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Abstract

Pseudo-label-based semi-supervised learning (SSL) al-
gorithms trained on a class-imbalanced set face two cas-
cading challenges: 1) Classifiers tend to be biased towards
majority classes, and 2) Biased pseudo-labels are used for
training. It is difficult to appropriately re-balance the clas-
sifiers in SSL because the class distribution of an unlabeled
set is often unknown and could be mismatched with that of
a labeled set. We propose a novel class-imbalanced SSL al-
gorithm called class-distribution-mismatch-aware debias-
ing (CDMAD). For each iteration of training, CDMAD first
assesses the classifier’s biased degree towards each class
by calculating the logits on an image without any patterns
(e.g., solid color image), which can be considered irrelevant
to the training set. CDMAD then refines biased pseudo-
labels of the base SSL algorithm by ensuring the classifier’s
neutrality. CDMAD uses these refined pseudo-labels during
the training of the base SSL algorithm to improve the quality
of the representations. In the test phase, CDMAD similarly
refines biased class predictions on test samples. CDMAD
can be seen as an extension of post-hoc logit adjustment
to address a challenge of incorporating the unknown class
distribution of the unlabeled set for re-balancing the biased
classifier under class distribution mismatch. CDMAD en-
sures Fisher consistency for the balanced error. Extensive
experiments verify the effectiveness of CDMAD.

1. Introduction

Classifiers trained on a class-imbalanced set suffer from
being biased toward the majority classes. Under semi-
supervised learning (SSL) settings, classifiers of pseudo-
label-based algorithms tend to be further biased because of
the use of biased pseudo-labels for training. The use of bi-
ased pseudo-labels also decreases the quality of representa-
tions. This problem becomes more serious when the class
distributions of the labeled and unlabeled sets differ signifi-
cantly. In fact, recent SSL algorithms, such as ReMixMatch

[1] and CoMatch [18], rely on the assumption that the class
distribution of the unlabeled set is the same as that of the la-
beled set and cannot consider a potential class distribution
mismatch between the labeled and unlabeled sets.

Recently, many class imbalanced SSL (CISSL) algo-
rithms [7, 12, 15, 17, 21, 26] have been proposed. However,
Fan et al. [7], Lee et al. [17], Wei et al. [26] assumed that the
class distribution of the unlabeled set is known and the same
as that of the labeled set, although the class distribution of
the unlabeled set can be unknown in practice (e.g., STL-10
[2]) and training sets comprising labeled and unlabeled sets
collected from different periods are likely to have a class
distribution mismatch. Kim et al. [12], Lai et al. [15], Oh
et al. [21] did not make an assumption of the same class dis-
tributions for labeled and unlabeled sets in the main training
stage. However, after the main training stage, they addi-
tionally used the re-balancing technique of Classifier Re-
training (cRT) [11] or post-hoc logit-adjustment (LA) [20],
which were proposed for fully supervised class-imbalanced
learning. When using cRT for CISSL, there are disadvan-
tages that the classifier cannot be learned interactively with
representations, and only the labeled set is used for training
the classifier [17]. Using LA for CISSL may not re-balance
the classifier to an appropriate degree when the class distri-
bution of the unlabeled set is unknown and differs from that
of the labeled set, because LA can not consider the unknown
class distribution of the unlabeled set.

We propose a CISSL algorithm, class-distribution-
mismatch-aware debiasing (CDMAD), which effectively
mitigates class imbalance in SSL even under severe class
distribution mismatch between labeled and unlabeled sets.
The key idea of CDMAD is to consider the classifier’s bi-
ased degree towards each class for refining both the biased
pseudo-labels of the base SSL algorithm and class predic-
tions on test samples. To measure the classifier’s biased
degree, we utilize the class prediction on an input that is
reasonably assumed to be irrelevant to the training set.

In general, a trained classifier predicts a class of a new
sample based on the learned features. Therefore, for an im-
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(a) FixMatch (b) ReMixMatch

Figure 1. Class probabilities on an image without any patterns.

age irrelevant to the learned features, the predicted class
probabilities are expected to be uniform across classes.
However, this may not be true when the training set is class-
imbalanced because the classifier tends to be biased towards
the majority classes. Fig. 1 illustrates the class probabilities
predicted on an image without any patterns (white image)
using FixMatch [22] and ReMixMatch [1], base SSL algo-
rithms of the recent CISSL studies, trained on CIFAR-10
under γl = γu = 1 (class-balanced set), γl = 100 and
γu = 1 (class-imbalanced set), and γl = γu = 100 (class-
imbalanced set), where γl and γu denote the class imbal-
anced ratios for the labeled and unlabeled sets (formally
defined in Sec. 3.1), respectively. The classifiers trained
on the class-imbalanced sets produced highly nonuniform
class probabilities for the white image, whereas they pro-
duced nearly uniform class probabilities for the same input
when trained on the class-balanced set. Here, it may be rea-
sonable to assume that the solid color image does not have
the features learned from the training set. Then, the class
probabilities for the solid color image can be thought of as
predicted based solely on the classifier’s biased degree to-
wards each class, regardless of the learned features.

Motivated by the above finding, CDMAD measures the
classifier’s biased degree by calculating logits on a solid
color image for each iteration of training. Then, CDMAD
refines the biased pseudo-labels of a base SSL algorithm
by adjusting for the measured bias of the classifier in the
logits for unlabeled samples. The refined pseudo-labels are
used to train the base SSL algorithm, which leads to the
mitigation of class imbalance and improved quality of the
representations. After training is completed, CDMAD sim-
ilarly refines the biased class predictions on test samples by
adjusting for the measured bias of the classifier in the log-
its for test samples. CDMAD can appropriately re-balance
the classifier even under severe class distribution mismatch
between labeled and unlabeled sets because the class distri-
butions of both labeled and unlabeled sets can be implicitly
considered when measuring the classifier’s biased degree.
In Sec. 3.4, we analyze that CDMAD can be viewed as an
extension of LA, incorporating awareness of class distribu-
tion mismatch. Similar to LA, CDMAD is Fisher consistent
for minimizing the balanced error [19].

