
AZ-NAS: Assembling Zero-Cost Proxies for Network Architecture Search

Junghyup Lee1 Bumsub Ham1,2∗

1Yonsei University 2Korea Institute of Science and Technology (KIST)

https://cvlab.yonsei.ac.kr/projects/AZNAS

Abstract

Training-free network architecture search (NAS) aims to
discover high-performing networks with zero-cost proxies,
capturing network characteristics related to the final per-
formance. However, network rankings estimated by previ-
ous training-free NAS methods have shown weak correla-
tions with the performance. To address this issue, we pro-
pose AZ-NAS, a novel approach that leverages the ensemble
of various zero-cost proxies to enhance the correlation be-
tween a predicted ranking of networks and the ground truth
substantially in terms of the performance. To achieve this,
we introduce four novel zero-cost proxies that are comple-
mentary to each other, analyzing distinct traits of architec-
tures in the views of expressivity, progressivity, trainability,
and complexity. The proxy scores can be obtained simulta-
neously within a single forward and backward pass, making
an overall NAS process highly efficient. In order to integrate
the rankings predicted by our proxies effectively, we intro-
duce a non-linear ranking aggregation method that high-
lights the networks highly-ranked consistently across all the
proxies. Experimental results conclusively demonstrate the
efficacy and efficiency of AZ-NAS, outperforming state-of-
the-art methods on standard benchmarks, all while main-
taining a reasonable runtime cost.

1. Introduction
Representative neural network architectures, including
ResNets [23], MobileNets [24, 50], and Vision Transform-
ers [17, 39], have been developed by experts through te-
dious trial-and-error processes, making it hard to design
new architectures for various configurations. To over-
come this problem, network architecture search (NAS) has
emerged as a promising paradigm, capable of automatically
seeking top-performing architectures under specified con-
straints. Recently, training-free NAS [1, 10, 35, 36, 41]
has gained significant attention primarily due to its remark-
able efficiency. It reduces computational and time costs of

∗Corresponding author.

0.3 0.4 0.5 0.6 0.7
Kendall's

25

30

35

40

45

Te
st

 a
cc

ur
ac

y

AZ-NAS
 (Ours)ZiCo

NASWOT

Synflow
TE-NAS

Snip

GradNorm

ZenNAS

Grasp

Upper bound

101

102

103

Ru
nt

im
e

[m
s/

ar
ch

]

Figure 1. Comparison of training-free NAS methods on
ImageNet16-120 of NAS-Bench-201 [15]. We compare correla-
tion coefficients (Kendall’s τ) between predicted rankings of net-
works and the ground truth in the x-axis, and test accuracies for the
selected networks in the y-axis. The runtime costs are visualized
by the circle size and color. By assembling the proposed zero-cost
proxies, AZ-NAS achieves the best consistency between predicted
rankings of the networks and the ground truth efficiently, which
helps to find the network with the highest accuracy.

a NAS process drastically in comparison to earlier meth-
ods using an iterative training [3, 49] or training parameter-
shared networks [6, 38, 47, 66].

The training-free NAS methods predict the ranking of
candidate networks in terms of performance via zero-cost
proxies designed by empirical insights or theoretical evi-
dences. These proxies analyze activations or gradients to
capture e.g., an ability to dissect an input space into lin-
ear regions [10, 41], saliency of weights/channels [1, 34,
56, 58], or training dynamics [10, 52]. However, they are
often less practical than the training-based NAS methods
mainly due to the weak correlations with the final perfor-
mance of networks. For example, recent studies [35, 44]
point out that the simple proxies based on the number of
parameters (#Params) or floating-point operations (FLOPs)
often provide better or competitive ranking consistency
w.r.t the final performance of networks on the NAS bench-
mark [15], compared to many training-free NAS meth-
ods [1, 10, 34, 36, 41, 56, 58]. This limitation might arise
from the fact that the current training-free NAS methods

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5893

evaluate networks from narrow perspectives, typically rely-
ing on a single proxy only [1, 35, 36, 41, 65]. Considering a
single network characteristic might not suffice to accurately
predict the network ranking without training, since various
factors can significantly influence the final performance.
For instance, networks with a large number of parameters
do not always achieve better performance due to e.g., gra-
dient vanishing or exploding problems, which could not be
identified if we exploit #Params solely as a proxy.

In this paper, we introduce a novel training-free NAS
method, AZ-NAS, that assembles multiple zero-cost prox-
ies to evaluate networks from various perspectives. Naively
assembling existing zero-cost proxies is, however, less ef-
fective due to the following reasons. First, it has been
shown that gradient-based proxies [1, 34, 52, 58] are corre-
lated with each other theoretically, providing similar NAS
results [53]. This suggests that directly using an ensemble
of them could prevent a comprehensive evaluation of net-
works, offering a limited improvement [44] while requiring
additional computational costs. Second, several zero-cost
proxies [10, 65] suffer from computational inefficiency, im-
peding scalability to large search spaces especially when
they are combined with other proxies. To address these
problems, we devise novel zero-cost proxies that can be
obtained efficiently and capture unique network character-
istics complementing each other, where the proxy scores
show positive correlations with the network’s performance.
Each of them leverages activations, gradients, or architec-
tural information (i.e., FLOPs) to assess networks compre-
hensively in terms of expressivity, progressivity, trainabil-
ity, and complexity. The proxy scores are computed simul-
taneously within a single forward and backward pass, mak-
ing the entire NAS process efficient. We also present a non-
linear ranking aggregation method to effectively merge the
rankings provided by the proxies, preferring highly-ranked
networks across all the proxies. We show that AZ-NAS
achieves the best ranking consistency w.r.t the performance
on NAS-Bench-201 [15], and it finds networks showing
the state-of-the-art performance on the large-scale search
spaces [9, 36, 50], with a reasonable runtime cost (Fig. 1),
demonstrating its efficiency and effectiveness. We summa-
rize the main contributions of our work as follows:

• We propose to assemble multiple zero-cost proxies for
training-free NAS, assessing network architectures from
various perspectives to predict a reliable ranking of the
candidate architectures without training.

• We design novel zero-cost proxies tailored for AZ-NAS
to capture distinct network characteristics, enabling a
comprehensive evaluation of networks efficiently.

• We present a non-linear ranking aggregation method to
combine rankings predicted from the proposed proxies,
selecting a network highly-ranked across the proxies.

• We achieve the best NAS results on various search

spaces, and provide extensive analyses that verify the ef-
ficacy and efficiency of AZ-NAS.

2. Related work
NAS automates designing novel network architectures by
seeking for an optimal combination of operations [15, 38,
62] and/or the width and depth of networks [5, 36, 50] under
limited FLOPs/#Params budgets. Early approaches adopt
reinforcement learning [68, 69] or an evolutionary algo-
rithm [49] that require training networks iteratively, making
the NAS process computationally expensive.

