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Figure 1. We present CLIPtone, a text-based image tone adjustment framework trained in an unsupervised manner. With its superior
understanding of natural languages, CLIPtone is capable of performing successful adjustments across a range of text descriptions, including
those previously deemed challenging.

Abstract
Recent image tone adjustment (or enhancement) ap-

proaches have predominantly adopted supervised learning
for learning human-centric perceptual assessment. How-
ever, these approaches are constrained by intrinsic chal-
lenges of supervised learning. Primarily, the requirement
for expertly-curated or retouched images escalates the data
acquisition expenses. Moreover, their coverage of target
styles is confined to stylistic variants inferred from the train-
ing data. To surmount the above challenges, we propose an
unsupervised learning-based approach for text-based im-
age tone adjustment, CLIPtone, that extends an existing
image enhancement method to accommodate natural lan-
guage descriptions. Specifically, we design a hyper-network
to adaptively modulate the pretrained parameters of a back-
bone model based on a text description. To assess whether
an adjusted image aligns with its text description without
a ground-truth image, we utilize CLIP, which is trained on

a vast set of language-image pairs and thus encompasses
the knowledge of human perception. The major advantages
of our approach are threefold: (i) minimal data collection
expenses, (ii) support for a range of adjustments, and (iii)
the ability to handle novel text descriptions unseen in train-
ing. The efficacy of the proposed method is demonstrated
through comprehensive experiments including a user study.

1. Introduction
Image tone adjustment aims for the alteration of the tonal
properties of an image, including brightness, contrast, and
color balance. It is also termed image tone enhancement, as
it has primarily been exploited to enhance the image aes-
thetics. It is essential for various applications ranging from
photography to medical imaging, and the importance of ef-
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fective tone adjustment techniques has grown significantly.
Recent learning-based approaches [15, 17, 35, 47] pre-

dominantly rely on pairwise datasets and supervised learn-
ing to learn perceptual adjustments aligned with human per-
ception. Representative datasets like MIT-Adobe 5K [8] and
PPR10K [31], which comprise pairs of an image and its
expert-retouched version, have emerged, and several meth-
ods [17, 25, 36, 50] have been proposed to learn the map-
pings between such pairs of images. However, such su-
pervised learning-based methodologies bear several limita-
tions. First, they demand cost-intensive datasets stemming
from expert retouching. Second, they are confined to limited
amounts of adjustments that are inferred from the datasets.
Lastly, they allow for only automatic image enhancement
and lack the capability for diverse adjustments with any
guidance, as the datasets are composed of paired images
without specific guidance annotations.

To reduce the burden of collecting paired images, a
few studies [11, 19, 22, 26, 52] suggest weakly-supervised
learning-based approaches to learn the mapping from the
unpaired images. They predominantly leverage the adver-
sarial learning of GANs [16] to capture the tonal proper-
ties of a target image set. Although they do use unpaired
data, there is still a requirement to manually define distinct
sets for both source and target images. In addition, they also
share the other limitations of the supervised learning-based
approaches.

Meanwhile, a handful of works [23, 42] introduce text-
based approaches to enable controllable adjustments utiliz-
ing text descriptions. To this end, they construct datasets
consisting of triplets (i.e., a source image, a target image,
and a text description on the adjustment) and train neural
networks on them. However, due to the reliance on a limited
range of descriptions in the datasets, they cannot accommo-
date natural language descriptions beyond them.

In this paper, we propose a novel text-based image tone
adjustment framework, CLIPtone, that is trained in an un-
supervised manner requiring only source images and any
tone-related text descriptions without the need for paired
images. Our core insight is that the assessment of percep-
tual adjustments can be achieved with the recent language-
image representation model, CLIP [38], as it is trained on a
vast amount of language-image pairs and thus encapsulates
the human perception. Grounded on this insight, we extend
an existing image enhancement model to enable varied ad-
justments based on text descriptions. Specifically, we design
a hyper-network to adaptively modulate the pretrained pa-
rameters of a backbone model based on a text description.
In order for our network to learn tone adjustment in an un-
supervised manner, we further introduce a CLIP directional
loss and regularization losses.

