [14], and STQ [32].

Given the introduction of multi-label panoptic segmenta-
tion and tracking by JRDB-PanoTrack, these existing met-
rics become insufficient. To address the gaps, we introduce
OSPAPS and OSPA2

PT , specifically designed for panoptic
segmentation and tracking.
OSPA for Panoptic Segmentation. The Optimal Sub-
Pattern Matching (OSPA) metric, known for incorporating
miss-distance in multi-object performance evaluation [29],
has recently been adapted for bounding box/pose detection
and tracking tasks [26, 30]. Building on this, we introduce
OSPAPS (OPS), a variant of OSPA, specifically designed
for multi-label panoptic segmentation.

Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} be
two sets of arbitrary mask regions (x, y ⊂ R2) on an image
for all ground-truths and predictions, with cardinalities |X|
and |Y |, where |Y | ≥ |X| (otherwise flip X,Y ). For a given
class c ∈ C, we calculate the normalised base distance
between masks dK(xi, yi) = 1 − IOU(xi, yi) ∈ [0, 1].
OPS(Xc, Yc) is then acquired by using OSPA equation
[29]. The overall OSPA error is calculated by averaging
the OSPA error over all classes:

OPS(X,Y ) =
1

|C|
∑
c∈C

OPS(Xc, Yc). (1)

OSPA for Panoptic Tracking. The OSPA metric is
expanded to assess panoptic tracking with the introduc-
tion of OSPAPT (O2

PT ). For each class c ∈ C,
consider Xc = {XD1

1c , XD2
2c , . . . , XDm

mc } and Yc =
{Y D1

1c , Y D2
2c , . . . , Y Dn

nc } as sets of mask trajectories for
ground-truth and predicted masks, respectively, where Di
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Method PQ↑ OPS↓ PQTh↑OTh
PS↓ PQSt↑ OSt

PS↓

ODISE-L[34] 10.57 0.85 7.03 0.90 29.87 0.72
ODISE-C[34] 11.07 0.85 8.41 0.88 25.55 0.78
FC-CLIP[38] 10.06 0.87 7.07 0.90 26.36 0.78

Table 4. Results of SOTA OW panoptic segmentation models
on JRDB-Panotrack testing set. All models were trained solely
on the COCO panoptic dataset and underwent zero-shot evaluation
on JRDB. ODISE-L and ODISE-C represent the model with class
label and caption label supervisions, respectively.

contains the time indices where track i exists. Then, we
calculate the time average distance of every pair of tracks
XDi

ic and Y
Dj

jc similar to [29] using OSPA set distance
dO({Xt

ic}, {Y t
jc} = 1 − IOU(xt

ic, y
t
jc). If only {Xt

i}
or {Y t

j } exists, then dO({Xt
ic}, {Y t

jc}) = 1, otherwise
dO({Xt

ic}, {Y t
jc}) = 0. The remaining step remained the

same as the original OSPA2, O2
PT is the average of all

classes similar to Eq. (1).
In JRDB-Panotrack, OSPA is preferred as it is an actual

metric in mathematical terms, fulfilling the triangle inequal-
ity, not threshold-based, and treats masks equally regardless
of their size, without penalising error rectification.

4. Experiments
To explore the distinct challenges of JRDB-PanoTrack, we
first evaluate advanced panoptic segmentation in both 2D
closed-world (CW) and open-world (OW) settings. Then
we investigate panoptic tracking methods. We also briefly
evaluate 3D CW segmentation and tracking using pseudo
labels generated from 2D annotations. Note that all of the
experiments presented are done using individual views, not
stitched views. The results show that the JRDB-PanoTrack
dataset provides a uniquely challenging environment for
panoptic segmentation and tracking.
Evaluation protocol Due to the absence of pretrained mod-
els for close/open-world panoptic segmentation/tracking
limits our evaluation in multi-label settings. We preprocess
these areas into single-label ones, selecting thing objects
and omitting stuff behind them, to utilize standard evalu-
ation metrics alongside OSPAPS and OSPA2

PT . We hope
future research can exploit the full potential of our dataset’s
multi-class segmentation annotations.