To address this problem, one-/few-shot NAS meth-
ods [4–6, 25, 38, 66] use parameter-shared networks, called
supernets, where each sub-path in the supernets corresponds
a specific network architecture in a search space. They train
a single [4–6, 38] or few [25, 66] supernets, and measure the
accuracies of candidate networks by sampling correspond-
ing sub-paths from the supernets, saving the computational
costs associated with an iterative training process. Sharing
parameters in supernets, however, often leads to a forgetting
problem [63] or biased selections [12], requiring specialized
training algorithms for supernets. Moreover, constructing
supernets and storing the parameters cause significant mem-
ory requirements [4, 5].

Training-free NAS removes the network training process
in the search phase. They use zero-cost proxies that can re-
flect the final performance, typically leveraging activations
or gradients. Motivated by the finding that each ReLU func-
tion in a network divides an input space into two distinct
pieces, called linear regions [20, 21], the works of [10, 41]
examine activations to figure out the number of linear re-
gions over the input space, which is useful for assessing the
network’s expressivity. These methods are however only
applicable to networks employing ReLU non-linearities.
ZenNAS [36] evaluates the expressivity of networks based
on an expected Gaussian complexity [30], requiring addi-
tional forward passes with perturbed inputs. Inspired by
network pruning [19], the work of [1] proposes to use the
pruning-at-initialization metrics [34, 56, 58] for training-
free NAS, estimating the importance of each weight pa-
rameter by analyzing its gradient. TE-NAS [10] exploits
a neural tangent kernel (NTK) [29] to investigate training
dynamics, and GradSign [65] attempts to search networks
whose local optima obtained with different input samples
are close to each other. They are relatively slower than
other methods, since computing NTK [10] and sample-wise
analysis [65] are computationally expensive, respectively.
The works of [35, 54] analyze networks in terms of conver-
gence and generalization by using gradient statistics com-
puted from multiple forward and backward passes, favor-
ing networks with gradients being large magnitudes and
low variances. Despite the theoretical and empirical find-
ings of all the aforementioned methods, the rankings of net-

5894

works predicted by these methods often show weak correla-
tions with the ground truth. For example, it has proven that
most training-free NAS methods [1, 34, 36, 41, 56, 58] are
not effective, compared to basic proxies using FLOPs and
#Params [35, 44]. We conjecture that the reason for this lim-
itation might be assessing networks with a single zero-cost
proxy. We thus consider various proxies designed under
distinct points of view, scoring networks comprehensively
by leveraging activations, gradients, and FLOPs.

Similar to ours, the works of [1, 10, 44] combine
zero-cost proxies to evaluate network architectures. TE-
NAS [10] uses both the number of linear regions [20, 59]
and the condition number of NTK [29, 32] to assess expres-
sivity and trainability of networks, respectively. However,
counting linear regions is infeasible for large networks [36],
and calculating NTK is computationally demanding [45],
making it difficult to apply TE-NAS to search spaces for
large network architectures [5, 36, 50]. On the contrary,
AZ-NAS remains computationally efficient while leverag-
ing four zero-cost proxies jointly, retaining the advantage of
training-free NAS. The works of [1, 44] propose to combine
a few zero-cost proxies. However, simply combining the
proxies is not sufficient for leveraging complementary fea-
tures among the proxies [44]. For example, the work of [1]
chooses multiple pruning-at-initialization metrics [34, 56]
for the ensemble, but they capture similar network charac-
teristics useful for pruning, i.e., the saliency of weight pa-
rameters. Differently, we design zero-cost proxies to ana-
lyze networks from various perspectives, making them mu-
tually complementary. We also integrate the proxies using
a non-linear ranking aggregation method, assembling them
effectively and boosting the NAS performance significantly.

3. Method
Our zero-cost proxies analyze activations and their gradi-
ents on primary blocks of a network, where each block
consists of a set of layers with different types of opera-
tions and multiple paths. For example, we consider a cell
structure of NAS-Bench-201 [15], a residual block [23],
or an attention block of transformers [17, 57] as a primary
block. In the following, we describe the zero-cost proxies of
AZ-NAS (Sec. 3.1) and the non-linear ranking aggregation
method (Sec. 3.2) in detail.

3.1. Zero-cost proxies of AZ-NAS

Expressivity. We evaluate the expressivity of a network
by examining how uniformly features are distributed across
the orientations in a feature space, given randomly initial-
ized network weights and Gaussian random inputs. We re-
fer to this as an isotropy of a feature space [7]. The stronger
isotropy of the feature space at initialization implies that
the features are less correlated to each other [13, 26, 27].
The network thus has more capacity to store various se-

Feature distribution and PCs
1st PC
2nd PC

0

0.2

0.4

0.6

0.8

1
L1-normalized coefficients of PCs

(a) An example with sE = 0.23.

Feature distribution and PCs
1st PC
2nd PC

0

0.2

0.4

0.6

0.8

1
L1-normalized coefficients of PCs

(b) An example with sE = 1.00.

Figure 2. Toy examples for the expressivity score sE . In (a) and
(b), we synthesize 2-dimensional features (green dots) using dif-
ferent covariances, and compare the L1-normalized coefficients of
PCs. The features in (b) exhibit a higher expressivity score, form-
ing an isotropic feature space.

mantics during training, and it is likely to show high per-
formance without suffering from e.g., dead neurons [40] or
a dimensional collapse problem [26]. Motivated by prin-
cipal component analysis (PCA), we quantify the isotropy
of a feature space based on the coefficients of principal
components (PCs) for the space. Specifically, we denote
by fl ∈ Rc×n c-dimensional output features of the l-th pri-
mary block, where n is the number of features. To obtain
the coefficients of PCs, we first center the features as fol-
lows:

f̄l(p) = fl(p)−
1

n

n∑
q=1

fl(q), (1)

where we denote by fl(p) ∈ Rc×1 the p-th feature vector
of fl. We then compute a covariance matrix of the centered
features as follows:

Vl =
1

n− 1
f̄lf̄l

⊤
. (2)

With the covariance matrix Vl ∈ Rc×c at hand, we apply
eigenvalue decomposition to obtain a set of coefficients for
PCs, denoted by λl ∈ Rc×1. The coefficients are propor-
tional to the variances of corresponding PCs, implying the
importance of each PC. If a feature space is dominated by
few PCs, e.g., due to the dimensional collapse [26], only
corresponding coefficients are large, while the others be-
come small (Fig. 2(a)). On the other hand, if features are
distributed isotropically in a space, all PCs become equally
important with similar coefficients (Fig. 2(b)). Based on
this, we define the expressivity score of the l-th primary
block, sEl , as an entropy score, posing L1-normalized coef-
ficients of PCs as probabilities:

sEl =

c∑
i=1

−λ̃l(i) log λ̃l(i), (3)

5895

where we denote by λ̃l a set of L1-normalized coefficients.
We then obtain the expressivity score of a network sE by
summing up the block-level scores sEl over the primary
blocks:

sE =

L∑
l=1

sEl , (4)

where L is the total number of primary blocks in a network.
The expressivity proxy is particularly useful for detecting
redundancy in a network, such as reducible channel dimen-
sions caused by dead neurons.

