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Abstract

Test-time adaptation (TTA) has emerged as a viable solu-
tion to adapt pre-trained models to domain shifts using unla-
beled test data. However, TTA faces challenges of adaptation
failures due to its reliance on blind adaptation to unknown
test samples in dynamic scenarios. Traditional methods for
out-of-distribution performance estimation are limited by
unrealistic assumptions in the TTA context, such as requir-
ing labeled data or re-training models. To address this issue,
we propose AETTA, a label-free accuracy estimation algo-
rithm for TTA. We propose the prediction disagreement as
the accuracy estimate, calculated by comparing the target
model prediction with dropout inferences. We then improve
the prediction disagreement to extend the applicability of
AETTA under adaptation failures. Our extensive evaluation
with four baselines and six TTA methods demonstrates that
AETTA shows an average of 19.8%p more accurate estima-
tion compared with the baselines. We further demonstrate the
effectiveness of accuracy estimation with a model recovery
case study, showcasing the practicality of our model recovery
based on accuracy estimation. The source code is available
at https://github.com/taeckyung/AETTA.

1. Introduction

The rise of deep learning has impacted various fields with
remarkable achievements [4, 13, 17, 32, 33]. In real-world
deep learning applications, the divergence between training
and test data, known as domain shifts, often leads to poor
accuracy. For instance, object detection models encountering
previously unseen data (e.g., variations of objects) or dis-
tributional shifts (e.g., weather changes) might suffer from
performance degradation. To overcome this challenge, Test-
Time Adaptation (TTA) [2, 11, 12, 28, 29, 34–36] has been
regarded as a promising solution recently and actively stud-
ied. TTA aims to adapt pre-trained models to domain shifts
on the fly with only unlabeled test data.

Despite recent advances in TTA, significant challenges
hinder its practical applications. The core issue is that TTA’s
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Figure 1. AETTA estimates the model’s accuracy after adaptation
using unlabeled test data without needing source data or ground-
truth labels. AETTA can be integrated into existing TTA methods
to estimate their accuracy under various scenarios.

reliance on unlabeled test-domain samples makes TTA sus-
ceptible to adaptation failures, especially in dynamic envi-
ronments where the domain continuously changes [29, 30].
Although recent TTA studies deal with dynamic test streams
in TTA [11, 12, 29, 35, 36], the inherent risk of TTA–
blind adaptation to unseen test samples without ground-
truth labels–remains a critical vulnerability. Notably, the
absence of ground-truth labels makes it difficult to moni-
tor the correctness of the adaptation. While various out-of-
distribution performance estimation approaches have been
proposed [1, 5, 15, 27], such methods necessitate labeled
train data for accuracy estimation, which is impractical for
TTA scenarios.

In light of these challenges, we propose AETTA (Accu-
racy Estimation for Test-Time Adaptation), a novel accuracy
estimation method designed for TTA without reliance on
labeled data or source data access (Figure 1). AETTA lever-
ages prediction disagreement with dropout inferences, where
the prediction disagreement between the adapted model and
dropout inferences serves as a basis for performance estima-
tion. To enhance AETTA’s robustness to adaptation failure
scenarios, we propose robust disagreement equality that dy-
namically adjust the accuracy estimates based on model
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failures. The key idea is to extend the well-calibration as-
sumption (i.e., predicted probabilities of expected model
predictions are neither over-/under-confident [21]) to cover
over-confident models (e.g., adaptation failures) via adaptive
scaling of the predicted probability. In addition, we provide
theoretical analysis on how AETTA can estimate accuracy
with unlabeled test data.

We evaluate AETTA on three TTA benchmarks
(CIFAR10-C, CIFAR100-C, and ImageNet-C [18]) with
two scenarios of fully TTA (i.e., adapting to each corrup-
tion) [34] and continual TTA (i.e., continuously adapting to
15 corruptions) [35]. We evaluate the accuracy estimation
of AETTA integrated with six state-of-the-art TTA algo-
rithms [12, 28, 29, 34–36]. We compare AETTA with four
baselines that could be applied in the TTA setting. The result
illustrates that AETTA shows an average of 19.8%p more
accurate estimation compared with the baselines in various
TTA methods and evaluation scenarios.

Furthermore, we explore the impact of performance es-
timation in TTA through a case study where we avoided
undesirable accuracy drops in TTA based on AETTA. We
propose a simple model recovery algorithm, which resets the
model when consecutive estimated accuracy degradation or
sudden accuracy drop are observed. Our case study shows
that our model recovery algorithm with accuracy estimation
achieved 11.7%p performance improvement, outperforming
the best baseline that knows when distribution changes by
3.0%p. The result shows an example where accuracy estima-
tion could benefit TTA in practice.