Experimental results on four benchmark datasets ver-
ify that CDMAD outperforms baseline CISSL algorithms
in both scenarios where the class distributions of the la-
beled and unlabeled sets either match or mismatch. Further-
more, through qualitative analysis and an ablation study, we
demonstrate the effectiveness of each component of CD-
MAD. Unlike previous CISSL studies, CDMAD does not
require additional parameters or training stages in compar-
ison to the base SSL algorithm. Additionally, it can be
implemented by simply adding a few lines of code into
the existing code of the base SSL algorithms as presented
in Appendix A. The code for the CDMAD is available at
https://github.com/LeeHyuck/CDMAD.

2. Related Works
CReST [26] uses unlabeled samples predicted as the mi-
nority classes more frequently than those predicted as the
majority classes for iterative self-training. ABC [17] and
CoSSL [7] use an auxiliary classifier and train the classifier
to be balanced. CoSSL generates pseudo-labels for base
SSL algorithms using the balanced classifier. These stud-
ies assume that the class distribution of the unlabeled set is
known and same as that of the labeled set. DARP [12] and
DASO [21] refine biased pseudo-labels by iteratively solv-
ing a convex optimization problem and blending semantic
pseudo-labels and linear pseudo-labels, respectively. SAW
[15] mitigates class imbalance using smoothed reweighting
based on the number of pseudo-labels belonging to each
class. These studies additionally use CIL techniques, such
as cRT [11] and LA [20], after the main training stage.
Adsh [8] and InPL [28] use pseudo-labels based on class-
dependent confidence thresholds and energy score thresh-
old, respectively. DebiasPL [24] debiases pseudo-labels by
mitigating the classifier response bias based on counterfac-
tual reasoning. UDAL [16] unifies distribution alignment
technique [1] and logit-adjusted loss [20] to progressively
mitigate class-imbalance. L2AC [23] trains a bias adaptive
classifier composed of a bias attractor and a linear classifier
with bi-level optimization. ACR [27] dynamically refines
pseudo-labels using an adaptive consistency regularizer that
estimates the true class distribution of unlabeled set.

3. Methodology
3.1. Problem setup

Suppose that we have a training set with labeled set
X = {(xn, yn) : n ∈ (1, . . . , N)} and unlabeled set U =
{(um) : m ∈ (1, . . . ,M)}, where xn ∈ Rd and yn ∈ [C] =
{1, . . . , C} denote the nth labeled sample and correspond-
ing label, respectively, and um ∈ Rd denotes the mth un-
labeled sample. We denote the number of labeled and un-
labeled samples of class c as Nc and Mc, respectively, i.e.,∑C

c=1 Nc = N and
∑C

c=1 Mc = M , where Mc is challeng-
ing to know in a realistic scenario. The C classes are sorted
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in descending order according to the cardinality of labeled
samples, i.e., N1 ≥ · · · ≥ NC . The ratio of the class imbal-
ance of labeled and unlabeled sets are γl =

N1

NC
and γu =

M1

MC
, respectively, where γl ≫ 1 or γu ≫ 1 in the class-

imbalanced training set. When Mc is unknown, γu will be
also unknown and can differ from γl. That is, the class dis-
tribution of the unlabeled set can be mismatched with that
of the labeled set. For each iteration of training, we sam-
ple minibatches MX = {(xm

b , ymb ) : b ∈ (1, . . . , B)} ⊂ X
and MU = {(um

b ) : b ∈ (1, . . . , µB)} ⊂ U from the train-
ing set, where B denotes the minibatch size and µ denotes
the relative size of MU to MX . Using MX and MU for
training, we aim to learn a classifier fθ : Rd → {1, . . . , C}
that effectively classifies samples in a test set X test =
{(xtest

k , ytestk ) : k ∈ (1, . . . ,K)}, where θ denotes param-
eters of base SSL algorithm. We denote the output logits of
fθ on an input as gθ (·) ∈ RC , i.e, fθ (·) = argmaxc gθ (·)c,
where (·)c denotes the cth element.

3.2. Base SSL algorithms

The proposed algorithm uses FixMatch [22] or ReMix-
Match [1] as its base SSL algorithm, following other CISSL
studies. FixMatch and ReMixMatch use hard or sharp-
ened pseudo-labels for entropy minimization and strong
data augmentation techniques [4, 6] for consistency regular-
ization. Specifically, FixMatch first predicts the class proba-
bility of weakly augmented unlabeled data point α (um

b ) as
qb = Pθ (y|α (um

b )) and then generates hard pseudo-label
q̂b=argmaxc (qb,c), where Pθ (y|·) = ϕ (gθ (·)) for softmax
activation function ϕ. For consistency regularization, Fix-
Match uses hard pseudo-label q̂b only when maxc (qb,c) ≥
τ , where τ denotes a predefined confidence threshold, to
improve the quality of the pseudo-labels used for training.