Progressivity. The widths of modern network architec-
tures [23, 50, 55] gradually increase for deeper blocks, mak-
ing it possible to capture high-level semantics through deep
features with large capacities. Building upon this, we pro-
pose a progressivity proxy that evaluates an ability to ex-
pand a feature space progressively according to the depth
of primary blocks. We define the progressivity score sP

using the difference of the block-level expressivity scores
in Eq. (3):

sP = min
l∈{2,··· ,L}

sEl − sEl−1, (5)

which computes the smallest difference in expressivity
scores between neighboring primary blocks. A high pro-
gressivity score of a network indicates that its block-level
expressivity scores consistently increase, at least by the
value of the progressivity score, along the depth of the pri-
mary blocks. Our progressivity proxy automates the NAS
process by considering how features evolve throughout a
forward pass explicitly in terms of expressivity, without re-
quiring strict and manual constraints on the width of a net-
work e.g., as in [51].

Trainability. The seminal work of [42] has shown that
gradients can be backpropagated without diverging or van-
ishing, only when the spectral norm of a Jacobian matrix
for each layer is close to 1. Motivated by this, we de-
sign a trainability score with the spectral norm of a Jaco-
bian matrix. This evaluates the stable propagation of gra-
dients at initialization, which has proven to be crucial for
high-performing networks [18, 22, 48]. However, different
from the previous work [42] dealing with a simple network
architecture, we should consider complicated structures of
primary blocks consisting of various operations and multi-
ple paths across layers (e.g., a cell structure [15]). In this
case, obtaining a Jacobian matrix is not a trivial task. To
circumvent this issue, we devise an efficient approxima-
tion of the Jacobian matrix of a primary block, and pro-
pose to use the approximation to compute the trainability
score. We first simplify the forward pass ψl of the l-th
primary block by approximating it as a linear system that
inputs c′-dimensional features fl−1 ∈ Rc′×n and outputs
c-dimensional features fl ∈ Rc×n:

fl = ψl(fl−1) ≈ Alfl−1, (6)

where Al ∈ Rc×c′ is a linear transformation matrix. Under
this approximation, the backward pass ϕl of the primary
block can be represented as follows:

gl−1 = ϕl(gl) ≈ A⊤
l gl, (7)

where gl−1 ∈ Rc′×n and gl ∈ Rc×n are the gradients
of fl−1 and fl, respectively, and the transformation ma-
trix Al serves as a Jacobian matrix. Motivated by the
Hutchinson’s method [2] used in [16, 33, 61], we introduce
a Rademacher random vector v ∈ Rc×1, whose elements
are randomly drawn from {−1, 1} with a equal probabil-
ity, to obtain the Jacobian matrix Al in the approximation.
Specifically, we rewrite Eq. (7) by substituting the output
gradient with the Rademacher random vector v:

u = ϕl(v) ≈ A⊤
l v, (8)

where u ∈ Rc′×1 is considered as a gradient propagated
from v. By using the property that E

[
vv⊤

]
is an identity

matrix [33, 61], we have the following relationship:

E
[
uv⊤

]
≈ E

[
A⊤

l vv
⊤] = A⊤

l E
[
vv⊤

]
= A⊤

l . (9)

That is, if we can compute u in Eq. (8) by feeding the
Rademacher random vector v into the function ϕl, we can
compute A⊤

l using E
[
uv⊤

]
. Based on this, we compute

the Jacobian matrix Al in the approximation of Eq. (7) as
follows:

A⊤
l =

1

n

n∑
p=1

gl−1(p)g
⊤
l (p), (10)

where we synthesize the output gradients gl with
Rademacher random vectors and obtain the input gradi-
ents gl−1 by an automatic backpropagation tool [46]. Con-
sequently, we define the trainability score sT as follows:

sT =
1

L− 1

L∑
l=2

−σl −
1

σl
+ 2, (11)

which has a maximum value, when the spectral norm of Al,
denoted by σl, is equal to 1 for all l. In Eq. (11), both
the spectral norm σl and its reciprocal value contribute
equally to the score. This penalizes, for example, the
spectral norms σl of 2 and 1

2 to the same extent, equiva-
lently treating the increasing and decreasing scale differ-
ences relative to 1. The proposed trainability proxy pro-
vides distinct advantages compared to previous zero-cost
proxies using gradients. First, it is relatively faster than oth-
ers [10, 34, 35, 56, 58, 65], and the score can be obtained
simultaneously with other proxy scores of AZ-NAS (i.e.,
expressivity and progressivity) with the same input sam-
ple. Second, our trainability proxy is not tied to specific
operations, since it computes the score using input and out-
put gradients of any types of primary blocks. In contrast,

5896

existing gradient-based proxies [1, 10, 34, 35, 56, 58, 65]
exploit gradients of trainable weight parameters, suggest-
ing that they cannot evaluate the blocks consisting of non-
parametric operations (e.g., a cell with average pooling) di-
rectly.

Complexity. Recent studies [35, 44] have shown that ar-
chitectural characteristics related to hardware resources,
such as #Params or FLOPs, are correlated closely with the
performance of networks. Following this observation, we
propose to use FLOPs itself as a complexity score sC , pre-
ferring the networks that maximally use computational re-
sources within a given budget.

3.2. Non-linear ranking aggregation

A straightforward way for integrating the proxies into the
final scores would be a linear summation of rankings [10].
If we have both lowly- and highly-ranked proxies from a
network, the linear aggregation makes it difficult to high-
light an undesirable characteristic captured by the lowly-
ranked proxy. This is because the low ranking of the
proxy could be easily offset by the highly-ranked proxies.
We use a non-linear ranking aggregation method to com-
bine our proxies more effectively. Specifically, we denote
by SM = [sM(1), · · · , sM(m)] a set of scores for the
proxy M ∈ {E ,P, T , C}, obtained with m candidate ar-
chitectures. The non-linear ranking aggregation outputs the
final AZ-NAS score for the i-th network sAZ(i) as follows:

sAZ(i) =
∑

M∈{E, P, T , C}

log
Rank

(
sM(i)

)
m

, (12)

where Rank(·) assigns the ranking of an input score sM(i)
over the scores in the set SM in ascending order. It penal-
izes the final score more severely when one of the prox-
ies indicates subpar performance, allowing us to find a net-
work highly-ranked across all the proxies evenly. As will
be shown in the ablation study (Sec. 4.3), this approach
substantially boosts the ranking consistency between the fi-
nal AZ-NAS scores and the performance, compared to the
linear aggregation of rankings. When we perform an evo-
lutionary search, we apply the non-linear ranking aggrega-
tion method to the proxy scores obtained with all candidate
architectures. For generating a new candidate during the
search, we mutate one of the top-k network architectures in
terms of the final AZ-NAS scores (Algorithm 1).