2. Preliminaries

2.1. Test-Time Adaptation (TTA)

Consider the source data distribution DS , and the target
data distribution DT and its random variable (X,Y ), where
Y is typically unknown to the learning algorithm, and K
is total number of classes. The covariate shift assump-
tion [31] asserts a disparity between the source and tar-
get data distributions, defined by DS(x) ̸= DT (x) while
maintaining consistency in the conditional label distribution:
DS(y|x) = DT (y|x).

Let h ∼ HA denote a hypothesis that predicts a single
class for a single input and f denote a corresponding soft-
max value before class prediction. We define the hypothesis
spaceHA as a hypothesis spaceH induced by a stochastic
training algorithmA [21]. The stochasticity could arise from
a different random initialization or data ordering.

Assuming an off-the-shelf model h0 ∼ HA pre-trained
on DS , the goal of (fully) test-time adaptation (TTA) [34]
is to adapt h0 for the target distribution DT to produce h,
using a batch of the unlabeled test set in an online manner.

2.2. Accuracy Estimation in TTA

We adopt a common TTA setup where source data is unavail-
able and target test data lacks labels [12, 28, 29, 34–36]. The
objective of TTA accuracy estimation is to predict the test
accuracy (or error) with unlabeled test streams.

Given an adapted model h(·; Θ) at time t, we denote the
test error of model h(·; Θ) by:

ErrDT (h) ≜ EDT [1(h(X) ̸= Y )]. (1)

Note that we use the terms test accuracy and test error de-
pending on the context, and the sum of them is 1. Given the
temporal nature of TTA, we consider estimating the accuracy
of the model h(·; Θ)–which has been updated before time
t–with the test batch Xt. Following the estimation, the test
batch Xt is used for adaptation.

3. Methodology
3.1. Disagreement Equality

We introduce an approach for estimating the test error of a
model that is adapted at test time. The key idea is to compare
the model’s output against outputs generated through dropout
inference. Remarkably, this estimation process does not rely
on access to the original training or labeled test data, which
contrasts with existing accuracy estimation methods [1, 5, 15,
21, 27]. For example, generalization disagreement equality
(GDE) [21] proposes a theoretical ground for estimating
model error by measuring the disagreement rate between
two networks. However, GDE requires multiple pre-trained
models from different training procedures to calculate the
disagreement rate.

Instead of multiple pre-trained models, our strategy uti-
lizes dropout inference sampling, a technique where random
parts of a model’s intermediate layer outputs are omitted dur-
ing the inference process [9]. From a single adapted model,
we simulate the behavior of independent and identically dis-
tributed (i.i.d.) models by dropout inference sampling.

Definition 3.1. The hypothesis space HA satisfies the
dropout independence if for any h ∼ HA, h and its dropout
inference samples are i.i.d. overHA.

To estimate the accuracy of the model, we propose pre-
diction disagreement with dropout inferences (PDD) that
calculates a disagreement between the adapted model h(·; Θ)
and the dropout inferences h(·; Θdropout) with respect to test
samples as:

PDDDT(h) ≜ EDT

 1

N

N∑
i=1

1
[
h(X; Θ) ̸= h(X; Θdropouti)

],
(2)

where N is the number of dropout inferences.
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We now provide the theoretical background to estimate
test error with PDD. We first define the expectation function
h̃ [21] over hypothesis space HA, which produces proba-
bility vector of size K. For k-th element h̃k(x), we define:

h̃k(x) ≜ Eh∼HA [1[h(x) = k]], (3)

which indicates the probability of a sample x sampled from
DT being classed as the class k. Note that the expectation
function does not represent the model’s accuracy; it indicates
the probability of the input being classified as a particular
class, regardless of the ground truth labels.

Then, we define a confidence-prediction calibration as-
sumption, indicating that the value of h̃ for a particular class
equals the probability of the sample having the same ground-
truth label [21].

Definition 3.2. The hypothesis spaceHA and correspond-
ing expectation function h̃ satisfies confidence-prediction
calibration1 on DT if for any confidence value q ∈ [0, 1]
and class k ∈ [1, · · · ,K]:

p(Y = k|h̃k(X) = q) = q. (4)

With PDD and the assumption of dropout independence
and confidence-prediction calibration, we are able to esti-
mate the model’s prediction error h (Theorem 3.1). Detailed
proof is provided in the Appendix A.1.