4.1. Panoptic Segmentation

Implementation. We adopt the ResNet-50 backbone and
COCO pertaining for all models, training with a batch size
of 6 and a learning rate of 1 × 10−4over 110K iterations
on 2 RTX4090 GPUs. For other settings, we adhere to
the default configuration in [7, 18, 37]. In OW experi-
ments, we follow the official implementations of ODISE
[34] and FC-CLIP [38]. For all cross-domain experiments,

Train strategy All Thing Stuff

COCO JRDB PQ↑ OPS↓ PQTh ↑OTh
PS↓ PQSt↑ OSt

PS↓

✓ 31.41 0.67 27.12 0.72 43.88 0.53
✓ ✓ 36.57 0.64 33.07 0.68 46.74 0.51

Table 5. CW panoptic segmentation results of MaskDino with
different training strategies on JRDB-PanoTrack. Top: we
solely train the model on JRDB-PanoTrack. Bottom: we use
COCO pertaining followed by finetuning on JRDB-PanoTrack.

Domain Method Known Unknown

PQ↑ OPS↓ PQ↑ OPS↓

Cross
ODISE-L[34] 14.94 0.84 3.86 0.92
ODISE-C[34] 13.58 0.84 7.18 0.92
FC-CLIP[38] 14.29 0.86 3.56 0.93

In FC-CLIP[38] 24.95 0.75 3.19 0.98

Table 6. Performance of SOTA OW panoptic segmentation
models on JRDB-PanoTrack. Cross-domain methods are trained
on COCO and tested on our dataset, while in-domain methods
are trained with JRDB-PanoTrack known classes. ODISE-L and
ODISE-C represent the model with class and caption supervisions,
respectively.

we use the weights pretrained on COCO and infer on JRDB-
PanoTrack. For in-domain experiments, we train FC-CLIP
on our OW training set and infer on our OW test set. The
model is trained with two RTX4090 GPUs with batch size
8, learning rate 5× 10−4, other training setting use same as
[38]. We do not train ODISE due to its very high computa-
tional costs.
CW Panoptic Segmentation. We evaluate SOTA meth-
ods on JRDB-PanoTrack (Tab. 3) and obtain the follow-
ing findings: (1) Lower performance across all methods
compared to COCO results, particularly for Thing classes.
This highlights challenges like complex Thing instances and
varied object scales in diverse environments. (2) Mask
DINO stands out, which achieves PQ of 36.57% with
COCO pertaining and 31.41% without it (Tab. 5). One
reason is that our dataset contains crowded objects, and
Mask DINO contains more object queries to capture a mass
of object candidates. Meanwhile, MaskDino pretrained
on JRDB-PanoTrack achieves higher performance on the
COCO dataset (see the supplemental material), suggesting
JRDB-PanoTrack’s ability to generalize to other domains.
These insights emphasize JRDB-PanoTrack’s unique chal-
lenges in CW panoptic segmentation, leading us to further
explore its role in OW panoptic segmentation setting.
OW Panoptic Segmentation. SOTA OW panoptic seg-
mentation methods like FC-CLIP [38] and ODISE [34]
show notably lower performance on JRDB-PanoTrack
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Trkr STQ↑ Frag↓ IDF1↑O2
PT↓ O2T

PT↑ O2S
PT↑

K
m

ax OS 7.40 4239 28.70 0.805 0.867 0.546
BT 8.77 6962 28.78 0.816 0.885 0.546
BS 14.20 8932 29.76 0.831 0.909 0.546

2F
or

m
er OS 7.09 4162 27.49 0.799 0.863 0.530

BT 8.58 7251 27.67 0.808 0.880 0.530
BS 13.89 9392 29.33 0.817 0.902 0.530

D
IN

O OS 7.70 4515 30.40 0.793 0.851 0.548
BT 9.00 7550 30.39 0.804 0.870 0.548
BS 14.50 9609 31.61 0.822 0.901 0.548

Table 7. 2D CW panoptic tracking results. Kmax for Kmax-
Deeplab, 2Former for Mask2Former, DINO for mask DINO,
OS for OC-SORT, BT for ByteTrack, and BS for BoT-SORT.
O2T

PT and O2S
PT are the OSPA2 metric for Thing and Stuff classes.

JRDB COCO PQ↑ PQTh ↑ PQSt ↑
✓ 42.16 47.43 34.20

✓ ✓ 44.48 50.48 35.43

Table 8. CW panoptic segmentation results on COCO val of Mask
DINO[18] using different training data. Top: we solely train
the model on COCO. Bottom: we use JRDB-PanoTrack pertain-
ing followed by finetuning on COCO. JRDB refers to the JRDB-
PanoTrack.