4. Experiment
In this section, we describe experimental settings (Sec. 4.1)
and compare AZ-NAS with the state of the art (Sec. 4.2).
We then present an ablation study and an analysis on inte-
grating other zero-cost proxies (Sec. 4.3). More results can
be found in the supplement.

Algorithm 1 Evolutionary search using AZ-NAS.
Input: search space Z; number of NAS iteration T ; compu-
tational budget B; number of top-scoring architectures for
mutation k.
Output: selected architecture F ∗.

1: Initialize the first architecture F1 for an evolutionary
search.

2: Initialize empty history sets for storing architectures F
and proxy scores SE , SP , ST , and SC .

3: while i = 1 to T do
4: Compute the proxy scores sE , sP , sT , and sC of the

architecture Fi.
5: Append the architecture Fi and the scores sE , sP ,

sT , sC to the corresponding history sets F, SE , SP ,
ST , and SC , respectively.

6: Compute the AZ-NAS scores of the architectures in
F using the non-linear ranking aggregation with the
proxy scores in SE , SP , ST , and SC .

7: Generate a new candidate architecture Fi+1 belong-
ing to the search space Z by mutating one of the top-
k architectures based on the AZ-NAS scores, within
the computational budget B.

8: end while
9: Select the architecture F ∗ showing the highest AZ-

NAS score among the ones in the history set F.

4.1. Experimental settings
We perform extensive experiments on the NAS-Bench-
201 [15], MobileNetV2 [36, 50] and AutoFormer [9] search
spaces. During the search phase, we measure the proxy
scores of AZ-NAS using a single batch of Gaussian random
inputs with a batch size of 64. In the following, we describe
experimental settings for each search space in detail.

NAS-Bench-201. NAS-Bench-201 [15] consists of 15625
network architectures, each of which uses a unique cell
structure. It provides the diagnostic information e.g., test
accuracies and training losses on CIFAR-10/100 [31] and
ImageNet16-120 (IN16-120) [11]. We measure the cor-
relation coefficients in terms of Kendall’s τ and Spear-
man’s ρ between predicted and ground-truth network rank-
ings across all the candidate architectures. We also report
the top-1 test accuracies of selected networks, averaged over
5 runs, together with standard deviations. For each run, we
randomly sample 3000 architectures, and discover the best
one based on the AZ-NAS score.

MobileNetV2. We follow the configuration of the Mo-
bileNetV2 [50] search space proposed in [36] for a fair
comparison with previous works [35, 36]. This space in-
cludes candidate architectures built with inverted residual
blocks [50], with varying depth, width, and expansion ra-
tio of the block. We perform an evolutionary search in Al-

5897

Table 1. Quantitative comparison of the training-free NAS methods on NAS-Bench-201 [15]. We categorize the types of zero-cost
proxies into architectural (A), backward (B), and forward (F) ones depending on the inputs of the proxies. We report Kendall’s τ (KT)
and Spearman’s ρ (SPR) computed with all candidate architectures, together with an average runtime. We also provide the average and
standard deviation of test accuracies (Acc.) on each dataset, where they are obtained through 5 random runs. To this end, we randomly
sample 3000 candidate architectures for each run and share the same architecture sets across all the methods. All results are reproduced
with the official codes provided by the authors.

Method Type
CIFAR-10 CIFAR-100 ImageNet16-120 Runtime

(ms/arch)KT SPR Acc. KT SPR Acc. KT SPR Acc.

#Params A 0.578 0.753 93.50 ± 0.17 0.552 0.728 70.63 ± 0.29 0.520 0.691 41.91 ± 0.70 -
FLOPs A 0.578 0.753 93.50 ± 0.17 0.551 0.727 70.63 ± 0.29 0.517 0.691 41.91 ± 0.70 -
GradNorm [1] B 0.357 0.484 90.13 ± 1.00 0.350 0.475 62.95 ± 1.38 0.304 0.412 24.77 ± 4.67 28.8
Grasp [1, 58] B 0.318 0.460 89.49 ± 1.63 0.315 0.453 61.72 ± 2.97 0.282 0.406 27.26 ± 4.92 395.9
Snip [1, 34] B 0.454 0.615 90.32 ± 1.39 0.451 0.609 63.44 ± 2.52 0.400 0.539 28.77 ± 5.74 326.5
Synflow [1, 56] B 0.571 0.769 93.06 ± 0.83 0.565 0.761 69.24 ± 2.07 0.555 0.747 40.51 ± 5.70 53.4
NASWOT [41] F 0.557 0.743 92.67 ± 0.24 0.579 0.769 69.91 ± 0.27 0.573 0.760 44.45 ± 0.83 36.9
TE-NAS [10] B+F 0.536 0.731 92.30 ± 0.33 0.535 0.728 67.87 ± 1.05 0.492 0.680 40.49 ± 2.16 1311.8
ZenNAS [36] F 0.296 0.385 90.30 ± 0.36 0.283 0.361 67.70 ± 1.00 0.303 0.409 39.55 ± 1.27 19.9
GradSign [65] B 0.618 0.809 93.52 ± 0.19 0.594 0.784 70.57 ± 0.31 0.575 0.765 41.89 ± 0.69 1823.9
ZiCo [35] B 0.589 0.784 93.50 ± 0.18 0.590 0.785 70.62 ± 0.26 0.584 0.778 42.04 ± 0.82 372.8
AZ-NAS (Ours) A+B+F 0.741 0.913 93.53 ± 0.15 0.723 0.900 70.75 ± 0.48 0.710 0.886 45.43 ± 0.29 42.7

Ground truth - - - 94.29 ± 0.13 - - 73.25 ± 0.26 - - 47.05 ± 0.30 -

gorithm 1 to find the optimal networks, while setting the
number of iterations T and k to 1e5 and 1024, respectively.
Following [35], we search for networks under FLOPs con-
straints of 450M, 600M, and 1000M. We train the selected
networks on ImageNet [14] using the same training setting
as in [35, 36], and report the top-1 validation accuracy.