ReMixMatch similarly produces qb and aligns the dis-
tribution of qb to the class distribution of the labeled set
Pl (y) as q̃b = Normalize (qb × Pl (y) /q (y)), where
Normalize (x)i = xi/

∑
j xj and q (y) denotes the mov-

ing average of the class probabilities predicted over the last
128 unlabeled minibatches. Then, ReMixMatch sharpens
the pseudo-label as q̄b = Normalize

(
q̃b

1/T
)

, where 1/T

is the sharpening temperature, 0 < T < 1. With the
sharpened pseudo-label q̄b, ReMixMatch conducts consis-
tency regularization by encouraging the class prediction on
A (um

b ) to be consistent with q̄b. ReMixMatch also con-
ducts Mixup regularization and self-supervised learning by
rotating unlabeled samples [13]. Data augmentation tech-
niques α (·) and A (·) are described in detail in Appendix
C. We express the training losses of FixMatch lossF and
ReMixMatch lossR on MX and MU as:

lossF (MX ,MU , q̂, τ ; θ) , (1)

lossR (MX ,MU , q̄; θ) , (2)

where q̂ and q̄ are concatenations of q̂b and q̄b, b = 1, . . . ,
µB, respectively. The losses are detailed in Appendix D.

The proposed algorithm uses FixMatch or ReMixMatch
as its base SSL algorithm with some modifications as fol-
lows: 1) The proposed algorithm does not use hard or sharp-
ened pseudo-labels because entropy minimization of class
predictions may cause the classifier to be biased towards
certain classes [17]. 2) The proposed algorithm does not
use confidence threshold τ for FixMatch, enabling the uti-
lization of all unlabeled samples. A potential limitation of
utilizing inaccurate pseudo-labels can be alleviated by re-
fining them, as discussed in Sec. 3.3. 3) The proposed al-
gorithm does not employ the distribution alignment tech-
nique for ReMixMatch when the class distribution of the
unlabeled set is unknown. This is because the labeled and
unlabeled sets can potentially have different class distribu-
tions while the distribution alignment technique aligns the
distribution of pseudo-labels with the class distribution of
the labeled set. This modification helps prevent the gener-
ation of low-quality pseudo-labels in situations where there
is a severe class distribution mismatch between the labeled
and unlabeled sets, as discussed in Sec. 4.2.

3.3. CDMAD

Refinement of pseudo-labels during training
To refine a pseudo-label qb generated by FixMatch or

ReMixMatch, CDMAD first calculates the logits on a
weakly augmented unlabeled sample, gθ (α (um

b )), and the
logits on an image without any patterns gθ (I), where I de-
notes an image without any patterns (solid color image).
The logits on a solid color image gθ (I) is considered the
classifier’s biased degree towards each class regardless of
the learned features, as discussed in Sec. 1. Then, CDMAD
adjusts for the classifier’s biased degree, gθ (I), in the logits
gθ (α (um

b )), by simple subtraction as follows:

g∗θ (α (um
b )) = gθ (α (um

b ))− gθ (I) , (3)

where g∗θ (·) denotes the refined logits, which are considered
to be calculated based only on the learned features. With
g∗θ (α (um

b )), the refined pseudo-label q∗b is obtained as:

q∗b = ϕ (g∗θ (α (um
b ))) . (4)

As noted in Sec. 3.2, CDMAD does not use the distri-
bution alignment technique for ReMixMatch. Instead, CD-
MAD adds the supervised loss for weakly augmented la-
beled sample Sup(MX ; θ) into the training loss of ReMix-
Match to enhance the classifier’s familiarity with labeled
samples. This can effectively improve the quality of
pseudo-labels when the class distributions of labeled and
unlabeled sets mismatch, as discussed in Sec. 4.2. The train-
ing losses for FixMatch and ReMixMatch with CDMAD,
denoted by loss∗F and loss∗R, respectively, are expressed as:
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Figure 2. Pseudo-label refinement process using CDMAD.

loss∗F = lossF (MX ,MU , q∗, 0; θ) , (5)

loss∗R = lossR (MX ,MU , q∗; θ) + Sup(MX ; θ), (6)

where lossF and lossR are from Eq. (1) and Eq. (2), and q∗

is the concatenation of the q∗b . Fig. 2 illustrates the pseudo-
label refinement process. By using the refined pseudo-
labels during the training of the base SSL algorithm, the
quality of representations is improved.

CDMAD can effectively refine the pseudo-labels even
under severe class distribution mismatch between the la-
beled and unlabeled sets because classifier’s biased degree
gθ (I) is affected by the class distributions of both sets.
Unlike the previous CISSL studies, CDMAD does not re-
quire additional parameters for an auxiliary classifier or ad-
ditional training stages. CDMAD can be implemented by
adding a few lines of code as presented in Appendix A.

Refinement of biased class predictions during testing
Even with all biased pseudo-labels perfectly refined dur-

ing the training process, biased predictions may still be pro-
duced for the test samples because the training set is class-
imbalanced. To refine biased class predictions on test sam-
ples, CDMAD also adjusts the biased logits on xtest

k , for
k = 1, . . . ,K. CDMAD first calculates the classifier’s bi-
ased degree gθ (I). Then, similar to Eq. (5), the logits for
test samples, gθ (xtest

k ), for k = 1, . . . ,K, are adjusted as:

g∗θ
(
xtest
k

)
= gθ

(
xtest
k

)
− gθ (I) . (7)

With the adjusted logits g∗θ (x
test
k ), the refined class predic-

tion f∗
θ (xtest

k ) is obtained as follows:

f∗
θ

(
xtest
k

)
= argmaxc g

∗
θ

(
xtest
k

)
c

= argmaxy∈[C] Pθ

(
y|xtest

k

)
/Pθ (y|I) .

(8)

We illustrate the test process in Appendix E and pseudo
code of the proposed algorithm in Appendix F.

3.4. CDMAD as a CISSL extension of post-hoc logit-
adjustment (LA)

CDMAD can be viewed as a CISSL extension of LA [20]
to take into account class distribution mismatch between la-
beled and unlabeled sets, where LA was originally intro-
duced to re-balance a biased classifier in CIL. To re-balance
the classifier, LA post-adjusts the logits on test samples
gθ (x

test
k ) by simply subtracting the log of the estimate of

the underlying class prior P (y), denoted by π (e.g., each
class frequency on the training set), as follows:

g∗θ
(
xtest
k

)
= gθ

(
xtest
k

)
− log π. (9)

The adjustment in Eq. (9) was proven to be Fisher consistent
for minimizing the balanced error rate (BER),

BER (f∗
θ ) =

1

C

∑
y∈[C]

Px|y (y ̸= f∗
θ (x)) . (10)

In addition, empirical evidence has demonstrated that LA
can effectively enhance classification performance across
various class-imbalanced learning scenarios.