Theorem 3.1 (Disagreement Equality). If the hypothesis
spaceHA and corresponding expectation function h̃ satisfies
dropout independence and confidence-prediction calibration,
prediction disagreement with dropouts (PDD) approximates
the test error overHA:

Eh∼HA [ErrDT (h)] = Eh∼HA [PDDDT (h)]. (5)

3.2. Robust Disagreement Equality

Adaptation failures in TTA are often coupled with over-
confident incorrect predictions. Figure 2 shows an illustra-
tive example of this case; as the expectation function’s ac-
curacy drops, the confidence increases, and predictions are
skewed towards a few classes2. This violates the confidence-
prediction calibration, leading to a high misalignment be-
tween test error and PDD (red lines in Figure 3).

To tackle the issue, we propose a robust confidence-
prediction calibration to provide the theoretical ground
of accuracy estimation for both well-calibrated or over-
confident expectation function h̃.

1We rename the term from class-wise calibration [21] to clearly state
the purpose of the calibration.

2Using the probabilistic property of expectation of dropout infer-
ences [9], we approximate h̃(X) as EHA [Edropout[h(X; Θdropout)]].
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Figure 2. Batch-wise accuracy, confidence, and prediction distribu-
tion when a model failed to adapt. TENT [34] is used on CIFAR100-
C with continually changing domains. The model becomes over-
confident, and predictions are skewed.

Definition 3.3. The hypothesis spaceHA and correspond-
ing expectation function h̃ satisfies robust confidence-
prediction calibration on DT if for any confidence value
q ∈ [0, 1], any class k ∈ [1, · · · ,K], and the over-confident
class k′, there exists a weighting constant b ≥ 1 and corre-
sponding 0 ≤ a ≤ 1 that satisfies:

p(Y = k′|h̃k′(X) = q) = aq, (6)

and
p(Y = k|h̃k(X) = q) = bq for k ̸= k′. (7)

Robust confidence-prediction calibration adjusts the over-
confident expectation function h̃ to have a lower probability
on the misclassified class k′ via multiplying a ≤ 1. Note
that we can easily expand Definition 3.3 for multiple over-
confident classes. Then, we estimate the test error with The-
orem 3.2 (detailed proof in the Appendix A.2).

Theorem 3.2 (Robust Disagreement Equality). If the hy-
pothesis spaceHA and corresponding expectation function
h̃ satisfies dropout independence and robust confidence-
prediction calibration with a weighting constant b, predic-
tion disagreement with dropouts (PDD) approximates the
test error overHA:

Eh∼HA [ErrDT (h)] = b Eh∼HA [PDDDT (h)]− C, (8)

where

C =

∫
q∈[0,1]

(b− a) q(1− q) p(h̃k′(X) = q)dq. (9)

3.3. Accuracy Estimation for TTA

With Theorem 3.2, we propose an empirical approach to
estimate the single model test error. Our experiments show
that a single model’s disagreement (and the test error) lies
close to the robust disagreement equality. This aligns with
the previous finding that a single pair of differently-trained
models’ disagreement rate (and the test error) lies close to
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Figure 3. Correlations between the confidence value of estimated expectation function h̃ and (1) ground-truth accuracy (GroundTruth), (2)
conditional probability p(Y = k′|h̃k′(X) = q) of confidence-prediction calibration (CPC), and (3) robust confidence-prediction calibration
(RCPC). We used six TTA methods in CIFAR100-C with continual domain changes. We observed accuracy degradation in TENT and EATA
and improvement in SAR, CoTTA, RoTTA, and SoTTA. When models failed to adapt, the original CPC misaligned with the ground truth. In
contrast, our WCPC dynamically scaled the probability p, thus showing better alignment.

the disagreement equality [21]. Therefore, we approximate
a single model test error as:

ErrDT (h) ≈ b PDDDT (h), (10)

where we omit C due to the insufficient information regard-
ing the true value of p(h̃k′(X) = q). Note that C ≈ 0 for
models with calibration.

Now, we discuss selecting a proper weighting constant b.
Note that a desirable b should dynamically suppress the over-
confident expectation function depending on the context so
that the confidence-prediction calibration assumption holds.
To this end, we use the skewness of the predicted outputs as
an indicator of model over-confidence. Out intuition is based
on the observation that the predicted class distribution is
highly skewed when the adaptation fails (Figure 2b), which
aligns with the findings from prior studies [19, 24]. Specifi-
cally, we estimate the skewness of predictions by calculating
the entropy (Ent) of the batch-aggregated softmax values
from the dropout inferences over a test batch Xt:

Eavg = Ent

 1

N

N∑
i=1

1

|Xt|
∑
x∈Xt

f(x; Θdropouti)

 ,

(11)
where Eavg would maximize as Emax = Ent(⃗1K/K) with
uniform predictions among the batch (e.g., no failures); while
the minimum value would be 0 when entire batch predicts a
single class (e.g., adaptation failures).

