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1Inria 2Département d’informatique de 3Courant Institute and Center for Data Science

l’ENS (CNRS, ENS-PSL, Inria) New York University

Abstract

Recent approaches to point tracking are able to recover

the trajectory of any scene point through a large portion of

a video despite the presence of occlusions. They are, how-

ever, too slow in practice to track every point observed in

a single frame in a reasonable amount of time. This paper

introduces DOT, a novel, simple and efficient method for

solving this problem. It first extracts a small set of tracks

from key regions at motion boundaries using an off-the-shelf

point tracking algorithm. Given source and target frames,

DOT then computes rough initial estimates of a dense flow

field and visibility mask through nearest-neighbor inter-

polation, before refining them using a learnable optical

flow estimator that explicitly handles occlusions and can

be trained on synthetic data with ground-truth correspon-

dences. We show that DOT is significantly more accurate

than current optical flow techniques, outperforms sophis-

ticated “universal” trackers like OmniMotion, and is on

par with, or better than, the best point tracking algorithms

like CoTracker while being at least two orders of magnitude

faster. Quantitative and qualitative experiments with syn-

thetic and real videos validate the promise of the proposed

approach. Code, data, and videos showcasing the capabili-

ties of our approach are available in the project webpage.1

1. Introduction

A fine-grain analysis of motion is crucial in many appli-

cations involving video data, including frame interpola-

tion [27, 40], inpainting [39, 74], motion segmentation [11,

69], compression [1, 44], future prediction [37, 65], or edit-

ing [34, 70]. Historically, most systems designed for these

tasks have heavily relied on optical flow algorithms [18, 59,

60] with an inherent lack of robustness to large motions or

occlusions [19], confining their use of context to a handful

of neighboring frames and limiting long-term reasoning.

*corresponding author: guillaume.le-moing@inria.fr
1https://16lemoing.github.io/dot
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Figure 1. DOT unifies point tracking and optical flow techniques.

From a few initial tracks, it predicts dense motions and occlusions

from source to target frames. We represent tracks in white, occlu-

sions with stripes, and motion directions using distinctive colors.

Lately, point tracking methods [16, 17, 22, 33, 72] have

emerged as a promising alternative. They are, in most cases,

able to track any specific point through a large portion of a

video, even in the presence of occlusions, successfully re-

taining more than 50% of initial queries after thousands of

frames [72]. Yet, these methods remain too slow and mem-

ory intensive to track every individual point in a video, that

is, to obtain a set of tracks dense enough to cover every pixel

location at every time step. This computational hurdle has

thus far limited the widespread adoption of point tracking as

a viable replacement for optical flow in downstream tasks.

The inefficiency of point tracking methods [16, 17, 22,

72] arises from their independent processing of individual

tracks. In a recent study [33], Karaev et al. shed light on

a related issue: tracking individual queries independently

lacks spatial context. Their approach, CoTracker, tracks

multiple points together to exploit the correlations among

their trajectories. In some cases, performance drops when

the number of simultaneous tracks increases too much, thus

preventing solutions which are both fast and accurate.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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In this paper, we take this concept one step further by

tracking every point in a frame simultaneously. Our ap-

proach, DOT, connects the dots (hence its name) between

optical flow and point tracking methods (Figure 1), enjoy-

ing the spatial coherence of the former and the temporal

consistency of the latter. Our contributions are as follows:

• We introduce DOT, a novel, simple and efficient approach

that unifies point tracking and optical flow, using a small

set of tracks to predict a dense flow field and a visibility

mask between arbitrary frames in a video.

• We extend the CVO benchmark [64] with 500 new videos

to enhance the assessment of dense and long-term track-

ing. The new videos are longer and have a higher frame

rate than existing ones, for more challenging motions.

• We use extensive experiments on the CVO and TAP

benchmarks [16, 64], with quantitative and qualitative re-

sults, to demonstrate that DOT significantly outperforms

state-of-the-art optical flow methods and is on par with, or

better than, the best point tracking algorithms while being

much faster at dense prediction (×100 speedup).

2. Related work

Optical flow estimation has traditionally been addressed

using variational methods [23] to minimize an energy func-

tion enforcing spatial smoothness and brightness constancy

constraints. Several works have focused on adapting this

to long-range motions, including coarse-to-fine warping

strategies [2, 48, 51], a quadratic relaxation of the origi-

nal problem [57], non-local regularization [36, 53], nearest-

neighbor fields [3, 4, 10, 24], and methods relying on local

feature matching [5, 25, 55, 63, 66].