However, in CISSL, where the class distribution of the
unlabeled set is unknown and may substantially differ from
that of the labeled set, LA may result in the classifier be-
ing re-balanced to an inappropriate degree, thereby lead-
ing to a decrease in classification performance. This limita-
tion arises from the challenge of incorporating the unknown
class distribution of the unlabeled set for re-balancing.
Specifically, the class prior P (y), which is often approxi-
mated as the class distribution of the labeled set Pl (y), can-
not consider the class distribution of the unlabeled set.

By comparing Eq. (7) and Eq. (9), we can observe that
CDMAD shares a similar form with LA. Specifically, given
that gθ (I) + constant = logPθ (y|I), CDMAD can be
seen as replacing the class frequencies π in Eq. (9) by
Pθ (y| I), which can be considered an estimate of the clas-
sifier’s prior Pθ(y). (With this interpretation, CDMAD can
be viewed as allowing the classifier to predict class proba-
bilities based solely on the given input, without being af-
fected by the classifier’s prior Pθ(y).) This replacement
allows CDMAD to implicitly incorporate the class distri-
butions of both labeled and unlabeled sets, facilitating its
awareness of class distribution mismatch between the two
sets, as we will further discuss in Sec. 4.3. Furthermore,
whereas LA is solely employed to refine biased class pre-
dictions on the test set, CDMAD is also employed to refine
the biased pseudo-labels. Similar to LA, CDMAD ensures
Fisher consistency for the balanced error.

Proposition 1. Given a solid color image I independent
of class labels y, the refinement by CDMAD in Eq. (8) is
Fisher consistent for minimizing the BER in Eq. (10).

Proof. Due to the universal approximation theorem [9, 29],
Pθ (y) becomes P (y), and Pθ (y|I) becomes P (y|I), un-
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der the population setting. By the assumption of Propo-
sition 1, i.e., P (y) = P (y|I), it follows that Pθ (y) =
Pθ (y|I). The refined class prediction for input x, f∗

θ (x) =
argmaxy∈[C] Pθ (y|x) /Pθ (y|I) = argmaxy∈[C] Pθ (y|x)
/Pθ (y). If the network is trained with the entire
population, Pθ (y|x) becomes P (y|x), and Pθ (y) =∫
Pθ (y|x)P (x) dx becomes

∫
P (y|x)P (x) dx = P (y),

due to the universal approximation theorem. Then, f∗
θ (x)

= argmaxy∈[C] Pθ (y|x) /Pθ (y) becomes argmaxy∈[C]

P (y|x) /P (y) = argmaxy∈[C] P (x|y), which minimizes
the BER [3, 20].

Fisher consistency is a desirable property for an estima-
tor and implies that in the entire population setting, optimiz-
ing the estimator yields the best result. In our case, we prove
that in the population setting, CDMAD minimizes the BER.
However, in practice, the entire population is not available,
and thus the theory cannot be directly applied. Neverthe-
less, Proposition 1 makes us to be optimistic about that the
algorithm is learned in the direction to minimize the BER.

4. Experiments
4.1. Experimental setup

We conducted experiments on CIFAR-10-LT, CIFAR-100-
LT [5], STL-10-LT [12], and Small-ImageNet-127 [7] un-
der the settings considered in previous studies [7, 15].
We used the balanced accuracy (bACC) [10] and geomet-
ric mean (GM) [14] to evaluate the classification perfor-
mance on CIFAR-10-LT and STL-10-LT and only bACC to
evaluate classification performance on CIFAR-100-LT and
Small-ImageNet-127, following Fan et al. [7]. For CIFAR-
10-LT, CIFAR-100-LT, and STL-10-LT, we repeated the ex-
periments three times and report the average and standard
error for the performance measures. We used a white image
to measure the gθ (y). Performance measures, description
of datasets and experimental setup, and baseline algorithms
are detailed in Appendices G, H, and I, respectively.

4.2. Experimental results
Tab. 1 summarizes bACC and GM of the baseline algo-
rithms and proposed algorithm on CIFAR-10-LT when γu is
assumed to be known and equal to γl. We can first observe
that the vanilla algorithm (Deep CNN trained with cross-
entropy loss) performed the worst. CIL (Re-sampling,
LDAM-DRW, and cRT) mitigated class imbalance but did
not significantly improve the classification performance
compared to the vanilla algorithm. These results demon-
strate the importance of using the unlabeled set. Com-
pared to the vanilla algorithm, SSL algorithms (FixMatch
and ReMixMatch) significantly improved the classification
performance. However, their lower performance than that
of the CISSL algorithms highlights the importance of mit-
igating class imbalance. By mitigating class imbalance

Table 1. Comparison of bACC/GM on CIFAR-10-LT

CIFAR-10-LT (γ = γl = γu, γu is assumed to be known)