CLIPtone enjoys several unique benefits stemming from
introducing CLIP as criterion of human perception. It neces-
sitates only arbitrary images and tone-related text descrip-
tions for its training, which can be collected with minimal
costs. It also supports vast amounts of adjustments previ-
ously deemed challenging with text descriptions, as shown

in Fig. 1, thanks to CLIP’s comprehensive understanding of
natural language. Lastly, it is capable of handling novel text
descriptions unseen in training.

Recently, in line with remarkable capabilities of contem-
porary generative models, numerous studies [7, 12, 14, 34]
have been proposed dictating the attributes of the gener-
ated images with text descriptions. Among them, our work
shares similarities with text-based image colorization and
text-based image editing approaches, in the aspect of mod-
ifying input images based on text descriptions. Compared
to these methods, CLIPtone stands out for its remarkably
fewer parameters and shorter inference time.

Our contributions are summarized as follows:
• We present, for the first time, an unsupervised image tone

adjustment framework CLIPtone, that captures human
perception on tonal properties utilizing CLIP, enabling a
range of adjustments and zero-shot prediction.

• We design a hyper-network to effectively modulate the
pretrained parameters of an existing image enhancement
network and suggest training strategies tailored for unsu-
pervised learning of CLIPtone.

• Through extensive experiments, we demonstrate that our
approach is lighter, faster, and more effective compared
to existing methods.

2. Related Work

Image Tone Adjustment Methods. To improve the aes-
thetic quality of images, a range of learning-based auto-
matic tone adjustment (or enhancement) methods have been
developed. They have explored optimal neural architec-
tures to directly estimate dense pixel values [21, 35, 36]
or the parameters of traditional physical models such as
color transform matrices [9, 15, 49], and Look-Up Tables
(LUTs) [17, 25, 32, 47, 50–53]. Among these, methods
exploiting 3D LUTs [32, 47, 50–53] have garnered atten-
tion for their superior capacity and efficiency. Since Zeng et
al. [52] have proposed adaptive 3D LUTs to input images,
Wang et al. [47] proposed spatially-aware 3D LUTs for lo-
cal adjustment, and Yang et al. [50] increased the capacities
of 3D LUTs through non-uniform sampling.

For neural networks to learn adjustments aligned
with human perception, supervised learning-based ap-
proaches [15, 17, 35, 47] have predominantly been at-
tempted. They rely on paired datasets such as MIT-Adobe
5K [8] and PPR10K [31], which consist of source images
and their expert-retouched counterparts. To alleviate the
collection costs associated with expert retouching, weakly-
supervised learning-based approaches [11, 19, 26, 52] have
been introduced. They use unpaired data comprised of sepa-
rate source and target sets of images. These methods primar-
ily leverage the adversarial loss from GANs [16] to capture
the tonal properties of target sets, and the cycle-consistency
loss [55] for preserving the structures of source images.

A few methods [23, 42] employ text descriptions as con-
ditional inputs to enable diverse and controllable adjust-
ment beyond automatic adjustment. They construct train-
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Figure 2. We apply tone adjustment filters from Adobe Lightroom
Classic [1] to 500 images from the MIT-Adobe 5K dataset [8],
and calculate the relative similarities between the images and fil-
ter names in the CLIP space. For all filters, the filtered images
have higher similarity scores than the source images, implying that
CLIP can assess the tonal properties of images in a manner align-
ing with human perception.

ing datasets consisting of triplets: a source image, a target
image, and a text description on the adjustment and train a
network on these datasets. Specifically, Shi et al. [42] anno-
tated requests to each pair of the MIT-Adobe 5K dataset [8],
and Jiang et al. [23] further proposed dataset augmentation
strategies for imbalanced annotations.

Despite the aforementioned efforts, existing tone adjust-
ment methods have limitations including high data collec-
tion costs (even for curating target sets), confined adjust-
ments to stylistic variations of training datasets. In contrast,
CLIPtone is independent of these issues thanks to leverag-
ing CLIP as a perceptual criterion.
Text-driven Generative Models. Recently, cutting-edge
generative models have found their uses in image-to-image
translation tasks such as image colorization [10, 20] and
editing [5, 7, 12]. Early approaches use GANs [16] trained
on specific domains to manipulate real images through
GAN inversion techniques [3, 24, 40, 45], changing their la-
tent vectors [6, 37, 48] or adapting generator networks [14,
30] to different domains according to text descriptions.
More recently, with advances in auto-regressive models [13]
and diffusion models [18, 43, 44], generative models trained
on large amounts of text-image pairs have been showing su-
perior performance in image synthesis [41]. Several studies
have proposed to finetune these models to manipulate im-
ages based on text descriptions [7, 10, 54] benefiting from
their superior generative prior. While these image manipu-
lation methods seem to have similarities with our methods,
they struggle to maintain the structures of original images
and require excessive time for manipulation.