We then model b with Eavg as:

b =

(
Eavg

Emax

)−α

, (12)

where α ∈ [0,∞) is a hyperparameter. If the adaptation does
not fail, predictions are uniformly distributed as Eavg =
Emax and b = 1. Note that a = b = 1 drives Theorem 3.2
to be equivalent to Theorem 3.1. We found that modeling b
with the average batch-wise entropy effectively corrects the
correlation between confidence and prediction probability,
as illustrated in Figure 3 (blue dots).

Finally, with Equation 10 and Equation 12, we propose
Accuracy Estimation for TTA (AETTA):

ErrDT (h) ≈
(
Eavg

Emax

)−α

PDDDT (h). (13)

Observe that α = 0 and ∞ result in ErrDT (h) =
PDDDT (h) and ErrDT (h) = 1, respectively. Setting a small
α would result in a lesser penalty with adaptation failures.
On the other hand, choosing a high α would undesirably
penalize model improvement cases. Our experiment found
that accuracy estimation is not too sensitive to α (Figure 5b),
and we chose α = 3 for the other experiments.

Algorithm 1 AETTA: batchwise TTA accuracy estimation

Input: Test batch Xt, model f , number of dropout infer-
ences N
PDD← 0
Yavg ← 0⃗
Ŷ ← f(Xt; Θ)
for i ∈ {1, · · · , N} do

Ŷd ← f(Xt; Θ
dropouti)

Yavg ← Yavg + Avg(Ŷd)

PDD← PDD+ Avg(1[argmax(Ŷ) ̸= argmax(Ŷd)])

Yavg ← 1
NYavg

PDD← 1
N PDD ▷ Avg. over dropouts

Eavg ← Ent(Yavg) ▷ Entropy of avg. batch

Err←
(

Eavg

Emax

)−α

PDD ▷ ErrDT (h)

Acc← 1− Err

We summarize the accuracy estimation procedure in Algo-
rithm 1. We first infer with the adapted model for the current
test batch Xt. Then, we repeatedly perform dropout infer-
ence sampling. With N samples from dropout inferences, we
estimate the entropy of the batch-aggregated softmax output
Eavg. Finally, we calculated the expected error of the model
by AETTA. We apply the exponential moving average to the
final accuracy estimation for stable error estimation.
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Table 1. Mean absolute error (MAE) (%) of the accuracy estimation on fully TTA (adapting to each corruption type). Bold numbers are the
lowest error. Averaged over three different random seeds for 15 types of corruption.

TTA Method
Dataset Method TENT [34] EATA [28] SAR [29] CoTTA [35] RoTTA [36] SoTTA [12] Avg. (↓)

SrcValid 18.37 ± 0.29 14.37 ± 0.33 21.28 ± 0.27 18.43 ± 0.16 20.35 ± 1.31 13.13 ± 0.85 17.66 ± 0.24

SoftmaxScore [7] 6.26 ± 0.49 4.78 ± 0.12 5.21 ± 0.22 10.96 ± 0.28 6.01 ± 0.23 4.97 ± 0.50 6.37 ± 0.10

GDE [21] 18.69 ± 0.28 16.95 ± 0.22 21.25 ± 0.27 14.50 ± 0.03 23.27 ± 0.43 16.45 ± 0.21 18.52 ± 0.13

AdvPerturb [23] 23.06 ± 1.17 24.97 ± 1.00 21.89 ± 0.95 18.00 ± 0.82 19.35 ± 0.99 23.68 ± 0.85 21.83 ± 0.92

Fully
CIFAR10-C

AETTA 4.00 ± 0.03 3.87 ± 0.14 3.89 ± 0.07 6.83 ± 0.47 6.44 ± 1.35 5.28 ± 0.87 5.05 ± 0.46

SrcValid 38.96 ± 0.22 10.71 ± 0.31 42.68 ± 0.21 44.58 ± 0.30 23.50 ± 0.51 19.34 ± 0.63 29.96 ± 0.09

SoftmaxScore [7] 17.34 ± 0.10 27.86 ± 1.11 24.56 ± 0.25 34.50 ± 0.35 24.18 ± 0.19 23.98 ± 0.21 25.40 ± 0.23

GDE [21] 40.11 ± 0.05 71.53 ± 2.12 42.51 ± 0.23 33.21 ± 0.24 48.02 ± 0.56 34.24 ± 0.12 44.94 ± 0.23

AdvPerturb [23] 24.17 ± 0.41 8.22 ± 0.56 22.91 ± 0.60 20.53 ± 0.14 17.84 ± 0.65 25.77 ± 0.47 19.91 ± 0.26