DOT builds on these classical methods, also refining

dense motions from sparse correspondences, but using point

tracking instead of local feature matching. Recently, super-

vised approaches trained on synthetic data [7, 18, 21, 47]

have emerged as a powerful alternative to variational meth-

ods. DOT also benefits from these advances.

Optical flow in the deep learning era. FlowNet [18, 28]

was the first convolutional neural network used to directly

predict optical flow from image pairs. Several classi-

cal ideas have been used to enhance accuracy. For in-

stance, SPyNet [54] incorporates a feature pyramid [6],

and DCFlow [68] uses 4D cost volumes to compute cor-

relations between every pair of patches across successive

frames, similar to [5]. PWC-Net [59] combines the two

ideas. SF-Net [73] builds upon sparse-to-dense methods.

RAFT [60] uses a recurrent neural network to progressively

refine the flow by iterative look-up in the cost volumes.

Lately, transformer-based approaches [26, 29, 31, 58, 67]

have been used to model long-range dependencies and iden-

tify similarities between remote patches in pairs of frames.

Contrary to these methods that only consider pairs of iso-

lated frames, DOT takes full videos as input. We show that

temporal information helps handling occlusions, enhances

robustness in the presence of large displacements, and dis-

entangles the motions of objects with similar visual charac-

teristics, in particular for distant frames.

Optical flow across distant frames has been approached

as an interpolation problem given a sparse set of trajectories

extracted from a video [20]. Another early attempt [41] in-

volved computing the flow between consecutive frames us-

ing the Lucas-Kanade algorithm [45], then deducing long-

term motions using forward flow accumulation. Since then,

various approaches following the idea of chaining flows

estimated between consecutive (or distant) frames have

emerged [13, 14, 30, 50, 64]. Among them, AccFlow [64]

introduces a backward accumulation technique, more ro-

bust to occlusions than forward strategies. MFT [50] iden-

tifies the most reliable chain of optical flows by predicting

uncertainty and occlusion scores. Iterative methods, such

as RAFT and its variants [31, 58, 60], can be employed

to warm-start the estimation of optical flow between dis-

tant frames. Recently, OmniMotion [62], an optimization

technique that relies on a volumetric representation, akin to

a dynamic neural radiance field [49], have been proposed

to estimate motion across every pixel and every frame in

a video. Similar ideas have also been applied to tracking

points in 3D in a multi-camera setting [46].

DOT uses a different strategy, relying on off-the-shelf

point tracking algorithms to predict dense and long-term

motions, much faster than the per-video optimization tech-

nique in OmniMotion [62] and less prone to error accumula-

tion than chaining methods like AccFlow [64] or MFT [50].

Point tracking is closely related to optical flow. Given a

pixel in a frame, it predicts the position and visibility of

the corresponding world surface point in every other frame

of the video. This task has gained significant attention re-

cently, particularly with the introduction of the TAP bench-

mark and the associated TAPNet baseline [16]. Numer-

ous methods have since emerged in this domain. Persistent

independent particles (PIPs) [22] is a method that tracks

points even under occlusion, drawing inspiration from the

concept of particle video [56], which lies midway between

optical flow and local feature matching. TAPIR [17] com-

bines the global matching strategy of TAPNet with the re-

finement step of PIPs. PIPs++ [72] significantly extends the

temporal window of PIPs, enhancing its robustness to long

occlusion events. In contrast to previous methods which

track one query at a time, CoTracker [33] uses a few addi-

tional tracks as context, resulting in improved performance.

DOT takes this concept a step further by predicting the

motion of all points in a frame simultaneously, making it

significantly more efficient (at least ×100 speedup) than

point tracking methods applied densely, while matching or

surpassing their performance on individual queries.
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Figure 2. Dense optical tracking. Our approach, DOT, takes

a video as input and produces dense motion information between

any pair of source and target frames Xs / Xt as an optical flow map

Fs→t and a visibility mask Ms→t. We first track the 2D position

and the visibility (×: visible, ○: occluded) of a small set of phys-

ical points throughout the video. These are sampled preferably

from key regions at motion boundaries (shown in grey). We de-

duce motion estimates F 0

s→t / M0

s→t by using all the tracks whose

associated point is visible at s, noted Vs, to initialize their nearest

neighbors, forming Voronoi cells. We finally refine these estimates

with optical flow techniques, using the frames Xs and Xt.