Algorithm γ = 50 γ = 100 γ = 150

Vanilla 65.2±0.05 / 61.1±0.09 58.8±0.13 / 58.2±0.11 55.6±0.43 / 44.0±0.98

Re-sampling 64.3±0.48 / 60.6±0.67 55.8±0.47 / 45.1±0.30 52.2±0.05 / 38.2±1.49

LDAM-DRW 68.9±0.07 / 67.0±0.08 62.8±0.17 / 58.9±0.60 57.9±0.20 / 50.4±0.30

cRT 67.8±0.13 / 66.3±0.15 63.2±0.45 / 59.9±0.40 59.3±0.10 / 54.6±0.72

FixMatch 79.2±0.33 / 77.8±0.36 71.5±0.72 / 66.8±1.51 68.4±0.15 / 59.9±0.43

/++DARP+cRT 85.8±0.43 / 85.6±0.56 82.4±0.26 / 81.8±0.17 79.6±0.42 / 78.9±0.35

/+CReST+LA 85.6±0.36 / 81.9±0.45 81.2±0.70 / 74.5±0.99 71.9±2.24 / 64.4±1.75

/+ABC 85.6±0.26 / 85.2±0.29 81.1±1.14 / 80.3±1.29 77.3±1.25 / 75.6±1.65

/+CoSSL 86.8±0.30 / 86.6±0.25 83.2±0.49 / 82.7±0.60 80.3±0.55 / 79.6±0.57

/+SAW+LA 86.2±0.15 / 83.9±0.35 80.7±0.15 / 77.5±0.21 73.7±0.06 / 71.2±0.17

/+Adsh 83.4±0.06/ - 76.5±0.35/ - 71.5±0.30/ -
/+DebiasPL -/ - 80.6±0.50/ - -/ -

/+UDAL 86.5±0.29 / - 81.4±0.39 / - 77.9±0.33 / -
/+L2AC -/ - 82.1±0.57 / 81.5±0.64 77.6±0.53 / 75.8±0.71

/+CDMAD 87.3±0.12 / 87.0±0.15 83.6±0.46 / 83.1±0.57 80.8±0.86 / 79.9±1.07

ReMixMatch 81.5±0.26 / 80.2±0.32 73.8±0.38 / 69.5±0.84 69.9±0.47 / 62.5±0.35

/+DARP+cRT 87.3±0.61 / 87.0±0.11 83.5±0.07 / 83.1±0.09 79.7±0.54 / 78.9±0.49

/+CReST+LA 84.2±0.11 / - 81.3±0.34 / - 79.2±0.31 / -
/+ABC 87.9±0.47 / 87.6±0.51 84.5±0.32 / 84.1±0.36 80.5±1.18 / 79.5±1.36

/+CoSSL 87.7±0.21 / 87.6±0.25 84.1±0.56 / 83.7±0.66 81.3±0.83 / 80.5±0.76

/+SAW+cRT 87.6±0.21 / 87.4±0.26 85.4±0.32 / 83.9±0.21 79.9±0.15 / 79.9±0.12

/+CDMAD 88.3±0.35 / 88.1±0.35 85.5±0.46 / 85.3±0.44 82.5±0.23 / 82.0±0.30

and leveraging unlabeled data, CISSL algorithms achieved
higher performance than the other algorithms. Overall, the
proposed algorithm outperformed all other algorithms. This
may be because CDMAD effectively refined biased pseudo-
labels and class predictions on the test set by considering the
classifier’s biased degree.

Tab. 2 summarizes bACC and GM of the baseline algo-
rithms and proposed algorithm on CIFAR-10-LT and STL-
10-LT when γu is unknown and different from γl. ReMix-
Match performed poorly when γl and γu differed signif-
icantly, probably because the distribution alignment tech-
nique employed in ReMixMatch significantly degraded the
quality of pseudo-labels. By aligning the class distribu-
tion of the pseudo-labels with that of the unlabeled set es-
timated as in Kim et al. [12], ReMixMatch* significantly
improved the classification performance. However, the esti-
mation of the class distribution of the unlabeled set becomes
more time-consuming as the amount of unlabeled data in-
creases. Furthermore, the estimation process requires more
than 10 labeled samples for each class, making it unsuit-
able for datasets with a very small number of labeled sam-
ples, such as CIFAR-100-LT. In contrast, CDMAD does not
rely on the estimated class distribution of the unlabeled set,
making it more effective than baseline algorithms combined
with ReMixMatch* for real-world scenarios. We can also
observe that the LA decreased the performance of ReMix-
Match*+DARP and ReMixMatch*+SAW when γl and γu
differed significantly. This may be because the LA con-
siders only the class distribution of the labeled set for re-
balancing the classifier when the class distribution of the un-
labeled set is unknown. In Appendix K, we present further
comparisons of LA and CDMAD under the settings that the
class distributions of labeled and unlabeled sets mismatch.
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Table 2. Comparison of bACC/GM on CIFAR-10-LT and STL-10-LT under γl ̸= γu (γu is assumed to be unknown). ReMixMatch*
denotes ReMixMatch with the estimated class distribution of the unlabeled set [12].

CIFAR-10-LT (γl = 100, γu is assumed to be unknown) STL-10-LT (γu =Unknown)

Algorithm γu = 1 γu = 50 γu = 150 γl = 10 γl = 20

FixMatch 68.9±1.95 / 42.8±8.11 73.9±0.25 / 70.5±0.52 69.6±0.60 / 62.6±1.11 72.9±0.09/ 69.6±0.01 63.4±0.21/ 52.6±0.09

FixMatch+DARP 85.4±0.55 / 85.0±0.65 77.3±0.17 / 75.5±0.21 72.9±0.24 / 69.5±0.18 77.8±0.33/ 76.5±0.40 69.9±1.77/ 65.4±3.07

FixMatch+DARP+LA 86.6±1.11 / 86.2±1.15 82.3±0.32 / 81.5±0.29 78.9±0.23 / 77.7±0.06 78.6±0.30/ 77.4±0.40 71.9±0.49/ 68.7±0.51

FixMatch+DARP+cRT 87.0±0.70 / 86.8±0.67 82.7±0.21 / 82.3±0.25 80.7±0.44 / 80.2±0.61 79.3±0.23/ 78.7±0.21 74.1±0.61/ 73.1±1.21