3. CLIP as a Perceptual Criterion
As mentioned in Sec. 1, we aim to train a text-based tone
adjustment network without paired images by leveraging
CLIP [38]. This is based on a hypothesis that CLIP in-
herently encapsulates information about human perception
learned from a vast amount of image-language pairs so that
it can be employed for assessing tone adjustment in a man-
ner consistent with human perception.

To verify our hypothesis, we conduct an experiment to

examine whether CLIP can correctly assess images whose
tones are already known. To this end, we adopt tone ad-
justment filters manually designed by experts. Specifically,
we randomly sample 500 images from the MIT-Adobe 5K
dataset [8], and apply nine filters such as “aged”, “bright”,
“cinematic” from Adobe Lightroom Classic [1], and con-
struct a dataset consisting of source and filtered image pairs
for each filter. In each dataset, the source images have nat-
ural tones while the filtered images have specific tones pro-
duced by each filter. We then compute their similarities to
their corresponding filter names in the CLIP embedding
space. Specifically, adopting the idea of CLIP-IQA [46], we
compute relative similarities defined as:

S(I, T ) = softmax(sim(I, T ), sim(I, T ′)) (1)

where I and T are an image and a filter name, respectively.
sim(I, T ) is the cosine similarity between the CLIP embed-
dings of I and T . T ′ is a text description “normal photo”.
To obtain CLIP embeddings, we use the CLIP-RN50 model
in this experiment.

Fig. 2 illustrates the result where the filtered images have
higher similarity scores than the source images for all filters.
This result indicates that CLIP holds the potential to serve
as a differentiable perceptual criterion for tone adjustment
evaluation. Additional results employing other CLIP mod-
els are included in the supplementary material.

4. Network Architecture of CLIPtone
The network architecture of CLIPtone comprises a tone ad-
justment network and a text adapter as shown in Fig. 3. The
tone adjustment network, for which we adopt an existing
image enhancement network, takes an input image and al-
ters the tonal properties of the image, while the text adapter
takes a target text description as input and modulates the pa-
rameters of the tone adjustment network for text-based tone
adjustment. Our design philosophy can be regarded as mod-
ulating a backbone network using a hyper-network, a strat-
egy whose efficacy has been demonstrated in various prior
studies [4, 27, 33, 39]. Here, the selection of the backbone
network and defining an efficient and effective modulation
strategy are crucial, and we describe our choices in the fol-
lowing.
Tone Adjustment Network. For the tone adjustment net-
work, we adopt the image enhancement network of Yang et
al. [50], which is based on 3D LUTs. Here, we take a brief
look at Yang et al.’s method for completeness. Their method
takes an input image and extracts a feature map using a con-
volutional neural network (CNN). Then, from the feature
map, a weight predictor network estimates the weights w of
learnable basis LUTs. The basis 3D LUTs are then linearly
combined using the weights w to form a fused 3D LUT.
Meanwhile, from the feature map extracted by the CNN,
an AdaInt module estimates sampling coordinates, which
determine the source color values of the fused 3D LUT.
Specifically, an AdaInt module estimates sampling coordi-
nates xc(i) where c ∈ {r, g, b} and i denote the color axis
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Figure 3. CLIPtone consists of a text adapter and a tone adjustment network. From a target text description, the text adapter calculates a
directional vector within the CLIP embedding space from the source to target text descriptions and estimates the modulation parameter
∆θ for the AdaInt module and the weight predictor of the tone adjustment network. The modulated tone adjustment network adaptively
constructs an image-text adaptive 3D LUT through fusing basis 3D LUTs and non-uniform sampling, ultimately adjusting the color values
of an input image.

and an index along each color axis. For example, xr(1) =
0.2, xg(2) = 0.3, and xb(3) = 0.4 mean that the color
value (0.2, 0.3, 0.4) of an input image will be converted to
the color value of the fused 3D LUT at (1, 2, 3). Then, the
non-uniform sampling step resamples the fused 3D LUT ac-
cording to the estimated sampling coordinates, and obtains
a final image-adaptive 3D LUT. Finally, the color values of
the input image undergo trilinear-interpolated look-up op-
erations to produce a color-enhanced image. We refer the
readers to [50] for more details.