Fully
CIFAR100-C

AETTA 6.89 ± 0.15 20.15 ± 1.70 6.54 ± 0.15 6.05 ± 0.12 6.88 ± 0.10 5.29 ± 0.18 8.63 ± 0.24

SrcValid 39.13 ± 0.89 35.89 ± 0.79 29.77 ± 0.94 41.09 ± 0.53 10.28 ± 0.28 16.00 ± 0.33 28.69 ± 0.54

SoftmaxScore [7] 20.67 ± 0.01 21.06 ± 0.03 24.42 ± 0.08 19.62 ± 0.02 21.03 ± 0.04 23.60 ± 0.07 21.73 ± 0.03

GDE [21] 70.58 ± 0.01 66.17 ± 0.07 63.48 ± 0.03 72.76 ± 0.02 66.39 ± 0.04 52.74 ± 0.02 65.35 ± 0.02

AdvPerturb [23] 12.56 ± 0.03 14.52 ± 0.01 18.76 ± 0.06 11.05 ± 0.02 12.93 ± 0.04 22.90 ± 0.02 15.45 ± 0.02

Fully
ImageNet-C

AETTA 6.14 ± 0.03 6.48 ± 0.02 6.43 ± 0.09 6.02 ± 0.03 14.82 ± 0.01 17.40 ± 0.26 9.55 ± 0.07

Table 2. Mean absolute error (MAE) (%) of the accuracy estimation on continual TTA (continuously adapting to 15 consecutive corruptions).
Bold numbers are the lowest error. Averaged over three different random seeds for 15 types of corruption.

TTA Method
Dataset Method TENT [34] EATA [28] SAR [29] CoTTA [35] RoTTA [36] SoTTA [12] Avg. (↓)

SrcValid 10.84 ± 1.83 11.06 ± 0.11 21.29 ± 0.26 18.30 ± 0.25 13.37 ± 0.89 9.40 ± 0.85 14.04 ± 0.58

SoftmaxScore [7] 41.10 ± 11.66 15.40 ± 4.73 5.21 ± 0.22 12.96 ± 0.37 12.57 ± 0.43 4.37 ± 0.09 15.27 ± 2.51

GDE [21] 46.29 ± 10.93 26.44 ± 5.16 21.25 ± 0.27 14.69 ± 0.15 17.50 ± 0.30 17.03 ± 0.70 23.87 ± 2.43

AdvPerturb [23] 15.56 ± 1.53 20.93 ± 2.83 21.88 ± 0.93 17.79 ± 0.74 22.95 ± 0.82 23.63 ± 0.78 20.45 ± 1.17

Continual
CIFAR10-C

AETTA 9.05 ± 1.02 7.13 ± 3.33 3.89 ± 0.06 5.82 ± 0.30 5.36 ± 1.22 4.73 ± 0.34 6.00 ± 0.35

SrcValid 11.00 ± 0.58 1.68 ± 0.18 38.20 ± 0.22 46.09 ± 0.38 19.43 ± 1.17 17.16 ± 1.57 22.32 ± 0.52

SoftmaxScore [7] 58.29 ± 1.82 76.58 ± 0.71 24.05 ± 0.29 36.27 ± 0.68 27.19 ± 0.12 21.89 ± 0.35 40.71 ± 0.43

GDE [21] 80.87 ± 1.29 94.01 ± 0.43 39.21 ± 0.22 35.43 ± 0.30 41.68 ± 0.45 35.29 ± 0.27 54.41 ± 0.18

AdvPerturb [23] 10.12 ± 0.24 1.97 ± 0.33 24.93 ± 0.57 19.62 ± 0.15 21.18 ± 0.71 25.12 ± 0.39 17.16 ± 0.32

Continual
CIFAR100-C

AETTA 5.85 ± 0.36 4.18 ± 0.82 6.67 ± 0.12 6.55 ± 0.17 5.86 ± 0.10 5.32 ± 0.18 5.74 ± 0.13

SrcValid 33.30 ± 0.93 36.42 ± 0.76 22.30 ± 0.55 41.06 ± 0.54 9.56 ± 0.26 14.28 ± 0.28 26.15 ± 0.53

SoftmaxScore [7] 19.34 ± 0.02 20.16 ± 0.05 21.91 ± 0.16 19.63 ± 0.01 17.56 ± 0.08 19.67 ± 0.50 19.71 ± 0.53

GDE [21] 68.30 ± 0.01 66.58 ± 0.03 64.36 ± 0.15 72.81 ± 0.07 73.76 ± 0.22 55.76 ± 0.45 66.93 ± 0.14

AdvPerturb [23] 14.82 ± 0.02 14.15 ± 0.06 19.17 ± 0.14 11.06 ± 0.02 11.05 ± 0.05 20.83 ± 0.39 15.18 ± 0.09

Continual
ImageNet-C

AETTA 5.66 ± 0.05 6.73 ± 0.03 6.68 ± 0.04 5.98 ± 0.04 11.19 ± 0.12 19.22 ± 0.79 9.24 ± 0.14

4. Experiments

We describe our experimental setup and present the results.
Please refer to the Appendix D for further details.