3. Method

Overview. We consider a sequence of RGB frames Xt (t

in 1 . . . T ) in R
W×H×3. Given source and target time steps

(s, t), our goal is to predict for each pixel position (x, y) in

the source frame Xs the visibility v (0 if occluded and 1 if

visible) and the 2D location (x +∆x, y +∆y) of the corre-

sponding physical point in the target frame Xt. We repre-

sent these dense correspondences between source and target

as a flow Fs→t in R
W×H×2 where Fs→t(x, y) ≙ (∆x,∆y)

and a mask Ms→t in {0,1}W×H where Ms→t(x, y) ≙ v.

Our approach to dense optical tracking (DOT), illus-

trated in Figure 2, is composed of the following modules:

• Point tracking. To accommodate long-range motions,

we first compute N tracks using an off-the-shelf point

tracking method [17, 33, 72] on all frames of the video.

The number N is kept low (∼103) compared to the num-

ber HW of pixels (∼105) to limit computation and al-

low fast inference. A point i in 1 . . .N tracked at time

t in 1 . . . T is denoted by pit ≙ (x
i
t, y

i
t, v

i
t), with position

(xi
t, y

i
t) in R

2, and visibility vit in {0,1}. We also denote

by Pt ≙ {p
i
t ∣ i ∈ ∥1 . . .N∥} the set with all the points at t.

• Interpolation. Tracks offer sparse correspondences be-

tween s and t. We deduce initial flow and mask esti-

mates, F 0

s→t and M0

s→t, using nearest-neighbor interpo-

lation: we associate with every pixel in the source frame

Xs the nearest track i among those visible at s, noted Vs,

and use the position and visibility of the correspondence(pis, pit) to initialize the flow and the mask respectively.

• Optical flow. We refine these estimates into final pre-

dictions, Fs→t and Ms→t, with an optical flow method

inspired by RAFT [60] which uses the source and target

frames, Xs and Xt, to account for the local geometry of

objects. We obtain dense tracks by considering all frames

as target for a given source, e.g., setting s to 1 and using

t in {2 . . . T} to get all tracks from the first frame.

These components and the corresponding training processes

are described in more detail in the following paragraphs.

3.1. Overall approach

Point tracking. Not all tracks are equally informative and

point tracking is computationally intensive, so we sample

tracks more densely in regions undergoing significant mo-

tions or likely to become occluded. These are often local-

ized around the edges of moving objects, at the boundary

between pixels with significant motions and others which

are either just dis-occluded or soon to be occluded. We find

these regions by running a pre-trained optical flow model on

consecutive frames of the video and then applying a Sobel

filter [32] to detect discontinuities in the flow.

Given a budget of N tracks, our sampling strategy con-

sists in initializing half of the tracks randomly near flow

edges (up to 5 pixels from an edge) and sampling the re-

maining ones in the entire image. It is important to empha-

size that our approach is agnostic to the choice of a specific

point tracking method, so it will also benefit from ongoing

advancements in this rapidly evolving research field.

Interpolation. We initialize coarse motion and visibility es-

timates, F 0

s→t and M0

s→t, between source and target at a

reduced spatial resolution W /P ×H/P where P is some

constant (P≙4 in practice). These are derived from the N

input tracks using the nearest visible track for every position(x, y) in ∥P,2P, ..,W ∥× ∥P,2P, ..,H∥ in the source frame:

{ F 0

s→t(x, y) ≙ (xi
t, y

i
t) − (xi

s, y
i
s),

M0

s→t(x, y) ≙ vit, (1)
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with i ≙ argminj∈Vs

∣∣(xj
s, y

j
s) − (x, y)∣∣2 and where Vs ≙{j ∈ 1..N ∣ vsj ≙ 1} designates all the points which are

visible at time s. Nearest neighbors of these points form

Voronoi cells in the image plane, see Figure 2.

Optical flow. The estimates F 0

s→t and M0

s→t are inherently

imprecise, particularly for points distant from the input

tracks. We refine them using an optical flow method.

As in RAFT [60], we extract coarse features Ys (resp.

Yt) in R
W /P×H/P×C for the source (resp. target) frame

Xs (resp. Xt) using a convolutional neural network. We

then compute the correlation between features for all pairs

of source and target positions at different feature resolution

levels, yielding a 4D correlation volume for each resolu-

tion level. The flow is progressively refined by repeating K

times the following procedure (K≙4 in practice): Let F k
s→t

be the estimate at the iteration k. For each source position,

we sample the correlation volume at different target posi-

tions laid on a regular grid centered at the position indicated

by F k
s→t. The similarity of each source point with a local

neighborhood around its current target correspondence is

then fed to a recurrent neural network [12] to predict F k+1
s→t .

We obtain the flow F̂s→t from the final estimate FK
s→t using

the upsampling operation introduced in RAFT [60].