We build our approach on top of the method of Yang et
al. [50] because it adjusts only the tonal properties of an in-
put image using LUTs without modifying the contents, and
provides an efficient and effective architecture leveraging
basis LUTs. In our approach, we use the basis LUTs from
the Yang et al.’s model, which are pre-trained for the image
enhancement task, without modification. We modulate only
the parameters of the weight predictor and the AdaInt mod-
ule with our text adapter to construct an image-text adaptive
3D LUT as shown in Fig. 3. These two modules are the most
crucial ones as they determine how to combine the basis 3D
LUTs, how to resample a fused 3D LUT, and ultimately
how to adjust an image. All the other parameters includ-
ing the basis LUTs are kept frozen. This selective modula-
tion enables the efficient and effective learning of our text
adapter.
Text Adapter. The text adapter modulates the parameters
for the AdaInt and weight predictor modules according to a
target text description T̂ . To this end, the text adapter first
embeds the input target text description T̂ into the CLIP
embedding space using a CLIP text encoder ET . The text
adapter also uses a source text description T , which is fixed
to “normal photo”, to represent the tone of the input image.

To embed T and T̂ , we adopt the CLIP-RN50 text encoder.
Then, it computes a directional vector by computing the dif-
ference between the embeddings of the target and source
text descriptions, i.e., ET (T̂ ) − ET (T ), and feeds the di-
rectional vector to a two-layered MLP to compute modula-
tion parameter ∆θ. Finally, similar to the previous hyper-
network-based approach [4], the text adapter modulates the
parameters of the AdaInt and weight predictor modules as:

θ̂ = θ ⊗ (1 + s ·∆θ) (2)

where θ is the original parameter of the AdaInt module and
the weight predictor, and θ̂ is their modulated parameter. s
is a scaling factor that controls the degree of adjustment,
and ⊗ denotes Hadamard product.

Regarding the source description, we have explored dif-
ferent schemes: text-dependent, image-dependent, and neu-
tral schemes. The text-dependent scheme derives source de-
scriptions from input texts, e.g., antonyms of input texts,
while the image-dependent scheme utilizes the CLIP image
embedding of an input image instead of the CLIP text em-
bedding of a source text description. The neutral scheme
utilizes a fixed text description representing neutrality, such
as “normal photo”.

Among these options, we found that the neutral scheme
works the best due to the following reasons. (i) The image-
dependent scheme tends to cause unstable training due to
the continuous variation in the source prompt. (ii) The
text-dependent scheme is impractical as it requires finding
antonyms for the input text, which can be challenging. (iii)
The neutral scheme fits our scenario the best, where an im-
age may already be colorful, but a user may still want to edit
the image with the keyword “colorful” for a more enhanced
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result. Additionally, we have evaluated different neutral de-
scriptions, e.g., “ordinary photo” and “photo”, and empiri-
cally found that “normal photo” yields the best results.

5. Unsupervised Learning for CLIPtone.

Training Strategy. We train CLIPtone on two datasets:
one for text descriptions and the other for source images.
We note that those are neither paired nor labeled, i.e., un-
supervised learning. Specifically, for text descriptions, we
adopt the Color Names Dataset [2] encompassing 30,138
color names with duplicates to learn adjustments to various
tones. Before we feed the descriptions to the CLIP text en-
coder, we append “photo” to each description (e.g., a color
name “red” is transformed into “red photo”). For source im-
ages, we use 4,500 source images from the MIT-Adobe 5K
dataset [8]. We augment the images with random-crop and
horizontal-flip, and random adjustments of bright and sat-
uration, following previous work [52]. For initialization of
the text adapter, the weights are sampled from a uniform
distribution U(0, 0.01), and the biases are set to zero. For
training, we use the Adam optimizer [28] with the learning
rate 1e− 3 and the coefficients β1 = 0.9 and β2 = 0.999.
Training Loss. Given a randomly sampled pair of a tar-
get description T̂ and a source image I , we train CLIPtone
using a loss L defined as:

L = λcontentLcontent + λCLIPLCLIP + λLUTLLUT , (3)

where Lcontent, LCLIP, and LLUT represent a content-
preserving loss, a CLIP directional loss, and an LUT reg-
ularization loss, respectively. The parameters λcontent, λCLIP,
and λLUT are used to balance these loss terms, and we set
each of them to 1.

The content-preserving loss Lcontent prevents the tone-
adjusted output Î from excessively deviating from the
source image I , and is defined as the mean-squared error
(MSE) between I and Î . The CLIP directional loss LCLIP

aligns the difference from I to Î with that from T to T̂ . To
this end, we employ the CLIP directional loss of StyleGAN-
NADA [14], which is defined as:

LCLIP(∆I,∆T ) = 1− ∆I ·∆T

∥∆I∥∥∆T∥
(4)

where ∆I := EI(Î)−EI(I) and ∆T := ET (T̂ )−ET (T ).
Lastly, we devise the LUT regularization loss LLUT =

λweightLweight + λintervalLinterval to ensure that the image-text
adaptive 3D LUT is locally smooth, thereby enabling nat-
ural and stable adjustments. We set λweight and λinterval to
1e − 4 and 0.5, respectively. The regularization is given in
two-fold: Lweight and Linterval for the weight predictor mod-
ule and for the AdaInt module, respectively. We use L2 reg-
ularization Lweight := ∥w∥2 on the weights w of the basis
LUTs to discourage individual weights from becoming dis-
proportionately large compared to the others.

Linterval is a sampling interval loss for regularizing the

adaptive sampling coordinates from the AdaInt module,
which is defined as:

Linterval=
∑

l,i,j,k,c

∣∣∣∣∣L(l)
c (i+ 1, j, k)− L

(l)
c (i, j, k)

(xr(i+ 1)− xr(i))α

∣∣∣∣∣
2

+

∣∣∣∣∣L(l)
c (i, j + 1, k)− L

(l)
c (i, j, k)

(xg(j + 1)− xg(j))α

∣∣∣∣∣
2

+

∣∣∣∣∣L(l)
c (i, j, k + 1)− L

(l)
c (i, j, k)

(xb(k + 1)− xb(k))α

∣∣∣∣∣
2

, (5)

where l ∈ {1, · · · , L} is an index to a basis LUT, and L
is the number of the basis LUTs, which is 3 in our frame-
work following Yang et al.’s method [50]. c ∈ {r, g, b} is
an index to a color channel. L(l)

c (i, j, k) is the color value
of the c color channel of the l-th basis 3D LUT at (i, j, k).
xc(i) is the i-th sampling coordinate for the c color channel
estimated by the AdaInt module. α is a hyper-parameter to
control the regularization strength. Larger α more strongly
penalizes narrow intervals between consecutive sampling
coordinates, leading to more evenly distributed sampling
coordinates, so that disrupt color changes can be avoided.
Conversely, smaller α gives a weaker penalty to narrow in-
tervals, allowing the sampling coordinates to better reflect
the target text description. In our experiments, we set α to
0.7. Linterval ensures that the distances in the estimated sam-
pling coordinates, i.e., the sampling intervals, are not too
small especially when neighboring LUT entries have large
color difference, thereby preventing abrupt color changes in
tone-adjusted images.