AutoFormer. The AutoFormer [9] search space is de-
signed to evaluate the NAS methods specialized to Vision
Transformers (ViTs)1. It contains ViT architectures with
variable factors of depth, embedding dimension, number
of attention heads, and expansion ratio for multi-layer per-
ceptrons. The search space is further divided into the Tiny,
Small, and Base subsets according to the model sizes. We
select a ViT architecture with the best AZ-NAS score for
each subset, among 10000 randomly chosen architectures,
similar to [67]. We train and evaluate the selected ViTs on
ImageNet following the configuration in [9], except for the
one from the Base subset, for which we reduce the number
of training epochs as in [67] to avoid overfitting.

4.2. Results
NAS-Bench-201. We show in Table 1 a quantitative com-
parison between AZ-NAS and the state-of-the-art training-
free NAS methods on NAS-Bench-201 [15]. We report
correlation coefficients between predicted and ground-truth

1We do not apply the progressivity proxy for the AutoFormer search
space, since we empirically find that attention modules in ViTs produce
similar attention values across tokens with Gaussian random inputs at ini-
tialization. In this case, output features of the attention modules thus tend
to become close in a feature space, which could not guarantee the feature
space to be expanded along the depth. Developing zero-cost proxies suit-
able for ViTs could enhance the NAS performance of AZ-NAS for ViTs,
and we leave this for a future work.

rankings of networks, and top-1 test accuracies of se-
lected networks. We can see that AZ-NAS achieves the
best ranking consistency w.r.t the performance in terms of
Kendall’s τ and Spearman’s ρ, outperforming others by sig-
nificant margins across all the datasets. This enables discov-
ering networks that consistently show better performance
compared to the networks chosen from other methods. The
training-free NAS methods in Table 1 focus on capturing a
single network characteristic using either activations or gra-
dients only, except for TE-NAS [10] requiring lots of com-
putational costs. On the contrary, AZ-NAS examines net-
works from various perspectives based on activations, gra-
dients, and FLOPs, providing a comprehensive evaluation
of networks. Moreover, the proposed proxies tailored for
AZ-NAS are computationally efficient and can be computed
simultaneously within a single forward and backward pass.
Note that several training-free NAS methods exploit spe-
cialized techniques for implementation, such as removing
batch normalization [56], analyzing activations associated
only with ReLU non-linearities [10, 41], or iterating multi-
ple forward and/or backward passes [10, 35, 36, 65]. In con-
trast, AZ-NAS performs without additional complex oper-
ations or modifications to network architectures, assessing
the networks efficiently without bells and whistles.
MobileNetV2. We compare in Table 2 the performance
of various NAS methods in terms of the top-1 validation
accuracy on ImageNet [14]. We can observe from the ta-
ble that AZ-NAS provides the best NAS results, achiev-
ing the highest accuracies across all FLOPs constraints. It
even outperforms the training-based NAS approaches (MS
and OS) typically requiring expensive search costs, demon-
strating its effectiveness and efficiency. AZ-NAS also pro-

5898

Table 2. Quantitative comparison of networks chosen by the NAS
methods on ImageNet [14] in terms of the top-1 validation ac-
curacy. We group the networks with similar FLOPs (i.e., 450M,
600M, and 1000M) and categorize the NAS methods into multi-
shot (MS), one-shot (OS), and zero-shot (ZS) ones, according to
the number of networks to train during the search phase. For each
FLOPs constraint, we report the results of AZ-NAS averaged over
three random runs starting from the search phase. All numbers
except ours are taken from [35].

Method FLOPs Top-1 acc. Type Search cost
(GPU days)

450M
NASNet-B [69] 488M 72.8 MS 1800
CARS-D [60] 496M 73.3 MS 0.4
BN-NAS [8] 470M 75.7 MS 0.8
OFA [6] 406M 77.7 OS 50
RLNAS [64] 473M 75.6 OS -
DONNA [43] 501M 78.0 OS 405
Params 451M 63.5 ZS 0.02
ZiCo [35] 448M 78.1 ZS 0.4
AZ-NAS (Ours) 462M ± 1.5M 78.6 ± 0.2 ZS 0.4

600M
PNAS [37] 588M 74.2 MS 224
CARS-I [60] 591M 75.2 MS 0.4
DARTS [38] 574M 73.3 OS 4
ProxylessNAS [5] 595M 76.0 OS 8.3
OFA [6] 662M 78.7 OS 50
RLNAS [64] 597M 75.9 OS -
DONNA [43] 599M 78.4 OS 405
ZenNAS [36] 611M 79.1 ZS 0.5
ZiCo [35] 603M 79.4 ZS 0.4
AZ-NAS (Ours) 615M ± 2.2M 79.9 ± 0.3 ZS 0.6

1000M
sharpDARTS [28] 950M 76.0 OS -
ZenNAS [36] 934M 80.8 ZS 0.5
ZiCo [35] 1005M 80.5 ZS 0.4
AZ-NAS (Ours) 1022M ± 5.1M 81.1 ± 0.1 ZS 0.7

vides high-performing networks consistently over multi-
ple random runs with different seed numbers. Note that
the previous training-free NAS methods [35, 36] apply an
evolutionary search using MobileNetV2-styled networks,
while removing residual connections. They focus on an-
alyzing vanilla convolutional neural networks [36] during
the search, where multiple convolutional layers are sim-
ply stacked without additional connections. The residual
connections are then restored to train selected networks,
potentially leading to a discrepancy between the expected
and final performance at the search and training phases,
respectively. In contrast, AZ-NAS does not rely on such
techniques, improving the practicality and avoiding the dis-
crepancy issue. We additionally provide in the supplement
a comprehensive comparison with the training-free NAS
methods [35, 36] in terms of reproducibility and a search
cost, under the fair settings for network search and training.

AutoFormer. To validate the generalization ability of
AZ-NAS on ViT architectures, we perform experiments on
the AutoFormer [9] search space. We provide in Table 3 a

Table 3. Quantitative comparison for the AutoFormer [9] search
space. We report top-1 validation accuracies of selected networks
on ImageNet [14]. All numbers are taken from corresponding pa-
pers, except for #Params and FLOPs of TF-TAS [67]. We measure
these numbers using the same source code as AutoFormer for a fair
comparison.

Method #Params FLOPs Top-1 acc. Type Search cost
(GPU days)

Tiny

AutoFormer [9] 5.70M 1.30G 74.7 OS 24
AZ-NAS (Ours) 5.92M 1.38G 76.1 ZS 0.03
TF-TAS [67] 6.20M 1.43G 75.3 ZS 0.5
AZ-NAS (Ours) 6.16M 1.43G 76.4 ZS 0.04

Small

AutoFormer [9] 22.9M 5.10G 81.7 OS 24
AZ-NAS (Ours) 23.0M 4.94G 82.0 ZS 0.06
TF-TAS [67] 23.9M 5.16G 81.9 ZS 0.5
AZ-NAS (Ours) 23.8M 5.13G 82.2 ZS 0.07

Base

AutoFormer [9] 54.0M 11.0G 82.4 OS 24
AZ-NAS (Ours) 53.7M 11.4G 82.1 ZS 0.11
TF-TAS [67] 56.5M 11.9G 82.2 ZS 0.5
AZ-NAS (Ours) 54.1M 11.5G 82.3 ZS 0.17

quantitative comparison to the state-of-the-art NAS meth-
ods [9, 67], specially designed for ViTs, in terms of the val-
idation accuracy on ImageNet [14]. For each subset of the
search space (i.e., Tiny, Small, and Base), we find two ViTs
with the #Params constraints similar to AutoFormer [9] and
TF-TAS [67], separately, for a fair comparison. We can see
that AZ-NAS discovers ViTs showing better performance
compared to other methods in most cases, with significantly
lower search costs. This suggests that our method is not
limited to a specific type of network architecture, demon-
strating the generalization ability of our proxies.