Our model differs from RAFT [60] in that we have a

meaningful initialization for the flow F 0

s→t instead of a zero

motion. Moreover, we handle occlusions by refining a mask

M̂s→t from the coarse estimate M0

s→t along with the flow.

We note that the predicted mask M̂s→t is a soft estimate

which may be turned into a binary one by thresholding with

a fixed scalar τ for every position (τ≙0.8 in practice).

3.2. Training process

We use an off-the-shelf model for point tracking (e.g., [17,

33, 72]) and freeze the corresponding parameters during

training. The interpolation is a parameter-free operation.

Therefore, among the three components of our approach,

only the optical flow module requires training.

Objectives. The parameters of DOT are optimized by min-

imizing the sum of two objective functions: a motion re-

construction objective which is the L1 distance between the

predicted and the ground-truth flows, and a visibility pre-

diction objective which is the binary cross entropy between

the predicted and the ground-truth masks.

Optimization. DOT is trained on frames at res. 512 × 512
for 500k steps with the ADAM optimizer [35] and a learn-

ing rate of 10−4 using 4 NVIDIA V100 GPUs. Given the

practical challenge of gathering and storing dense ground

truth across different time horizons, e.g., a single flow map

represents 262,144 correspondences at this resolution, we

only compute the training objectives on a few of these cor-

respondences. Specifically, we train using N≙2048 tracks

from CoTracker [33] as input (see ablations with other

methods in Table 3), and use another N ground-truth tracks

(synthetically generated) for supervision. At inference, we

adjust N to trade motion prediction quality for speed (Ta-

ble 4). Further implementation details are presented in Ap-

pendix A-B. For reproducibility, code, data and pretrained

models are publicly available in our project webpage.

4. Experiments

Optical flow baselines include RAFT [60] and GMA [31],

methods which directly predict the motion between pairs

of distant frames. We also employ these methods as warm

starts, represented by ( ) in our tables and figures, where

the flow between neighboring frames serves as an initializa-

tion for estimating the flow between more distant frames.

Another strategy, represented as ( ), is to chain optical

flows computed for adjacent frames. We also compare to

AccFlow [64], a backward accumulation method for esti-

mating long-range motions, MFT [50], an advanced method

for chaining optical flows, and OmniMotion [62], a method

which regularizes optical flow by constructing a volumetric

representation. All three methods build upon RAFT [60].

Point tracking baselines. We explore the direct exten-

sion of sparse methods to predict dense motions by apply-

ing them at every pixel. Specifically, we use PIPs [22],

PIPs++ [72], TAP-Net [16] and TAPIR [17], all of which

track individual point independently. We also consider Co-

Tracker [33], which enables the simultaneous tracking of

multiple points in two different modes: The first processes

batches of points spread over the image and is hence effi-

cient. The second one, which we denote as (★), is specifi-

cally optimized for individual point queries, by incorporat-

ing a context of local and global points solely for inference,

discarding them afterwards. While the latter improves pre-

cision, it does so at the expense of considerably slower pro-

cessing, making it impractical for dense prediction. Karaev

et al. use the first version for visualizations and the second

for quantitative evaluations [33]. Given their significant dif-

ferences, we treat them as distinct approaches.

Datasets. Like others, we train and evaluate our method us-

ing data generated with Kubric [21], a simulator for realistic

rendering of RGB frames along with motion information,

featuring scenes with objects falling to the ground and col-

liding with one another. We consider different datasets:

• MOVi-F Train. This set is composed of approximately

10,000 videos, each containing 24 frames rendered at 12

frames per second (FPS). The videos are equipped with

point tracks, primarily sampled from objects and, to a

lesser extent, from the background. Our method and point

tracking baselines [16, 17, 22, 33] train on this data, or

close variations thereof. We note that PIPS++ [72] uses

data from a different simulator called PointOdyssey, fo-

cusing on long videos with naturalistic motion.
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Table 1. Motion prediction on the CVO benchmark. We evaluate dense predictions between the first and last frames of videos. We

report the end point error (EPE) of flows for all pixels (all), visible (vis) and occluded ones (occ), the intersection over union (IoU) of

occluded regions, and the average inference time per video (in seconds). We also indicate the number N of tracks for different methods.