(Tab. 4) compared to other datasets. For instance, the
PQ of FC-CLIP on ADE20K is 26.8 while 10.06 in our
dataset, highlighting JRDB-PanoTrack’s distinct and chal-
lenging nature, especially in recognizing and segmenting
Unknown classes. Tab. 6 further shows cross- and in-
domain evaluations for Known and Unknown classes on
our dataset. Cross-domain results indicate that while prior
knowledge from other datasets like COCO aids in un-
derstanding Known classes, it falls short with Unknown
classes, underlining JRDB-PanoTrack’s OW segmentation
challenge. In contrast, in-domain training improves the seg-
mentation performance for Known classes, but slightly im-
pacts Unknown classes, suggesting that new approaches are
needed to address this core challenge. Additionally, we as-
sess the transferability of JRDB-PanoTrack knowledge to
other domains. Training exclusively on JRDB-PanoTrack
yields a 13.7 PQ on COCO (Tab. 11), demonstrating ef-
fective knowledge transfer to different domains. This find-
ing indicates the potential usage of JRDB-PanoTrack to im-
prove segmentation performance on other domains.
Generalizability of JRDB-Panotrack Tab. 8 presents
comparative results of the Mask DINO model on the COCO
validation set, highlighting the generalizability of JRDB-
Panotrack. Specifically, Tab. 8 compares the performance
when trained solely with the COCO dataset against a com-

Method OPS↓ OSmall
PS ↓ OMedium

PS ↓ OLarge
PS ↓

Kmax[37] 0.670 0.823 0.596 0.370
Mask2Former[7] 0.655 0.805 0.589 0.371
MaskDINO[18] 0.636 0.785 0.552 0.364

Table 9. CW panoptic segmentation results on JRDB-PanoTrack
testing for objects of different scales.

Method OPS↓ OSmall
PS ↓ OMedium

PS ↓ OLarge
PS ↓

ODISE-L[34] 0.851 0.950 0.790 0.550
ODISE-C[34] 0.849 0.906 0.696 0.431
FC CLIP[38] 0.868 0.968 0.863 0.619
FC CLIP+[38] 0.776 0.877 0.597 0.390

Table 10. OW panoptic segmentation results on JRDB-PanoTrack
testing for objects of different scales.

bined training scheme that includes both JRDB-PanoTrack
and COCO datasets. Notably, the model pretrained on
JRDB-PanoTrack followed by COCO tuning shows supe-
rior performance across all metrics compared to the model
trained on COCO alone, which supporting JRDB-Panotrack
is also beneficial for other domains.
Knowledge transfer Tab. 8 demon-
strates knowledge transferability between

Train data PQ

COCO 10.06
JRDB 13.70

Table 11. Cross-dataset val-
idation results of FC-CLIP.
The first row indicates train-
ing on COCO and testing on
JRDB-PanoTrack, while the
second row is the opposite.

datasets in open-world set-
ting. In the closed-world
setting, we also show
that the knowledge from
JRDB-PanoTrack can
help improve performance
when fine-tuning on the
COCO dataset (Tab. 11)
and vice versa (Tab. 5).
The results in both open-
world and closed-world
settings show that us-
ing JRDB-PanoTrack
improves segmentation performance in other domains.
This suggests that the size of JRDB-PanoTrack does not
significantly hinder the performance.

4.2. Panoptic Tracking

Implementation. We utilize default settings and im-
plementations of recent popular tracking algorithms:
ByteTrack[40], OC-SORT[5] and BoT-SORT[1]. Masks
predicted from CW and OW segmentation models are con-
verted into bounding boxes and then fed into these trackers.
CW Panoptic Tracking. In Tab. 7, our evaluation high-
lights diverse capabilities of SOTA tracking methods. BoT-
SORT excels in STQ and IDF1 metrics, showcasing its
proficiency in object tracking and identity maintenance.
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Trkr STQ↑ Frag↓ IDF1↑O2
PT↓ O2K

PT↓ O2U
PT↓

FC
C

L
IP OS 2.50 833 8.43 0.910 0.861 0.962

BT 2.78 1126 8.82 0.921 0.871 0.971
BS 4.71 1956 9.52 0.921 0.869 0.979

O
D

IS
E

-L OS 3.11 1373 8.89 0.924 0.854 0.977
BT 3.71 2013 9.31 0.928 0.867 0.979
BS 6.49 3167 9.97 0.927 0.873 0.980

O
D

IS
E

-C OS 4.19 1112 9.22 0.917 0.862 0.979
BT 5.07 1457 9.34 0.925 0.866 0.978
BS 8.32 2139 10.80 0.924 0.863 0.980

FC
C

L
IP

+ OS 4.90 2833 13.20 0.897 0.826 0.990
BT 5.53 4614 13.44 0.905 0.836 0.993
BS 9.01 6868 14.51 0.908 0.850 0.993

Table 12. 2D OW panoptic tracking results. (OS for OC-SORT,
BT for ByteTrack and BS for BoT-SORT). O2K

PT and O2U
PT are the

OSPA2 metric for Known and Unknown classes. ODISE-L and
ODISE-C represent ODISE using class names and captions as su-
pervison.