FixMatch+ABC 82.7±0.49 / 81.9±0.68 82.7±0.64 / 82.0±0.76 78.4±0.87 / 77.2±1.07 79.1±0.46/ 78.1±0.57 73.8±0.15/ 72.1±0.15

FixMatch+SAW 81.2±0.68 / 80.2±0.91 79.8±0.25 / 79.1±0.32 74.5±0.97/ 72.5±1.37 -/- -/-
FixMatch+SAW+LA 84.5±0.68 / 84.1±0.78 82.9±0.38 / 82.6±0.38 79.1±0.81 / 78.6±0.91 -/- -/-
FixMatch+SAW+cRT 84.6±0.23 / 84.4±0.26 81.6±0.38 / 81.3±0.32 77.6±0.40 / 77.1±0.41 -/- -/-
FixMatch+CDMAD 87.5±0.46 / 87.1±0.50 85.7±0.36 / 85.3±0.38 82.3±0.23 / 81.8±0.29 79.9±0.23/ 78.9±0.38 75.2±0.40/ 73.5±0.31

ReMixMatch 48.3±0.14 / 19.5±0.85 75.1±0.43 / 71.9±0.77 72.5±0.10 / 68.2±0.32 67.8±0.45/ 61.1±0.92 60.1±1.18/ 44.9±1.52

ReMixMatch* 85.0±1.35 / 84.3±1.55 77.0±0.12 / 74.7±0.04 72.8±0.10 / 68.8±0.21 76.7±0.15 / 73.9±0.32 67.7±0.46 / 60.3±0.76

ReMixMatch*+DARP 86.9±0.10 / 86.4±0.15 77.4±0.22 / 75.0±0.25 73.2±0.11 / 69.2±0.31 79.4±0.07/ 78.2±0.10 70.9±0.44/ 67.0±1.62

ReMixMatch*+DARP+LA 81.8±0.45 / 80.9±0.40 83.9±0.42 / 83.4±0.45 81.1±0.20 / 80.3±0.26 80.6±0.45/ 79.6±0.55 76.8±0.60/ 74.8±0.68

ReMixMatch*+DARP+cRT 88.7±0.25 / 88.5±0.25 83.5±0.53 / 83.1±0.51 80.9±0.25 / 80.3±0.31 80.9±0.53/ 80.0±0.46 76.7±0.50/ 74.9±0.70

ReMixMatch+ABC 76.4±5.34 / 74.8±6.05 85.2±0.20 / 84.7±0.25 80.4±0.40 / 80.0±0.44 76.8±0.52/ 74.8±0.64 71.2±1.37/ 67.4±1.89

ReMixMatch*+SAW 87.0±0.75 / 86.4±0.85 80.6±1.57 / 79.2±2.19 77.6±0.76 / 76.0±0.93 -/- -/-
ReMixMatch*+SAW+LA 74.2±1.49 / 65.1±2.36 84.8±1.07 / 82.4±2.32 81.3±2.42 / 80.9±2.47 -/- -/-
ReMixMatch*+SAW+cRT 88.8±0.79 / 88.6±0.83 84.5±0.78 / 83.6±1.27 82.4±0.10 / 82.0±0.10 -/- -/-

ReMixMatch+CDMAD 89.9±0.45 / 89.6±0.46 86.9±0.21 / 86.7±0.17 83.1±0.46 / 82.7±0.50 83.0±0.38/ 82.1±0.35 81.9±0.32/ 80.9±0.44

Table 3. Comparison of bACC/GM under γl = γu = 100 (re-
versed).

CIFAR-10-LT, γl = 100, γu = 100 (reversed)

Algorithm ABC SAW SAW+LA SAW+cRT CDMAD

FixMatch+ 69.5/66.8 72.3/68.7 74.1/72.0 75.5/73.9 77.1/75.4
ReMixMatch+ 63.6/60.5 79.5/78.5 50.2/14.8 80.8/79.9 81.7/81.0

Table 4. Comparison of bACC on CIFAR-100-LT.

CIFAR-100-LT (γ = γl = γu, γu is assumed to be known)

Algorithm γ = 20 γ = 50 γ = 100

FixMatch 49.6±0.78 42.1±0.33 37.6±0.48

FixMatch+DARP 50.8±0.77 43.1±0.54 38.3±0.47

FixMatch+DARP+cRT 51.4±0.68 44.9±0.54 40.4±0.78

FixMatch+CReST 51.8±0.12 44.9±0.50 40.1±0.65

FixMatch+CReST+LA 52.9±0.07 47.3±0.17 42.7±0.70

FixMatch+ABC 53.3±0.79 46.7±0.26 41.2±0.06

FixMatch+CoSSL 53.9±0.78 47.6±0.57 43.0±0.61

FixMatch+UDAL - 48.0±0.56 43.7±0.41

FixMatch+CDMAD 54.3±0.44 48.8±0.75 44.1±0.29

ReMixMatch 51.6±0.43 44.2±0.59 39.3±0.43

ReMixMatch+DARP 51.9±0.35 44.7±0.66 39.8±0.53

ReMixMatch+DARP+cRT 54.5±0.42 48.5±0.91 43.7±0.81

ReMixMatch+CReST 51.3±0.34 45.5±0.76 41.0±0.78

ReMixMatch+CReST+LA 51.9±0.60 46.6±1.14 41.7±0.69

ReMixMatch+ABC 55.6±0.35 47.9±0.10 42.2±0.12

ReMixMatch+CoSSL 55.8±0.62 48.9±0.61 44.1±0.59

ReMixMatch+CDMAD 57.0±0.32 51.1±0.46 44.9±0.42

We also conducted experiments under the setting that the
class distribution of the unlabeled set is imbalanced in the
opposite direction to the labeled set. From Tab. 3, we can
observe that CDMAD outperforms the baseline algorithms.