4.3. Discussion
Ablation study. We provide in Table 4 an ablation study
on each component of AZ-NAS. We evaluate the NAS per-
formance on NAS-Bench-201 [15] using various combina-
tions of the proposed proxies and the ranking aggregation
methods. We summarize our findings as follows: (1) We
can see from 1⃝ to 4⃝ in Table 4 that exploiting a single
proxy does not provide satisfactory results. Aggregating
more proxies improves the NAS performance substantially,
outperforming most state-of-the-art NAS methods in Ta-
ble 1, even when two of the proxies in AZ-NAS are selected
in 5⃝ to 8⃝. These results demonstrate the effectiveness of
assembling various zero-cost proxies, confirming the im-
portance of a comprehensive evaluation from various per-
spectives for training-free NAS. (2) By comparing 11⃝ and
12⃝ (or 13⃝ and 14⃝), we can clearly see that the non-linear
ranking aggregation successfully boosts the ranking consis-
tency w.r.t the performance. The aggregation is particularly
useful with more proxies, verifying its significance in AZ-

5899

Table 4. Ablation study for the zero-cost proxies of AZ-NAS on
NAS-Bench-201 [15]. When multiple proxies are used, we inte-
grate them into the final scores using either the linear (L) or non-
linear (NL) ranking aggregation (RA) methods. We compare the
ranking consistency w.r.t the performance in terms of Kendall’s τ .

sE sP sT sC RA CIFAR-10 CIFAR-100 IN16-120

1⃝ ✓ - 0.569 0.563 0.506
2⃝ ✓ - 0.521 0.508 0.489
3⃝ ✓ - 0.349 0.353 0.407
4⃝ ✓ - 0.578 0.551 0.517

5⃝ ✓ ✓ NL 0.601 0.590 0.547
6⃝ ✓ ✓ NL 0.635 0.631 0.639
7⃝ ✓ ✓ NL 0.674 0.653 0.601
8⃝ ✓ ✓ NL 0.629 0.615 0.644

9⃝ ✓ ✓ ✓ NL 0.679 0.673 0.669
10⃝ ✓ ✓ ✓ NL 0.683 0.661 0.616
11⃝ ✓ ✓ ✓ NL 0.731 0.714 0.708
12⃝ ✓ ✓ ✓ L 0.706 0.692 0.678

13⃝ ✓ ✓ ✓ ✓ NL 0.741 0.723 0.710
14⃝ ✓ ✓ ✓ ✓ L 0.697 0.681 0.663

s s s s

s

s

s

s

1.00 0.60 0.17 0.44

0.60 1.00 0.22 0.38

0.17 0.22 1.00 0.15

0.44 0.38 0.15 1.00 0.2

0.4

0.6

0.8

1.0

Figure 3. Correlation analysis on the zero-cost proxies of AZ-
NAS. We report Kendall’s τ between the estimated network rank-
ings on ImageNet16-120 of NAS-Bench-201 [15].

NAS. (3) The trainability proxy alone might not be effective
as shown in 3⃝, since it mainly focuses on the stable gradi-
ent propagation, without considering e.g., a network’s ca-
pacity to learn. Nevertheless, we can see from 5⃝ to 11⃝
that the trainability proxy helps others to achieve strong
ranking consistency, especially on ImageNet16-120. For
an in-depth analysis, we show in Fig. 3 how the proposed
proxies are correlated with each other on ImageNet16-120.
We can see that the trainability proxy is less correlated with
others. Based on these observations, we can conclude that
coupling less correlated proxies improves the NAS perfor-
mance more significantly (e.g., the results on ImageNet16-
120 in 6⃝ and 8⃝). This is because such proxies tend to
capture unique network characteristics, making them mutu-
ally complementary and leading to a synergy effect. AZ-
NAS fully leverages the complementary features among the
proxies, boosting the NAS performance drastically.

Assembling other zero-cost proxies. AZ-NAS is built
upon the idea that assembling various zero-cost proxies,
similar to ensemble learning, could bring better perfor-
mance for training-free NAS. To further verify this idea,
we incorporate the proposed proxies into existing ones [1,
35, 56] and show in Table 5 the results on NAS-Bench-
201 [15]. We can see that an ensemble of our zero-cost

Table 5. Quantitative comparison of incorporating our zero-cost
proxies with existing ones. We adopt our non-linear ranking ag-
gregation method to estimate the predicted network rankings. We
report the correlation coefficients (Kendall’s τ) between predicted
and ground-truth network rankings on NAS-Bench-201 [15], to-
gether with average runtimes.

Aggregated zero-cost proxies CIFAR-10 CIFAR-100 IN16-120 Runtime
(ms/arch)

sC 0.578 0.551 0.517 -
sC + sE 0.674 0.653 0.601 22.3
sC + sE + sT 0.731 0.714 0.708 42.7
sC + sE + sT + sP 0.741 0.723 0.710 42.7

ZiCo [35] 0.589 0.590 0.584 372.8
ZiCo + sC 0.632 0.615 0.595 372.8
ZiCo + sC + sE 0.733 0.717 0.678 395.1
ZiCo + sC + sE + sT 0.761 0.749 0.743 415.5
ZiCo + sC + sE + sT + sP 0.773 0.757 0.747 415.5

Synflow [1, 56] 0.571 0.565 0.555 53.4
Synflow + sC 0.636 0.616 0.594 53.4
Synflow + sC + sE 0.741 0.721 0.681 75.7
Synflow + sC + sE + sT 0.768 0.753 0.746 96.1
Synflow + sC + sE + sT + sP 0.776 0.758 0.747 96.1

proxies and the previous one improves the ranking consis-
tency w.r.t the performance consistently, suggesting that the
basic idea of AZ-NAS is also applicable to other proxies.
Similar to the observation in the ablation study, we can ob-
tain better ranking consistency by exploiting more proxies.
In particular, we can further boost the performance in terms
of Kendall’s τ by aggregating all of our proxies and the pre-
vious one, at the cost of the additional runtime.