OC-SORT, favored by the O2
PT metric, excels in consis-

tently identifying objects across frames while minimizing
noisy tracklets. BoT-SORT’s performance, though strong
in tracking objects, shows signs of instability, often los-
ing track and struggling with consistent ID maintenance.
Breaking down into Thing and Stuff classes, O2S

PT error for
Stuff remains constant because cardinality error is not pe-
nalised. The lower performance on our JRDB-Panotrack,
compared to other datasets, can be attributed to our dense
annotations and numerous tracklets, posing a significant
challenge for segmentation and tracking.
OW Panoptic Tracking. OW panoptic tracking results,
as shown in Tab. 12, indicate a different set of challenges.
While BoT-SORT is good at maintaining object identities
and delivering high-quality segmentation, it exhibits higher
fragmentation, indicating inconsistency in track identity
over time. In contrast, OC-SORT, though it may not always
top the STQ or IDF1 scores, shows greater consistency with
fewer fragmentations and lower OSPA errors. The overall
lower performance on the JRDB-Panotrack dataset reflects
the complexities of OW tracking, especially when handling
unknown objects. This underscores the need for advanced
tracking algorithms to adapt to unfamiliar objects and main-
tain consistent track identities.

4.3. 3D Panoptic Segmentation & Tracking

In this work, we briefly touch on 3D CW panoptic segmen-
tation and tracking, though it is not the main focus of this
paper. Specifically, we projected 2D panoptic labels onto
3D point clouds, using these projections as pseudo-labels
for model training. For evaluation, we use our proposed

3D panoptic segmentation

Method IoU↑ PQ↑ RQ↑ O2
PT↓ O2

Card↓ O2
Loc↓

DSNet[13] 12.62 3.41 4.25 0.843 0.657 0.186
Mask4D[36] 13.51 3.57 5.39 0.826 0.643 0.183
MaskPLS[22] 15.13 7.02 10.74 0.795 0.629 0.166

3D Panoptic Tracking

Method LSTQ↑ Sassoc↑ Scls↑ O2
PT↓ O2

Card↓ O2
Loc↓

DSNet[13] 25.35 55.18 11.64 0.882 0.726 0.156
Mask4D[36] 27.87 66.32 11.71 0.860 0.711 0.149

Table 13. Results for 3D panoptic segmentation and tracking
on JRDB-PanoTrack testing. Sassoc and Scls are association
and classification scores (components of LSTQ), respectively.
O2

Cardand O2
Locare OSPA cardinality and localisation errors (com-

ponents of O2
PT), as explained in [29].

OSPA, OSPA2 and adopt popular metrics for 3D panop-
tic segmentation (PQ, IOU) and tracking (LSTQ[2]). It’s
important to note that these 3D pseudo-labels may con-
tain noise, potentially affecting result accuracy. In terms of
3D panoptic segmentation, as shown in Tab. 13, MaskPLS
emerges as the superior method, excelling in all metrics.
This indicates MaskPLS’s enhanced ability to identify and
segment objects precisely in 3D space. In 3D panoptic
tracking, Mask4D takes the lead in LSTQ[2] and achieves
the best OSPA score of 0.860, denoting its strength in main-
taining object identities and tracking consistency over time.
Also, the higher Sassoc scores compared to Scls, suggest-
ing that these methods are better at object association and
tracking than at precise classification in a 3D environment.

5. Conclusion

In this paper, we have introduced the JRDB-PanoTrack
dataset, a novel dataset designed for open-world panoptic
segmentation and tracking, particularly for robotics and
vision applications. The uniqueness and complexity of
JRDB-PanoTrack set it apart from the existing ones. Our
extensive evaluations underscore the dataset’s challenges,
emphasizing the necessity for more robust methodologies
in both closed-world and open-world scenarios. The
dataset offers new ground for future research, especially in
developing algorithms that can effectively handle densely
populated environments and diverse object interactions that
are typical in real-world settings.
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