6. Experiments
6.1. Comparative Evaluation

Baselines. As CLIPtone is the first unsupervised learning-
based approach for text-based image tone adjustment, we
compare it with other state-of-the-art text-based image ma-
nipulation methods: T2ONet [42], IP2P [7], and CLIP-
styler [29]. T2ONet [42] is a request-based image en-
hancement model, which is trained on text-based requests
and corresponding before-and-after images in a supervised
manner. IP2P [7] is also a request-based image editing
model that fine-tunes a pretrained text-based image genera-
tive model to accommodate a source image and a text-based
request. CLIPstyler [29] is a style transfer model, which is
trained to increase the directional CLIP similarity for a sin-
gle target text description. As these models use different
forms for target descriptions, we alter input text descrip-
tions as follows: A text description “krypton” is transformed
to “krypton photo” for CLIPtone, “Make a krypton photo.”
for T2ONet [42] and IP2P [7], and “krypton” for CLIP-
styler [29]. For the baseline models, we use the authors’
official implementations.
Qualitative Comparisons. Fig. 4 shows a qualitative com-
parison. In the figure, T2ONet [42] barely changes the in-
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Figure 4. Qualitative comparisons against baselines for modifications of input images according to given text descriptions. T2ONet [42]
induces only subtle changes and fails to perform appropriate adjustments. While CLIPstyler [29] and IP2P [7] make appropriate adjust-
ments aligned with the text descriptions, they fail to preserve the image contents. In contrast, CLIPtone successfully makes appropriate
adjustments while preserving the contents of the input images.

Method
Grayscale
SSIM ↑

CLIP image
similarity ↑

CLIP text-image
directional similarity ↑

T2ONet [42] 0.936 0.994 0.021
CLIPstyler [29] 0.484 0.669 0.095

IP2P [7] 0.765 0.932 0.073
CLIPtone 0.858 0.975 0.083

Table 1. Quantitative comparison of different methods on 500 im-
ages from the MIT-Adobe 5K dataset [8] and manually collected
50 tone-related text descriptions. CLIPtone achieves overall higher
scores in both Grayscale SSIM and CLIP image similarity, which
evaluate structural preservation, as well as in CLIP text-image di-
rectional similarity, which assesses the alignment with text de-
scriptions, compared to existing methods.

put images and fails to perform appropriate adjustment. Al-
though CLIPstyler [29] and IP2P [7] succeed in making
adjustment to fit the descriptions, they fail to preserve the
structures of the input images. CLIPtone outperforms all the
other methods, achieving both appropriate adjustments re-
flecting the target descriptions and successful preservation
of the structural information in the input images.
Quantitative Comparisons. For quantitative evaluation,
we construct a test set consisting of 500 source images from
MIT-Adobe 5K [8], which are not used for training CLIP-
tone, and 50 manually collected text descriptions related to
tonal properties such as “warm”, “cold”, and “pastel tone”.
We provide all the descriptions used in our evaluation in the
supplementary material.

To assess the adjustments by each method, we focus on
two primary factors: the preservation of image structures,
and the alignment with text descriptions. To assess the struc-
ture preservation, we use grayscale SSIM and CLIP image
similarity. Grayscale SSIM computes the SSIM index be-
tween two images after grayscale conversion, while CLIP
image similarity measures the cosine similarity between

two images in the CLIP embedding space to assess the sim-
ilarity between their contents.

However, it is important to note that both metrics are lim-
ited in assessing the structure preservation since assessing
the structure preservation between two images is not a triv-
ial task, which requires isolating the image structure from
tones and colors. Nevertheless, both metrics are less af-
fected by tones and colors than other metrics such as PSNR
since grayscale SSIM discards the colors and also includes
contrast normalization, and CLIP image similarity focuses
on content similarity rather than tones and colors.

To assess alignment with text descriptions, we mea-
sure the CLIP text-image directional similarity. Specifically,
given a pair of an input image and a target text description,
we compute the directional vector between the CLIP em-
beddings of the input image and its tone-adjusted image,
and the directional vector between the CLIP embeddings
of the source and target text descriptions. Then, we com-
pute the cosine similarity between the directional vectors.
Meanwhile, as T2ONet [42] supports only predefined de-
scriptions for adjustments, we evaluate the performance of
T2ONet only on 21 compatible descriptions out of 50.

In Tab. 1, we report the quantitative comparison. The
CLIP image similarity and CLIP text-image directional sim-
ilarity scores in the table are computed using the CLIP ViT-
B/16 model, which is not used for training any methods
for a fair comparison. Other results with other CLIP mod-
els are included in the supplementary material. In the table,
T2ONet [42], which induces subtle modifications in adjust-
ment process, yields high scores in Grayscale SSIM and
CLIP image similarity. Yet, it markedly underperforms in
CLIP text-image directional similarity than the other meth-
ods. Since CLIPstyler [29] is trained solely on target de-
scriptions, it records the highest CLIP text-image direc-
tional similarity score. However, it struggles to preserve
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Methods T2ONet [42] CLIPstyler [29] IP2P [7] CLIPtone
CLIP image

similarity 0.956 0.704 0.891 0.948

CLIP directional
similarity 0.359 0.297 0.310 0.467

Table 2. Quantitative comparison using pseudo-ground-truth im-
ages created by tone adjustment filters of Adobe Lightroom Clas-
sic [1].