Scenario. We consider both fully (non-continual) and contin-
ual test-time adaptation scenarios. In the fully TTA setting,
target domains are each corruption type [34], while in the
continual setting, the target domain continually changes to
15 different corruptions [35]. During adaptation, we calcu-
late the accuracy estimation for every batch and report the
mean absolute error between the ground-truth batch-wise
accuracy. We ran experiments with three random seeds (0,
1, 2) and reported the average values. We use the test batch
size 64 for all TTA baselines, with a memory size 64 for
RoTTA [36] and SoTTA [12]. We specify further details of
the hyperparameters in the Appendix D.2.

Datasets. We use three standard benchmarks for test-time
adaptation: CIFAR10-C, CIFAR100-C, and ImageNet-

C [18]. Each dataset contains 15 different corruptions
with five levels of corruption, where we use corruption
level 5. CIFAR10-C/CIFAR100-C/ImageNet-C contains
10/100/1,000 classes with 10,000/10,000/50,000 test data,
respectively. We use pre-trained ResNet18 [17] as an adapta-
tion target, following a recent study [12].

TTA Methods. We consider six state-of-the-art TTA meth-
ods. TENT [34] updates BN parameters with entropy min-
imization. EATA [28] utilizes entropy thresholding-based
sample filtering and anti-forgetting regularization. SAR [29]
also adapts sample filtering with sharpness minimization [8].
CoTTA [35] addresses the continual setting by augmenta-
tions and stochastic restoration of model weights to avoid
catastrophic forgetting. RoTTA [36] adapts with robust batch
normalization and category-balanced sampling with timeli-
ness and uncertainty. SoTTA [12] utilizes high-confidence
uniform-sampling and entropy-sharpness minimization for
robust adaptation in noisy data streams [8].
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(b) CIFAR100-C.
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(c) ImageNet-C.

Figure 4. Qualitative results on continual CIFAR10-C, CIFAR100-C, and ImageNet-C.

Accuracy Estimation Baselines. We evaluate four distinct
accuracy estimation baselines that could be applied to TTA
settings: SrcValid, SoftmaxScore, GDE, and AdvPerturb.

• SrcValid is a widely used technique that validates per-
formance by leveraging labeled source data. It computes
the accuracy using a hold-out labeled source dataset to
estimate the target performance. Importantly, the hold-out
source data for validation were not used for training in
other baselines to ensure they do not affect the model per-
formance. Note that TTA usually assumes that source data
are unavailable during test time; hence, this baseline is
unrealistic in TTA. We nonetheless include SrcValid as
one of our baselines to understand its performance when
the source data are accessible.

• SoftmaxScore [7] utilizes the confidence scores derived
from the last softmax layer as the model’s accuracy, which
is also a widely used baseline [5, 6]. It estimates the target
domain accuracy by averaging softmax confidence scores
computed from the current test batch. In addition, we
apply temperature scaling [16] to improve the estimation
performance [10].

• Generalization disagreement equality (GDE) [21] aims to
estimate test accuracy by quantifying the (dis)agreement

rate between predictions on a test batch generated by a pair
of models. Since training multiple models is impractical,
we compare the current adapted model and the previous
model right before the adaptation. We also report a com-
parison with the original GDE and multiple pre-trained
models in Appendix B.

• Adversarial perturbation (AdvPerturb) [23] also aims
to estimate the OOD accuracy by calculating the agree-
ment between the domain-adapted model and the source
model, where adversarial perturbations on a test batch are
applied to penalize the unconfident samples near the de-
cision boundary. We note that the original paper aims to
predict the accuracy of the source model, while our goal
is to predict the accuracy of the adapted model.

Results. Table 1 and Table 2 show the results on the fully
and continual TTA settings. We observe that none of the
baselines could reliably predict the accuracy among different
scenarios. On the other hand, AETTA achieves the lowest
mean absolute error, including adaptation failure cases (e.g.,
TENT in continual CIFAR10/100-C). On average, AETTA
outperforms baselines by 19.8%p, validating the effective-
ness of our robust prediction disagreement in diverse scenar-
ios. More details are in the Appendix F.
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Figure 5. Impact of hyperparameters on the accuracy estimation
performance.