5. Conclusion
We have presented AZ-NAS, a training-free NAS approach
that assembles various zero-cost proxies to substantially en-
hance the NAS performance. To this end, we have designed
novel zero-cost proxies from distinct and complementary
perspectives. We have also proposed to integrate them into
a final score effectively with a non-linear ranking aggrega-
tion technique. Extensive experiments clearly demonstrate
the efficiency and efficacy of AZ-NAS, surpassing previ-
ous training-free NAS methods with a reasonably fast run-
time. We expect that AZ-NAS can provide a plug-and-play
solution, allowing other NAS methods to maximize the per-
formance by seamlessly incorporating our zero-cost proxies
during the search, with a minimal increase in the computa-
tional cost.

Acknowledgments. This work was partly supported by
IITP grants funded by the Korea government (MSIT)
(No.RS-2022-00143524, Development of Fundamental
Technology and Integrated Solution for Next-Generation
Automatic Artificial Intelligence System, No.2022-0-
00124, Development of Artificial Intelligence Technol-
ogy for Self-Improving Competency-Aware Learning Ca-
pabilities) and the KIST Institutional Program (Project
No.2E31051-21-203).

5900

References
[1] Mohamed S. Abdelfattah, Abhinav Mehrotra, Łukasz

Dudziak, and Nicholas D. Lane. Zero-cost proxies for
lightweight NAS. In Int. Conf. Learn. Represent., 2021. 1,
2, 3, 5, 6, 8

[2] Haim Avron and Sivan Toledo. Randomized algorithms for
estimating the trace of an implicit symmetric positive semi-
definite matrix. Journal of the ACM (JACM), 58(2):1–34,
2011. 4

[3] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. Designing neural network architectures using rein-
forcement learning. In Int. Conf. Learn. Represent., 2017.
1

[4] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay
Vasudevan, and Quoc Le. Understanding and simplifying
one-shot architecture search. In Int. Conf. Mach. Learn.,
pages 550–559, 2018. 2

[5] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct
neural architecture search on target task and hardware. In
Int. Conf. Learn. Represent., 2019. 2, 3, 7

[6] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-All: Train one network and specialize
it for efficient deployment. In Int. Conf. Learn. Represent.,
2020. 1, 2, 7

[7] Xingyu Cai, Jiaji Huang, Yuchen Bian, and Kenneth Church.
Isotropy in the contextual embedding space: Clusters and
manifolds. In Int. Conf. Learn. Represent., 2021. 3

[8] Boyu Chen, Peixia Li, Baopu Li, Chen Lin, Chuming Li,
Ming Sun, Junjie Yan, and Wanli Ouyang. BN-NAS: Neural
architecture search with batch normalization. In Int. Conf.
Comput. Vis., pages 307–316, 2021. 7

[9] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin
Ling. AutoFormer: Searching transformers for visual recog-
nition. In Int. Conf. Comput. Vis., pages 12270–12280, 2021.
2, 5, 6, 7

[10] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural
architecture search on ImageNet in four GPU hours: A theo-
retically inspired perspective. In Int. Conf. Learn. Represent.,
2021. 1, 2, 3, 4, 5, 6

[11] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A
downsampled variant of ImageNet as an alternative to the
CIFAR datasets. arXiv preprint arXiv:1707.08819, 2017. 5

[12] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. FairNAS: Re-
thinking evaluation fairness of weight sharing neural archi-
tecture search. In Int. Conf. Comput. Vis., pages 12239–
12248, 2021. 2

[13] Michael Cogswell, Faruk Ahmed, Ross Girshick, Larry Zit-
nick, and Dhruv Batra. Reducing overfitting in deep net-
works by decorrelating representations. In Int. Conf. Learn.
Represent., 2016. 3

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In IEEE Conf. Comput. Vis. Pattern Recog., pages
248–255, 2009. 6, 7

[15] Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the
scope of reproducible neural architecture search. In Int. Conf.
Learn. Represent., 2020. 1, 2, 3, 4, 5, 6, 7, 8

[16] Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami,
Michael W Mahoney, and Kurt Keutzer. HAWQ-V2: Hes-
sian aware trace-weighted quantization of neural networks.
In Adv. Neural Inform. Process. Syst., pages 18518–18529,
2020. 4

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In Int. Conf. Learn.
Represent., 2021. 1, 3

[18] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In AIS-
TATS, pages 249–256, 2010. 4

[19] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network. In
Adv. Neural Inform. Process. Syst., 2015. 2

[20] Boris Hanin and David Rolnick. Complexity of linear re-
gions in deep networks. In Int. Conf. Mach. Learn., pages
2596–2604, 2019. 2, 3

[21] Boris Hanin and David Rolnick. Deep ReLU networks have
surprisingly few activation patterns. In Adv. Neural Inform.
Process. Syst., 2019. 2

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on ImageNet classification. In Int. Conf. Comput. Vis.,
pages 1026–1034, 2015. 4

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 770–778, 2016. 1, 3, 4

[24] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. MobileNets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 1

[25] Shoukang Hu, Ruochen Wang, Hong Lanqing, Zhenguo Li,
Cho-Jui Hsieh, and Jiashi Feng. Generalizing few-shot NAS
with gradient matching. In Int. Conf. Learn. Represent.,
2022. 2

[26] Tianyu Hua, Wenxiao Wang, Zihui Xue, Sucheng Ren, Yue
Wang, and Hang Zhao. On feature decorrelation in self-
supervised learning. In Int. Conf. Comput. Vis., pages 9598–
9608, 2021. 3

[27] Lei Huang, Dawei Yang, Bo Lang, and Jia Deng. Decorre-
lated batch normalization. In IEEE Conf. Comput. Vis. Pat-
tern Recog., pages 791–800, 2018. 3

[28] Andrew Hundt, Varun Jain, and Gregory D Hager. sharp-
DARTS: Faster and more accurate differentiable architecture
search. arXiv preprint arXiv:1903.09900, 2019. 7

[29] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neu-
ral tangent kernel: Convergence and generalization in neural
networks. In Adv. Neural Inform. Process. Syst., 2018. 2, 3

[30] Sham M Kakade, Karthik Sridharan, and Ambuj Tewari. On
the complexity of linear prediction: Risk bounds, margin
bounds, and regularization. In Adv. Neural Inform. Process.
Syst., 2008. 2

5901

[31] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical report, 2009.
5

[32] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman
Bahri, Roman Novak, Jascha Sohl-Dickstein, and Jeffrey
Pennington. Wide neural networks of any depth evolve as
linear models under gradient descent. In Adv. Neural Inform.
Process. Syst., 2019. 3

[33] Junghyup Lee, Dohyung Kim, and Bumsub Ham. Network
quantization with element-wise gradient scaling. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 6448–6457, 2021.
4