Method T2ONet [42] CLIPstyler [29] IP2P [7] CLIPtone
Param (M) 21.1 6.7 1016.9 111.4
Time (ms) 45.1 26.6 7177.4 10.3

Table 3. Comparison of the number of parameters (M) and infer-
ence times (ms) for processing a 512× 512-sized image using an
NVIDIA GeForce RTX 3090 GPU.

Method
Grayscale
SSIM ↑

CLIP Image
Similarity ↑

CLIP Text-Image
Directional Similarity ↑

CLIPtone-0
(trained w/o target keyword) 0.859 0.968 0.087

CLIPtone
(trained w/ target keyword) 0.858 0.964 0.089

Table 4. Quantitative comparison of CLIPtone-0 trained with-
out target keywords and CLIPtone trained with target keywords.
CLIPtone-0 performs nearly as well as CLIPtone in all the met-
rics.

image structures, leading to the lowest scores in Grayscale
SSIM and CLIP image similarity. CLIPtone achieves high
scores in all three metrics, demonstrating that it outperforms
existing methods when considering both primary factors.
Comparison using Pseudo-Ground-Truth Images. We
also compare the baseline methods and ours using pseudo-
ground-truth images, which are generated by applying nine
tone adjustment filters of Adobe Lightroom Classic [1] to
our test set as done in Sec. 3. Fig. 5 shows a qualitative
comparison. As the figure shows, CLIPtone excels not only
in preserving image structures but also in adjusting tones,
producing results more similar to the results of the filters de-
signed by experts. For quantitative analysis, we measure the
structural similarity between tone-adjusted images and their
corresponding pseudo-ground-truth images using CLIP im-
age similarity. We also measure the similarity between the
adjustments made to a tone-adjusted image and to its corre-
sponding pseudo-ground-truth image for a given input im-
age using CLIP directional similarity. Tab. 2 shows that
CLIPtone achieves the highest CLIP directional similarity
score and the second highest CLIP image similarity score,
indicating that CLIPtone performs tone adjustment similar
to the filters manually designed by experts.
User Study. Given that image tone adjustment is funda-
mentally a human-centric task, we conducted a user study
to evaluate the baseline methods and ours. For this study,
we recruited 20 participants from our institution. Each par-
ticipant was presented 30 examples consisting of an input
image and randomly arranged resulting images from each
method, and was asked to score these on a scale from 1
(poor) to 5 (excellent) based on the following criteria: (a)
How well the structure of the input image is preserved. (b)
How well the modification suits the text description. (c) The

aesthetic quality of the result image. The complete question-
naires are included in the supplementary material. Fig. 6 il-
lustrates the average of the results of the user study. Against
all the other methods, CLIPtone is preferred in all three
aspects, demonstrating that CLIPtone outperforms existing
methods from the perspective of human perception.

Model Complexity. As shown in Tab. 3, CLIPtone has
more parameters than T2ONet [42] and CLIPstyler [29],
each designed to address single and restricted text descrip-
tions, respectively. Nevertheless, CLIPtone exhibits notably
shorter inference times than the others thanks to its efficient
backbone network and our hyper-network-based approach.

6.2. Deeper Analysis of CLIPtone

In this section, we conduct a detailed analysis on CLIPtone,
including the validation of the sampling interval loss and a
series of experiments that demonstrate the unique and prac-
tical advantages of CLIPtone.

Sampling Interval Loss. Fig. 7 shows that the absence
of Linterval causes the model to over-adjust, significantly di-
minishing the aesthetic quality of the output image. This
happens because the estimated sampling coordinates from
the AdaInt module lead to the construction of an image-text
adaptive 3D LUTs with abrupt color transitions, focusing
on matching the target text descriptions. In contrast, CLIP-
tone with the sampling interval loss constructs an image-
text adaptive 3D LUT with more gradual color transitions,
ensuring that the result image is not only aligned with the
target text descriptions but also visually appealing.