Qualitative Analysis. We qualitatively analyze the results
of the baselines and AETTA to understand the behavior.
Figure 4 visualizes the ground-truth accuracy and the
estimated accuracy from the baselines and AETTA under
adaptation failure and non-failure cases. The Gaussian
filter is applied for visualization. We observe that AETTA
generally shows a reliable estimation of the ground-truth
accuracy in diverse scenarios (fully and continual) and
datasets (CIFAR10/100-C and ImageNet-C). SrcValid cor-
rectly estimated when model accuracy decreases; however,
it consistently predicted high accuracy when the adaptation
did not fail. This limitation might be due to the distributional
gap between source and target data. SoftmaxScore [7]
captures the trend of ground-truth accuracy in some cases,
but it overestimates the accuracy when the model accuracy
drops. This is mostly due to the over-confident predictions
from the model. GDE [21] showed to constantly predict
high values among different TTA methods. Note that GDE
was originally designed to utilize various pre-trained models.
To use GDE in TTA, we utilize adapted models sampled
at different stages of adaptation. The result suggests that
utilizing multiple models from the single stochastic learning
process might not be sufficient to consist of independent
and identically distributed (i.i.d.) ensembles, leading to
inaccurate estimation. AdvPerturb [23] shows accuracy
estimations when ground-truth accuracy decreases but
shows high errors in other cases. We believe this happens
because it aims to evaluate the performance of the source
model, not the adapted model. We found similar patterns
were observed with different TTA methods.

Impact of Hyperparameter N . The number of dropout in-
ferences, N , is a hyperparameter for calculating the test error.
We conducted an ablation study in continual CIFAR100-C
with varying N ∈ {5, 10, 15}. As shown in Figure 5a, we
found the effect of hyperparameter N is negligible. We inter-
pret this result as the effect of calculating prediction disagree-
ment over sufficient batch size with dropout independence,
which could reduce the probabilistic variances from dropout
inference sampling. We adopt a single value of N = 10 for
the other experiments.

Impact of Hyperparameter α. We investigate the im-
pact of α, a hyperparameter to control the strength of ro-
bust confidence-prediction calibration. We conduct an ab-
lation study in continual CIFAR100-C with varying α ∈
{0, . . . , 5}, where α = 0 indicates no weighting, thus
Err = PDD. Figure 5b shows the result. Note that estima-
tions are often inaccurate when α = 0, which shows the
importance of our robust equality. Setting a reasonable α
is important to predict failed adaptation cases (TENT and
EATA) properly, but it is generally robust after certain values.
We adopt α = 3 for the other experiments.

5. Case Study: Model Recovery
The deployment of TTA algorithms encounters a significant
challenge when exposed to extreme test streams, such
as continuously changing corruptions [35]. Several TTA
algorithms (e.g., TENT [34]) were not designed to exhibit
robustness under such extreme conditions. Consequently,
the model weights are poorly updated, leading to perfor-
mance degradation, even worse than the source model.
Although recent studies attempt to manage dynamic test
streams [11, 12, 35], TTA algorithms are still susceptible
to adaptation failures [30]. To tackle the issue, we perform
a case study of model recovery based on the accuracy
estimation.

Recovery Algorithm. We introduce a simple reset algorithm
based on our accuracy estimation with AETTA. Our reset
algorithm detects two cases: (1) consecutive low accuracies
and (2) sudden accuracy drop. First, we reset the model
if the five recent consecutive estimated accuracies (e.g.,
t − 4, · · · , t) are lower than the five previous consecutive
estimations (e.g., t− 9, · · · , t− 5). This way, we can detect
the gradual degradation of TTA accuracy. Second, we apply
hard lower-bound thresholding, which resets the model if
the estimated accuracy is below the threshold (e.g., 0.2).
This could prevent catastrophic failure of TTA algorithms.

Baselines. Some TTA studies covered the model recov-
ery/reset as a part of the TTA algorithm: Episodic resetting
(Episodic) [37], where the model resets after every batch;
Model Recovery Scheme (MRS) [29], where the model re-
sets when the moving average of entropy loss falls below a
certain threshold; Stochastic restoration (Stochastic) [35],
where a small number of model weights are stochastically
restored to the initial weight of the source model; and Fisher
information based restoration (FisherStochastic) [3], which
applies stochastic restoration for layer importance measured
by Fisher information matrix. We also include a baseline
(DistShift), which assumes that the model knows when the
distribution changes and thus acts as an oracle. DistShift
resets the model when the test data distribution (corruption)
changes, which is not feasible in practice.
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Table 3. Average accuracy improvement (%p) with model recovery. Bold number is the highest improvement. Averaged over three different
random seeds for 15 types of corruption.