Method N
CVO (Clean) CVO (Final) CVO (Extended)

EPE ↓ (all / vis / occ) IoU ↑ EPE ↓ (all / vis / occ) IoU ↑Time∗↓ EPE ↓ (all / vis / occ) IoU ↑ Time ↓

O
p

ti
ca

l
fl

o
w

RAFT [60] - 2.82 / 1.70 / 8.01 58.1 2.88 / 1.79 / 7.89 57.2 0.166 28.6 / 21.6 / 41.0 61.7 0.166

GMA [31] - 2.90 / 1.91 / 7.63 60.9 2.92 / 1.89 / 7.48 60.1 0.186 30.0 / 22.8 / 42.6 61.5 0.186

RAFT ( ) [60] - 2.48 / 1.40 / 7.42 57.6 2.63 / 1.57 / 7.50 56.7 0.634 21.8 / 15.4 / 33.4 65.0 4.142

GMA ( ) [31] - 2.42 / 1.38 / 7.14 60.5 2.57 / 1.52 / 7.22 59.7 0.708 21.8 / 15.7 / 32.8 65.6 4.796

MFT [50] - 2.91 / 1.39 / 9.93 19.4 3.16 / 1.56 / 10.3 19.5 1.350 21.4 / 9.20 / 41.8 37.6 18.69

AccFlow [64] - 1.69 / 1.08 / 4.70 48.1 1.73 / 1.15 / 4.63 47.5 0.746 36.7 / 28.1 / 52.9 36.5 5.598

P
o

in
t

tr
ac

k
in

g PIPs++ [72] 262144 9.05 / 6.62 / 21.5 33.3 9.49 / 7.06 / 22.0 32.7 974.3 18.4 / 10.0 / 32.1 58.7 1922.

TAPIR [17] 262144 3.80 / 1.49 / 14.7 73.5 4.19 / 1.86 / 15.3 72.4 131.1 19.8 / 4.74 / 42.5 68.4 848.7

CoTracker [33] 262144 1.51 / 0.88 / 4.57 75.5 1.52 / 0.93 / 4.38 75.3 173.5 5.20 / 3.84 / 7.70 70.4 1645.

H
y

b
ri

d

Dense optical

tracking (DOT)

1024 1.36 / 0.76 / 4.26 80.0 1.43 / 0.85 / 4.29 79.7 0.864 5.28 / 3.78 / 7.71 70.8 5.234

2048 1.32 / 0.74 / 4.12 80.4 1.38 / 0.82 / 4.10 80.2 1.652 5.07 / 3.67 / 7.34 71.0 9.860

4096 1.29 / 0.72 / 4.03 80.4 1.34 / 0.80 / 3.99 80.4 3.152 4.98 / 3.59 / 7.17 71.1 19.73

“∗”: the time is the same for Clean and Final sets.

Source RAFT GMA AccFlow DOT Ground truth

Optical Flow Hybrid

Target 166 milliseconds 186 milliseconds 746 milliseconds 864 milliseconds

Source PIPs++ TAPIR CoTracker DOT Ground truth

Point tracking Hybrid

Target 16 minutes 2 minutes 3 minutes 864 milliseconds

Figure 3. Qualitative samples on the CVO benchmark. We show the predicted flow (1st / 3rd rows) and visibility mask (2nd / 4th rows)

between the first and last frame of different videos of the Final test set. We also report inference time. Optical flow methods produce

smooth motion estimates but miss important object regions. Point tracking methods, PIPS++ and TAPIR, are more accurate but tend to

produce noisy estimates. CoTracker improves on this aspect by processing multiple point tracks simultaneously instead of one at a time,

but we still observe some artifacts when zooming in. DOT combines the benefits of both optical flow and point tracking approaches.

• CVO Train [64]. This set has around 10,000 videos, with

7 frames rendered at 60 FPS. The videos come with bidi-

rectional optical flow information for adjacent frames and

between the first frame and every other frame. Our optical

flow baselines [31, 60, 64] use this data for training.

• CVO Test [64]. There were originally two test sets, Clean

and Final, with the latter incorporating motion blur. Each

of them contains around 500 videos of 7 frames at 60

FPS.2 We also introduce the Extended CVO set, with an-

other 500 videos of 48 frames rendered at 24 FPS. This

new set is designed to assess longer videos with more

challenging motions. All sets provide the optical flow and

visibility mask between the first and last frame of videos.

2We use a curated version of this dataset since in its original release it

contained a few scenes with erroneous optical flows (for 25 videos). Our

full data curation pipeline is detailed in Appendix H.
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Table 2. Motion prediction on the TAP benchmark. We evaluate trajectories spanning the whole video for specific points. We report

average jaccard (AJ), position accuracy (<δxavg), and occlusion accuracy (OA). For completeness we include single-point methods optimized

for individual test queries, but report their performance separately since they are not strictly comparable when evaluating dense predictions.