Zero-shot Prediction. Thanks to leveraging CLIP that is
pretrained on a vast amount of image-text pairs, CLIPtone
can also make suitable adjustments for text descriptions un-
seen during training. Here we verify this zero-shot predic-
tion capability of CLIPtone. To this end, we construct a test
set using 50 target keywords used in the quantitative eval-
uation. We then exclude any text descriptions that include
the keywords from our training set. As a result, we exclude
2,890 text descriptions, and obtain a subset of 27,248 text
descriptions. Then, we train CLIPtone on the subset. We
refer to this version of CLIPtone as ‘CLIPtone-0’. Finally,
we compare CLIPtone-0 and CLIPtone on the test set of the
sampled target keywords. Tab. 4 and Fig. 8 present the quan-
titative and qualitative comparisons. These comparisons re-
veal that CLIPtone-0 performs nearly as well as CLIPtone,
suggesting that CLIPtone is capable of handling novel text
descriptions not included in its training set. A more compre-
hensive collection of zero-shot prediction results is included
in the supplementary material.

Scaling the Strength of Adjustment. CLIPtone also of-
fers controllable adjustment by changing the scaling factor
s in Eq. (2), which scales the weight offsets of the backbone
network estimated by the text adapter. Fig. 9 illustrates an
example that shows smooth transition of the tone according
to the scaling factor s.
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Figure 5. Qualitative comparison against pseudo-ground-truth images created by tone adjustment filters of Adobe Lightroom Classic [1].
Compared to the baselines, CLIPtone performs more similar adjustment to the Adobe filters while preserving the original image structure.
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Figure 6. Summary of the user study with 20 participants evaluat-
ing 30 examples. Each graph represents the average score of each
of the compared methods for each of the following questions: (a)
How well the structure of the input image is preserved. (b) How
well the modification suits the text description. (c) The aesthetic
quality of the result image.

“Bright photo”

“Sunlight photo”

(a) Input Image (b) w/o ℒinterval (c) w/ ℒinterval

Figure 7. The effect of the sampling interval loss Linterval. Without
the loss, CLIPtone may perform excessive adjustments solely to
align with the text descriptions, compromising aesthetic quality.

7. Conclusion
In this paper, we propose CLIPtone, the first unsupervised
learning-based approach for text-based image tone adjust-
ment. CLIPtone effectively extends a 3D LUT-based im-
age enhancement model to accommodate a range of adjust-
ments guided by text descriptions. Thanks to utilizing CLIP
for perceptual supervision, CLIPtone requires no paired
datasets, and also supports zero-shot prediction for unseen
text descriptions. Through comprehensive experiments, we
have validated the effectiveness and efficiency of CLIPtone.
Limitations. CLIPtone has some limitations. Firstly, the
inherent bias in a pretrained CLIP model may lead CLIP-

CLIPtone-0
(trained w/o target keyword)

CLIPtone
(trained w/ target keyword)

“Cold photo”

“Warm photo”

Input Image

Figure 8. Qualitative comparison of CLIPtone-0 trained without
target keywords and CLIPtone trained with target keywords. In
both cases, both models make appropriate and similar adjustments
implying that CLIPtone is capable of robustly adjusting even to
novel descriptions not encountered during training.

“Sepia tone photo”𝑠𝑠 = 0 𝑠𝑠 = 2

Figure 9. Controlling the strength of adjustment by adjusting the
modulation scaling factor s ∈ {0, 1, 2}. A result with the default
scaling factor s = 1 is shown in the middle.

tone to perform adjustments that do not align with human
perception. We include an analysis in the supplementary
material. Secondly, CLIPtone relies global tone adjustment,
thus cannot perform tone adjustment that requires local tone
adjustment. Extending CLIPtone to support local adjust-
ment could be a promising research avenue. Thirdly, as
CLIPtone depends solely on the directional vectors from
text descriptions, it cannot support adjustments for more di-
verse and specific styles, particularly those difficult to ex-
press with text alone. Leveraging a CLIP image encoder
could be an interesting future direction.
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