TTA Method
Method TENT [34] EATA [28] SAR [29] CoTTA [35] RoTTA [36] SoTTA [12] Avg. (↑)
Episodic [37] 33.58 ± 1.04 51.28 ± 0.52 -7.00 ± 0.26 1.65 ± 0.10 -22.57 ± 0.85 -26.40 ± 0.51 5.09 ± 0.24

MRS [29] 24.12 ± 2.11 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 -1.97 ± 2.23 0.00 ± 0.00 3.69 ± 0.22

Stochastic [35] 35.93 ± 0.78 -0.01 ± 0.47 -2.00 ± 0.48 0.00 ± 0.00 -2.55 ± 0.49 0.35 ± 0.51 5.29 ± 0.19

FisherStochastic [3] 40.27 ± 1.29 0.12 ± 1.16 -4.85 ± 0.13 0.13 ± 0.03 -2.89 ± 0.13 -1.36 ± 0.51 5.24 ± 0.29

DistShift 38.93 ± 1.15 22.17 ± 2.38 -3.25 ± 0.10 1.51 ± 0.09 -7.63 ± 0.23 0.68 ± 0.19 8.74 ± 0.55

AETTA 36.79 ± 1.20 48.64 ± 0.74 -5.66 ± 0.20 1.64 ± 0.11 -6.03 ± 0.89 -4.97 ± 1.58 11.73 ± 0.34
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Figure 6. An example of model recovery compared with DistShift.
Reset points are marked over the x-axis.

Results. Our simple recovery algorithm outperforms
the baselines, including DistShift, which relies on an
impractical assumption of knowing when the corruption
changes. Episodic [37] showed high accuracy improvements
under adaptation failures; however, it prevents continuous
adaptation, even without adaptation failures. MRS [29]
fails to recover among various TTA methods due to the
hard-coded threshold of loss value. Stochastic [35] and
FisherStochastic [3] show marginal improvements while
failing to recover EATA. Our proposed reset algorithm
successfully recovers from adaptation failures while
minimizing the negative effect on TTA without failures.

Qualitative Analysis. Figure 6 shows an example of our
model recovery compared with DistShift. Notably, our re-
covery algorithm resets only when an accuracy degradation
trend is detected. On the other hand, DistShift failed to re-
cover in the early steps since it resets the model only on
distribution shifts. This implies that estimating performance
degradation is more beneficial than knowing when the do-
main changes to improve TTA performance.

6. Related Work

Test-Time Adaptation. Recent progress in the field of
test-time adaptation (TTA) has focused on improving model
robustness [2, 11, 12, 28, 29, 35, 36] and addressing novel
forms of domain shifts [11, 12, 35]. On the other hand, an
analysis [30] pointed out the conventional TTA approaches
remain prone to adaptation failures and demonstrated the
importance of model recovery. In alignment with this insight,

our work not only showcases the feasibility of accuracy
estimation for TTA but also investigates a promising model
recovery solution to enhance the robustness of TTA.

Accuracy Estimation. Existing accuracy estimation ap-
proaches mainly focus on the ensemble of multiple pre-
trained models [1, 5, 15, 21, 27]. Accuracy-on-the-line [27]
and Agreement-on-the-line [1] have demonstrated a notable
linear relationship between performances in a wide range
of models and distribution shifts, relying on the consistency
of model predictions between in-distribution (ID) and out-
of-distribution (OOD) data. The Difference of Confidence
(DoC) [15] leverages differences in the model’s confidence
between ID and OOD data to estimate the accuracy gap
under distribution shifts for calculating the final OOD accu-
racy. Self-training ensemble [5] estimates the accuracy of
the pre-trained classifier by iteratively learning an ensemble
of models with a training dataset, unlabeled test dataset, and
wrongly classified samples. All these methods require la-
beled ID data to estimate OOD accuracy. To our knowledge,
no existing studies target the accuracy estimation in TTA
where source data and labels are unavailable.

7. Conclusion
We proposed a label-free TTA performance estimation
method without access to source data and target labels. Based
on the dropout inference sampling, we proposed calculating
the prediction disagreement to estimate the TTA accuracy.
We further improved the method with robust disagreement
equality by utilizing the batch-aggregated distribution to pe-
nalize skewed predictions. Our method outperformed the
baselines in diverse scenarios and datasets. Finally, our case
study of model recovery showed the practicality of accuracy
estimation. Our findings suggest that accuracy estimation is
not only feasible but also a valuable tool in advancing the
field of TTA without the need for labeled data.
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