Method
DAVIS (First) DAVIS (Strided) RGB-S. (First) RGB-S. (Strided) Kinetics (First)

AJ ↑ <δxavg ↑ OA ↑ AJ ↑ <δxavg ↑ OA ↑ AJ ↑ <δxavg ↑ OA ↑ AJ ↑ <δxavg ↑ OA ↑ AJ ↑ <δxavg ↑ OA ↑

S
in

g
le

TAP-Net [16] 33.0 48.6 78.8 38.4 53.1 82.3 53.5 68.1 86.3 59.9 72.8 90.4 38.5 54.4 80.6

PIPs [22] 42.2 64.8 77.7 52.4 70.0 83.6 - - - - - - 31.7 53.7 72.9

TAPIR [17] 56.2 70.0 86.5 61.3 73.6 88.8 55.5 69.7 88.0 62.7 74.6 91.6 49.6 64.2 85.0

CoTracker (★) [33] 60.6 75.4 89.3 64.8 79.1 88.7 65.4 79.1 91.0 73.6 84.5 94.5 48.7 64.3 86.5

D
en

se

RAFT ( ) [60] - - - 30.0 46.3 79.6 - - - 44.0 58.6 90.4 - - -

OmniMotion [62] - - - 51.7 67.5 85.3 - - - 77.5 87.0 93.5 - - -

MFT [50] 47.3 66.8 77.8 56.1 70.8 86.9 - - - - - - 39.6 60.4 72.7

CoTracker [33] 56.9 74.1 84.4 61.1 77.4 85.8 67.7 80.7 90.8 74.1 85.2 92.3 44.8 63.2 81.2

DOT (ours) 60.1 74.5 89.0 65.9 79.2 90.2 77.1 87.7 93.3 83.4 91.4 95.7 48.4 63.8 85.2
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Figure 4. Performance vs speed on the CVO benchmark. DOT

reaches different trade-offs by setting the number N of initial

tracks to different values in ∥256,512,1024,2048,4096,8192∥.
We observe that our method improves over all approaches while

keeping a speed similar to state-of-the-art optical flow techniques.

We further evaluate DOT and other approaches on the TAP

benchmark [16]. It provides ground-truth tracks for various

types of scenes, including real-world videos: DAVIS [52],

with 30 videos (∼100 frames each) featuring one salient ob-

ject; Kinetics [9], with over 1,000 videos (250 frames each)

representing various human actions; RGB-Stacking [38],

with 50 synthetic videos (250 frames each) in a robotic en-

vironment with textureless objects and frequent occlusions.

Evaluation metrics. We measure computational efficiency

and the quality of dense motion predictions between the first

and last frames of videos using the following metrics:

• End point error (EPE) between predicted and ground-

truth flows. We give mean EPE for all pixels, as well

as separately for visible (vis) and occluded (occ) pixels.

• Intersection over union (IoU) between predicted and

ground-truth occluded regions in visibility masks.

• Computational efficiency as the average inference time

required to produce the mask and flow between the first

and last frame of one video using an NVIDIA V100 GPU.

Some methods may exclusively produce flow predictions so

we estimate the visibility mask by doing forward-backward

consistency checks on the predicted flow. This involves pro-

cessing videos a second time by flipping their temporal axis.

We follow the standard evaluation protocol for TAP [16]

and report occlusion accuracy (OA), position accuracy for

visible points averaged over different threshold distances

(<δxavg), and average jaccard (AJ) which combines both.

4.1. Comparison with the state of the art

CVO. Results in terms of EPE and IoU on the CVO test sets

in Table 1 show that DOT significantly improves over opti-

cal flow baselines. In particular, on the Extended set, with

large motions and long occlusion events, DOT reduces by a

factor 4 the EPE and yields relative improvements of more

than 8% in IoU compared to these methods. DOT also out-

performs point tracking baselines while being at least two

orders of magnitude faster. These methods are slow, even

when parallelizing computations on GPU, as they are ap-

plied to every of the N ≙ 512 × 512 ≙ 262144 pixels in

a frame. DOT, in contrast, is flexible as it may trade mo-

tion prediction quality for speed by adjusting the number

N of initial point tracks. See also Appendix E for visual

comparisons by taking different values for N . Figure 4

shows that DOT yields the best possible trade-offs. DOT

even improves over input tracks. By extracting 1024 tracks

with CoTracker, we obtain 10.6% (resp. 7.1%) relative im-

provements on EPE (resp. IoU) on the Final set on the same

tracks after refining them with DOT. Qualitative samples in

Figure 3 show the superiority of DOT over prior works.
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Hike