Tab. 4 summarizes bACC of the baseline algorithms and
the proposed algorithm on CIFAR-100-LT. The proposed
algorithm outperformed baseline algorithms. These results

Table 5. Comparison of bACC on Small-ImageNet-127 (size 32×
32 and 64× 64, γu is assumed to be known)

Small-ImageNet-127 (γ = γl = γu, γu is assumed to be known)

Algorithm 32× 32 64× 64

FixMatch 29.7 42.3
FixMatch+DARP 30.5 42.5

FixMatch+DARP+cRT 39.7 51.0
FixMatch+CReST 32.5 44.7

FixMatch+CReST+LA 40.9 55.9
FixMatch+ABC 46.9 56.1

FixMatch+CoSSL 43.7 53.8
FixMatch+CDMAD 48.4 59.3

demonstrate that the proposed algorithm is well-suited for
CISSL on datasets with a large number of classes. More-
over, given that several minority classes in the training set
have only one labeled sample when γ = 100, the results
indicate that the proposed algorithm may outperform the
baseline CISSL algorithms when the number of labeled
samples from minority classes is extremely limited. This
may be because CDMAD effectively compensates for the
lack of labeled samples by well refining the biased pseudo-
labels compared to the baseline algorithms.

Tab. 5 summarizes bACC of the baseline algorithms on
Small-ImageNet-127. For both sizes of Small-ImageNet-
127, CDMAD outperformed the baseline algorithms by
a large margin. The effective use of unlabeled samples
through appropriate refinement of the pseudo-labels may
allow the proposed algorithm suitable for CISSL on large-
scale datasets. Given that the test set of Small-ImageNet-
127 is class-imbalanced, the results also show that CDMAD
can be suitable for CISSL with a class-imbalanced test set.

To verify that CDMAD can be also effectively com-
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Table 6. Comparison of bACC/GM on CIFAR-10-LT with
FreeMatch as the base SSL algorithm

CIFAR-10-LT

Algorithm γl = γu = 100 γl = 100, γu = 1

FreeMatch 75.4/72.9 74.2/69.5
FreeMatch+SAW+cRT 82.8/82.3 86.4/86.2
FreeMatch+CDMAD 84.8/84.4 89.0/88.7

bined with recent SSL algorithms, we conducted experi-
ments by setting FreeMatch [25] as the base SSL algorithm.
From Tab. 6, we can observe that CDMAD outperforms
FreeMatch and FreeMatch+SAW+cRT.

We also compared the classification performance of CD-
MAD with ACR [27], a recent CISSL algorithm. From
Tab. 7, we can observe that CDMAD outperforms ACR.

Table 7. Comparison of bACC/GM on CIFAR-10-LT

Algorithm/ CIFAR-10-LT γl = γu = 100 γl = 100, γu = 1

FixMatch+ACR 81.8/81.4 85.6/85.3
FixMatch+CDMAD 83.6/83.1 87.5/87.1

We present additional experimental results in Appendix.
Specifically, fine grained results (many/medium/few group
performance) are summarized in Appendix L. In Appendix
M, we compare the classification performance of CDMAD
with DASO [21] whose classification performance was
measured under different settings with the settings of ours.

4.3. Qualitative analyses

We argue that the CDMAD can implicitly consider the class
distributions of both labeled and unlabeled sets when mea-
suring the classifier’s biased degree. To verify this argu-
ment, in Fig. 3 (a) and (b), we analyze the class proba-
bilities predicted on a white image, Pθ (y|I), using Fix-
Match+CDMAD and ReMixMatch+CDMAD trained on
CIFAR-10-LT under the three settings: 1) γl = γu = 100,
2) γl = 100 and γu = 1, and 3) γl = γu = 1.

We can observe that both FixMatch+CDMAD and
ReMixMatch+CDMAD produced highly nonuniform class
probabilities when they were trained under γl = 100 and
γu = 100. In contrast, when trained with γl = 100
and γu = 1, both algorithms produced significantly more
balanced class probabilities. These results show that the
classifier’s biased degree, gθ (I), depends on the class dis-
tribution of the unlabeled set. Moreover, the compari-
son of nearly uniform class probabilities produced under
γl = γu = 1 and the results under γl = 100 and
γu = 1 shows that gθ (I) also depends on the class dis-
tribution of the labeled set. Based on the above findings,
CDMAD can be considered as measuring the classifier’s bi-
ased degree by implicitly incorporating the class distribu-
tions of both labeled and unlabeled sets. It is worth not-
ing that under γl = 100 and γu = 1, FixMatch+CDMAD
and ReMixMatch+CDMAD produced significantly more
balanced class probabilities compared to FixMatch and

ReMixMatch in Fig. 1. This may be because the use of
biased pseudo-labels generated by FixMatch and ReMix-
Match for training exacerbated class imbalance, whereas
CDMAD effectively refined the biased pseudo-labels, as
discussed in Figure 6 of Appendix J.

We also argue that the ability of CDMAD to implicitly
incorporate the class distributions of both labeled and un-
labeled sets enables it to effectively mitigate class imbal-
ance even under severe class distribution mismatch. To ver-
ify this argument, we present the confusion matrices of the
class predictions on the test set of CIFAR-10 using ReMix-
Match and ReMixMatch+CDMAD trained on CIFAR-10-
LT under γl = 100 and γu = 1 in Fig. 3 (c) and (d). The
value in the ith row and jth column represents the propor-
tion of the ith class samples classified as the jth class. We
can observe that the class predictions of ReMixMatch in
Fig. 3 (c) are biased towards the majority classes. Specif-
ically, the data points in the minority classes (e.g., classes
7, 8 and 9) are often misclassified into the majority classes
(e.g., classes 0 and 1). In contrast, ReMixMatch+CDMAD
in Fig. 3 (d) made nearly balanced class predictions. Further
qualitative analyses are presented in Appendix J.