[34] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr.
SNIP: Single-shot network pruning based on connection sen-
sitivity. In Int. Conf. Learn. Represent., 2019. 1, 2, 3, 4, 5,
6

[35] Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and Radu
Marculescu. ZiCo: Zero-shot NAS via inverse coefficient of
variation on gradients. In Int. Conf. Learn. Represent., 2023.
1, 2, 3, 4, 5, 6, 7, 8

[36] Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu
Sun, Qi Qian, Hao Li, and Rong Jin. Zen-NAS: A zero-shot
nas for high-performance image recognition. In Int. Conf.
Comput. Vis., pages 347–356, 2021. 1, 2, 3, 5, 6, 7

[37] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. In Eur. Conf. Comput. Vis., pages 19–34, 2018. 7

[38] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In Int. Conf. Learn. Rep-
resent., 2019. 1, 2, 7

[39] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Int. Conf. Comput. Vis., pages 10012–10022, 2021. 1

[40] Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karni-
adakis. Dying ReLU and initialization: Theory and numeri-
cal examples. arXiv preprint arXiv:1903.06733, 2019. 3

[41] Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crow-
ley. Neural architecture search without training. In Int. Conf.
Mach. Learn., pages 7588–7598, 2021. 1, 2, 3, 6

[42] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. In Int. Conf. Learn. Represent., 2018. 4

[43] Bert Moons, Parham Noorzad, Andrii Skliar, Giovanni Mar-
iani, Dushyant Mehta, Chris Lott, and Tijmen Blankevoort.
Distilling optimal neural networks: Rapid search in diverse
spaces. In Int. Conf. Comput. Vis., pages 12229–12238,
2021. 7

[44] Xuefei Ning, Changcheng Tang, Wenshuo Li, Zixuan Zhou,
Shuang Liang, Huazhong Yang, and Yu Wang. Evaluat-
ing efficient performance estimators of neural architectures.
In Adv. Neural Inform. Process. Syst., pages 12265–12277,
2021. 1, 2, 3, 5

[45] Roman Novak, Jascha Sohl-Dickstein, and Samuel S
Schoenholz. Fast finite width neural tangent kernel. In Int.
Conf. Mach. Learn., pages 17018–17044, 2022. 3

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An
imperative style, high-performance deep learning library. In
Adv. Neural Inform. Process. Syst., 2019. 4

[47] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameters
sharing. In Int. Conf. Mach. Learn., pages 4095–4104, 2018.
1

[48] Xianbiao Qi, Jianan Wang, Yihao Chen, Yukai Shi, and Lei
Zhang. LipsFormer: Introducing lipschitz continuity to vi-
sion transformers. In Int. Conf. Learn. Represent., 2023. 4

[49] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In AAAI, pages 4780–4789, 2019. 1, 2

[50] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. MobileNetV2: Inverted
residuals and linear bottlenecks. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 4510–4520, 2018. 1, 2, 3, 4, 5

[51] Xuan Shen, Yaohua Wang, Ming Lin, Yilun Huang, Hao
Tang, Xiuyu Sun, and Yanzhi Wang. DeepMAD: Mathemat-
ical architecture design for deep convolutional neural net-
work. In IEEE Conf. Comput. Vis. Pattern Recog., pages
6163–6173, 2023. 4

[52] Yao Shu, Shaofeng Cai, Zhongxiang Dai, Beng Chin Ooi,
and Bryan Kian Hsiang Low. NASI: Label-and data-agnostic
neural architecture search at initialization. In Int. Conf.
Learn. Represent., 2022. 1, 2

[53] Yao Shu, Zhongxiang Dai, Zhaoxuan Wu, and Bryan
Kian Hsiang Low. Unifying and boosting gradient-based
training-free neural architecture search. In Adv. Neural In-
form. Process. Syst., pages 33001–33015, 2022. 2

[54] Zihao Sun, Yu Sun, Longxing Yang, Shun Lu, Jilin Mei,
Wenxiao Zhao, and Yu Hu. Unleashing the power of gra-
dient signal-to-noise ratio for zero-shot NAS. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 5763–5773, 2023. 2

[55] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model
scaling for convolutional neural networks. In Int. Conf.
Mach. Learn., pages 6105–6114, 2019. 4

[56] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya
Ganguli. Pruning neural networks without any data by it-
eratively conserving synaptic flow. In Adv. Neural Inform.
Process. Syst., pages 6377–6389, 2020. 1, 2, 3, 4, 5, 6, 8

[57] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Adv. Neural Inform.
Process. Syst., 2017. 3

[58] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking
winning tickets before training by preserving gradient flow.
In Int. Conf. Learn. Represent., 2020. 1, 2, 3, 4, 5, 6

[59] Huan Xiong, Lei Huang, Mengyang Yu, Li Liu, Fan Zhu, and
Ling Shao. On the number of linear regions of convolutional
neural networks. In Int. Conf. Mach. Learn., pages 10514–
10523, 2020. 3

[60] Zhaohui Yang, Yunhe Wang, Xinghao Chen, Boxin Shi,
Chao Xu, Chunjing Xu, Qi Tian, and Chang Xu. CARS:
Continuous evolution for efficient neural architecture search.

5902

In IEEE Conf. Comput. Vis. Pattern Recog., pages 1829–
1838, 2020. 7

[61] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W
Mahoney. PyHessian: Neural networks through the lens of
the Hessian. In Int. Conf. Learn. Represent. Workshop, 2020.
4

[62] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real,
Kevin Murphy, and Frank Hutter. NAS-Bench-101: Towards
reproducible neural architecture search. In Int. Conf. Mach.
Learn., pages 7105–7114, 2019. 2

[63] Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, and
Steven Su. Overcoming multi-model forgetting in one-shot
NAS with diversity maximization. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 7809–7818, 2020. 2

[64] Xuanyang Zhang, Pengfei Hou, Xiangyu Zhang, and Jian
Sun. Neural architecture search with random labels. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 10907–10916,
2021. 7

[65] Zhihao Zhang and Zhihao Jia. GradSign: Model perfor-
mance inference with theoretical insights. In Int. Conf.
Learn. Represent., 2022. 2, 4, 5, 6

[66] Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fon-
seca, and Tian Guo. Few-shot neural architecture search. In
Int. Conf. Mach. Learn., pages 12707–12718, 2021. 1, 2

[67] Qinqin Zhou, Kekai Sheng, Xiawu Zheng, Ke Li, Xing Sun,
Yonghong Tian, Jie Chen, and Rongrong Ji. Training-free
transformer architecture search. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 10894–10903, 2022. 6, 7

[68] Barret Zoph and Quoc Le. Neural architecture search with
reinforcement learning. In Int. Conf. Learn. Represent.,
2017. 2

[69] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 8697–8710, 2018. 2, 7

5903