s ≙ 1

t ∈ {25,50}

Source

Duck

s ≙ 1

t ∈ {15,30}

Drift

s ≙ 1

t ∈ {20,40}

MFT

1 minute

OmniMotion

9 hours

CoTracker

1 hour

DOT

2 minutes

Figure 5. Qualitative samples on the TAP benchmark. We compare various methods by tracking all points in the first frame of videos

from the DAVIS dataset. Only foreground points are visualized, each depicted with distinctive colors, and overlayed with white stripes

when occluded. We also indicate the time for each method to process a 480p video of 50 frames on an NVIDIA V100 GPU. In the “Hike”

video, our method, DOT, stands out by successfully tracking both legs as the person walks. DOT has robust performance under occlusion,

as shown in the “Duck” video where the animal changes sides. In contrast, MFT lose sight of the object, showing the limitations of optical

flow methods under occlusion. OmniMotion does not account for the rotation of the object. CoTracker successfully tracks the object but

fails to predict occlusions, showing the limitations of point tracking methods overly reliant on local features, especially when different

parts of an object look similar. DOT handles videos with small objects or atmospheric effects like smoke, like in the “Drift” video. Other

methods tend to miss object parts in similar conditions. Please zoom in for details and refer to the videos in the supplemental materials.

TAP. DOT predicts dense motions, without knowing which

points will be used for testing, as opposed to single-point

tracking techniques, optimized for specific test queries. Re-

markably, even under this challenging setting, DOT is com-

petitive with the best-performing single-point tracking al-

gorithms across all of the TAP benchmark test sets, see Ta-

ble 2. DOT even slightly improves over the state of the art

on DAVIS (strided), and achieves a substantial advantage

on RGB-Stacking, with over 13% relative increase in av-

erage jaccard (AJ) compared to single-point methods. Its

success lies in its ability to handle textureless objects effec-

tively, whose lack of distinctive local features make them

challenging for point tracking approaches. The optical flow

component in our approach allows us to rely on a broader

context, thereby significantly enhancing motion predictions

for such objects. Furthermore, DOT performs significantly

better than dense methods which, like our method, are not

optimized for specific test queries. The relative improve-

ments range from 6% to 15% in average jaccard (AJ), up

to 9% in position accuracy (δxavg) and up to 5% in occlu-

sion accuracy (OA) compared to the previous state of the

art. Qualitative results on real data in Figures 5-6, in Ap-

pendix C and G, and videos in our project webpage show the

significant improvements achieved by our method in terms

of spatial consistency, robustness to occlusions and appear-

ance changes compared to the state of the art.

4.2. Ablation studies

Effect of the method used to extract sparse correspon-

dences. We compare the performance of DOT when dif-

ferent methods are used to extract input correspondences

in Table 3. We explore local feature matching techniques

which produce correspondences between pairs of images.

Although they allow fast computations, such methods may

produce incorrect matches when parts of different objects

present important similarities [8]. Moreover, they do not

handle occlusions, with points required to be visible in both

images, and are not very robust to motion blur. We found
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Table 3. Effect of the method used to extract sparse correspon-

dences. Feature matching is done with LightGlue [42] using dif-

ferent types of local features. We compare the performance of

DOT on the CVO (Final) test set when fed with N=1024 corre-

spondences extracted with different methods. For fair comparison,

we do not do in-domain training (no specialization to any particu-

lar input), and we use the same densification model and the same

sampling strategy (i.e., the one from Section 3.1) for all methods.

Method EPE ↓ (all / vis / occ) IoU ↑ Time ↓

F
ea

tu
re

m
at

ch
in

g SIFT [43] 10.9 / 9.15 / 19.5 31.9 1.022

DISK [61] 10.9 / 8.81 / 21.2 32.9 0.362

ALIKED [71] 9.55 / 7.17 / 21.0 34.4 0.282

SuperPoint [15] 8.76 / 6.20 / 21.0 36.7 0.244

P
o

in
t

tr
ac

k
in

g PIPs++ [72] 7.30 / 4.92 / 19.5 48.0 4.102

TAPIR [17] 4.00 / 1.82 / 14.3 70.2 0.668

CoTracker [33] 1.89 / 1.27 / 4.99 70.9 0.864

Target

Source

CoTracker

DOT

CoTracker DOT

Figure 6. Preservation of local structure. We compare Co-

Tracker and DOT on the “Lab-coat” video from the DAVIS

dataset. We represent foreground points in the source frame (s=1)

using distinctive colors, and visualize predicted tracks for the tar-

get frame (t=40) with the same colors: we show the mesh obtained

by connecting each point at time t to its cardinal neighbors from

time s. DOT preserves local structure much better than CoTracker.

that resulting correspondences are not well distributed, i.e.,

essentially on the background, as illustrated in Appendix F.