4.4. Ablation study

To investigate the effectiveness of each element of CD-
MAD, we conducted an ablation study using CIFAR-10-LT
(γl = 100 and γu = 1, γu is assumed to be unknown).
Each row in Tab. 8 represents the proposed algorithm un-
der the condition specified in that row. The results are as
follows: 1) Without the refinement of the biased pseudo-
labels using CDMAD in the training phase, the classifica-
tion performance significantly decreased. 2) Without the
refinement of the biased class predictions on the test set us-
ing CDMAD, the classification performance decreased. 3)
With entropy minimization (using hard pseudo-labels and
sharpened pseudo-labels) of the class predictions during
training, the classification performance slightly decreased.
4) For FixMatch+CDMAD, the use of confidence thresh-
old τ = 0.95 slightly decreased the classification perfor-
mance. 5) For ReMixMatch+CDMAD, the classification
performance significantly decreased by using the distribu-
tion alignment technique instead of adding the supervised
loss on α (xm

b ) for training. These results indicate that ev-
ery element of CDMAD enhances performance.

To explore whether the classifier’s biased degree can be
measured using other images rather than the white image,
we conducted experiments by replacing I with other solid
color images or an image consisting of random pixel val-
ues that are generated from uniform, Bernoulli, and nor-
mal distributions. Experimental results are summarized in
Tab. 9. From the table, we can observe that the classi-
fication performance of ReMixMatch+CDMAD decreased
when I was replaced by images consisting of random pix-
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(a) FixMatch+CDMAD (b) ReMixMatch+CDMAD (c) ReMixMatch (d) ReMixMatch+CDMAD

Figure 3. (a) and (b) present the class probabilities predicted on a white image using the proposed algorithm. (c) and (d) present the
confusion matrices of the class predictions on test samples.

Table 8. Ablation study for the proposed algorithm on CIFAR-10-LT under γl = 100 and γu = 1

Ablation study (γl = 100, γu = 1) bACC/GM bACC/GM

FixMatch+CDMAD 87.5/87.1 ReMixMatch+CDMAD 89.9/89.6

Without CDMAD for refining pseudo-labels 78.2/75.8 Without CDMAD for refining pseudo-labels 72.3/65.9
Without CDMAD for test phase 84.9/84.1 Without CDMAD for test phase 88.2/87.7
With the use of hard pseudo-labels 86.7/86.3 With the use of sharpened pseudo-labels 88.9/88.6
With the use of confidence threshold τ = 0.95 86.8/86.3 With the use of distribution alignment technique 80.4/78.5

Table 9. Experiments with the replacement of I by other inputs

ReMixMatch+CDMAD CIFAR-10-LT

Input γl = γu = 100 γl = 100, γu = 1

Uniform 81.3/ 80.7 85.3/ 84.2
Bernoulli 82.5/ 82.0 83.6/ 82.8
Normal 78.4/ 77.5 84.0/ 83.2
Black 84.8/ 84.5 89.3/ 89.0
Red 84.8/ 84.6 90.1/ 89.9

Green 84.9/ 84.6 89.3/ 88.9
Blue 84.9/ 84.7 90.2/ 89.9
Gray 85.1/ 84.9 89.6/ 89.3
White 85.5/ 85.3 89.9/ 89.6

els. This may be because the parameters of the distributions
(e.g., mean and standard deviation of a normal distribu-
tion) used to generate random pixels may be related to spe-
cific classes. In contrast, the classification performance of
ReMixMatch+CDMAD did not significantly change when
I was replaced by images of other solid color images.
These results show that other solid color images can also
be used to measure the classifier’s biased degree.

Table 10. Experiments with replacing I by non-image input

Algorithm CIFAR-10-LT γl = γu = 100 γl = 100, γu = 1

FixMatch+CDMAD White image 83.6/83.1 87.5/87.1
Non-image 84.0/83.6 87.4/87.0

ReMixMatch+CDMAD White image 85.5/85.3 89.9/89.6
Non-image 85.6/85.4 89.8/89.6

However, the assumption that a solid color image is non-
informative for the class labels may fail when the classifica-
tion of images is related to their color. To address this con-
cern, we additionally considered an image with pixel values
that are outside the range [0, 255] (actually, non-image in-
put) to replace the solid color image I. For example, in the
case of CIFAR-10-LT, the maximum value of each (R,G,B)

channel becomes (2.06, 2.12, 2.11) after input normaliza-
tion. In this case, if we generate an input with every pixel’s
(R,G,B) values set to (3, 3, 3), the input would not be as-
sociated with a specific class because it is actually not an
image. By replacing I with this non-image input, we con-
ducted experiments and presented the results in Tab. 10. We
observe that CDMAD with the non-image input performs
comparably with the white image. These results verify that
the non-image input can be effectively used for measuring
the classifier’s biased degree, overcoming the challenge of
finding data that are non-informative for the class labels.

5. Conclusion

We proposed CDMAD, which considers the classifier’s bi-
ased degree towards each class to appropriately mitigate
the class imbalance in SSL even under severe class distri-
bution mismatch between the labeled and unlabeled sets.
Using CDMAD, we refined biased pseudo-labels as well as
biased class predictions on test samples. Experiments on
four benchmark datasets show that the proposed algorithm
outperforms the existing CISSL algorithms. Moreover, the
qualitative analysis and ablation study on the proposed al-
gorithm demonstrate the effectiveness of each component
of CDMAD. In this paper, we used a solid color image to
measure the classifier’s biased degree, which lacks a firm
theoretical basis. In future research, we plan to establish a
theoretical foundation for utilizing the solid color image to
measure the classifier’s biased degree.
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