Conversely, point tracking methods solve this issue by

leveraging temporal information, leading to notable im-

provements. Among these methods, we have opted for the

efficient variant of CoTracker [33] since it provides superior

motion reconstructions at a reasonable processing speed.

Ablations of the core components of our approach are

in Table 4, with one component removed at a time. Using

visibility information from tracks slightly improves motion

predicition (EPE) and visibility prediction (IoU). We com-

pare randomly sampling tracks to our motion-based strategy

and observe that the latter yields more informative tracks.

Table 4. Ablations of the core components of our approach. We

remove components one at a time and rank them from the least

to the most significant in terms of flow and mask reconstruction

quality on the CVO (Final) test set. We use N=1024 input tracks.

Method EPE ↓ (all / vis / occ) IoU ↑

Dense optical tracking (DOT) 1.43 / 0.85 / 4.29 79.7

- No use of visibility info from tracks 1.46 / 0.87 / 4.31 78.9

- No motion-based sampling of tracks 1.50 / 0.90 / 4.45 79.2

- Patch size of 8 instead of 4 1.60 / 1.02 / 4.45 76.8

- No in-domain training 1.90 / 1.27 / 5.00 70.8

- No track-based estimates 2.88 / 1.79 / 7.89 57.2

- No optical-flow refinement 3.19 / 2.48 / 6.79 54.5

We find that changing the patch size for flow refinement

from P≙8 to P≙4, effectively doubling the resolution of the

features, improves performance. A more detailed analysis

is in Appendix D. In-domain training, i.e., specializing our

densification model to noisy estimates from a specific point

tracking model, as opposed to training with ground-truth

tracks as input, is also helpful. Moreover, relying solely on

the optical flow component of our approach for a pair of

source and target frames, without incorporating track-based

estimates, results in much worse performance. Similarly,

maintaining the same number of input tracks but omitting

optical flow refinement does not yield satisfactory results.

5. Conclusion

We have introduced DOT, an approach for dense motion

estimation which unifies optical flow and point tracking

techniques, effectively leveraging the strengths from both:

reaching the accuracy of the latter with the speed and spa-

tial coherence of the former. Like any other approach, it, of

course, may fail due to extreme occlusions, fast motions, or

rapid changes in appearance. DOT is agnostic to the choice

of a specific point tracking algorithm, so future advances in

this field will directly benefit our approach. We believe that

the efficiency of DOT holds the potential to drive substantial

progress across various downstream applications.
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[57] Frank Steinbrücker, Thomas Pock, and Daniel Cremers.

Large displacement optical flow computation without warp-

ing. In ICCV, 2009. 2

[58] Xiuchao Sui, Shaohua Li, Xue Geng, Yan Wu, Xinxing Xu,

Yong Liu, Rick Goh, and Hongyuan Zhu. Craft: Cross-

attentional flow transformer for robust optical flow. In CVPR,

2022. 2

[59] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.

PWC-Net: CNNs for optical flow using pyramid, warping,

and cost volume. In CVPR, 2018. 1, 2

[60] Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field

transforms for optical flow. In ECCV, 2020. 1, 2, 3, 4, 5, 6,

12

[61] Michał Tyszkiewicz, Pascal Fua, and Eduard Trulls. DISK:

Learning local features with policy gradient. NeurIPS, 2020.

8

[62] Qianqian Wang, Yen-Yu Chang, Ruojin Cai, Zhengqi Li,

Bharath Hariharan, Aleksander Holynski, and Noah Snavely.

Tracking everything everywhere all at once. In ICCV, 2023.

2, 4, 6

[63] Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and

Cordelia Schmid. Deepflow: Large displacement optical

flow with deep matching. In ICCV, 2013. 2

[64] Guangyang Wu, Xiaohong Liu, Kunming Luo, Xi Liu,

Qingqing Zheng, Shuaicheng Liu, Xinyang Jiang, Guangtao

Zhai, and Wenyi Wang. Accflow: Backward accumulation

for long-range optical flow. In ICCV, 2023. 2, 4, 5

[65] Yue Wu, Rongrong Gao, Jaesik Park, and Qifeng Chen. Fu-

ture video synthesis with object motion prediction. In CVPR,

2020. 1

[66] Jonas Wulff and Michael J Black. Efficient sparse-to-dense

optical flow estimation using a learned basis and layers. In

CVPR, 2015. 2

[67] Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, and

Dacheng Tao. GMFlow: Learning optical flow via global

matching. In CVPR, 2022. 2
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