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Abstract

We present DiSR-NeRF, a diffusion-guided framework
for view-consistent super-resolution (SR) NeRF. Unlike
prior works, we circumvent the requirement for high-
resolution (HR) reference images by leveraging existing
powerful 2D super-resolution models. Nonetheless, inde-
pendent SR 2D images are often inconsistent across differ-
ent views. We thus propose Iterative 3D Synchronization
(I3DS) to mitigate the inconsistency problem via the inher-
ent multi-view consistency property of NeRF. Specifically,
our I3DS alternates between upscaling low-resolution (LR)
rendered images with diffusion models, and updating the
underlying 3D representation with standard NeRF training.
We further introduce Renoised Score Distillation (RSD), a
novel score-distillation objective for 2D image resolution.
Our RSD combines features from ancestral sampling and
Score Distillation Sampling (SDS) to generate sharp images
that are also LR-consistent. Qualitative and quantitative re-
sults on both synthetic and real-world datasets demonstrate
that our DiSR-NeRF can achieve better results on NeRF
super-resolution compared with existing works. Code and
video results available at the project website1.

1. Introduction

Novel view synthesis is a long-standing problem in com-
puter vision with significant real-world applications. Re-
cently, neural radiance fields (NeRFs) have emerged as a
powerful representation, achieving state-of-the-art perfor-
mance in novel view synthesis. Since the pioneering work
on NeRFs by [28], many follow up works have explored
the improvement of NeRF’s speed [4, 7, 31, 42], fidelity
[1, 2, 49], scale [26, 43], robustness [6, 21, 55], and gen-
eralizability [3, 16, 19, 46, 52, 53, 56]. However, one im-
portant aspect of NeRFs that has not been well explored is
super-resolution. In real-world scenarios, imaging devices
may be limited in resolution (i.e., drones, CCTVs, etc.)
and consequently high-resolution multi-view images may

1https://github.com/leejielong/DiSR-NeRF

Figure 1. Our DiSR-NeRF distils super resolution priors from a
2D diffusion upscaler to generate high quality details from low
resolution NeRFs.

be unavailable. With low-resolution inputs, NeRF strug-
gles to represent the high-quality details of the underlying
3D scenes. In this work, we tackle the task of NeRF super-
resolution, which aims to learn high-resolution implicit rep-
resentation of 3D scenes from only low-resolution images.
One possible direction is to design a generative 3D super-
resolution model, which however, requires large datasets of
high-resolution multi-view images for training. Collecting
such large-scale, high-resolution multi-view data is labor-
intensive and requires expensive equipment to obtain accu-
rate scans. On the other hand, large 2D high-resolution im-
age datasets such as LAION-5B [38] are publicly available
and have been used to train powerful 2D super-resolution
models. We thus propose to leverage knowledge from the
2D super-resolution models to circumvent the requirements
for HR images.

Naively upscaling individual LR training images with
2D super-resolution methods produces SR images that may
not be consistent across views. A NeRF trained on such im-
ages produces blurred details as SR details may not agree
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across different camera views. Recent works such as Super-
NeRF [8] resolve this by searching the latent space of a 2D
upscaler for view-consistent SR results, however the frame-
work only enforces low-resolution view-consistency. In this
work, we propose DiSR-NeRF, a Diffusion-guided Super-
Resolution NeRF method which produces NeRFs with high
resolution and view-consistent details.

Our method comprises two key components. 1) We pro-
pose the two-stage Iterative 3D Synchronization (I3DS)
to solve the cross-view inconsistency problem. We first
refine the rendered images from the LR NeRF with a
diffusion-based 2D super-resolution model, and subse-
quently synchronize the details into 3D through standard
NeRF training. The alternating process between the two
stages guides the NeRF to converge to view-consistent de-
tails. 2) We introduce the Renoised Score Distillation
(RSD) objective to get the best from both worlds of an-
cestral sampling and Score Distillation Sampling (SDS).
Particularly, we observe that the default ancestral sampling
used in diffusion-based super resolution can generate details
that are structurally inconsistent with the conditioned LR
image (cf . Fig. 6 in the experiments). This may aggravate
the inconsistency across different views. On the other hand,
the Score Distillation Sampling (SDS) objective commonly
used in Text-to-3D generation can produce LR-consistent
features but with limited details. The optimization target of
RSD is designed as the intermediate denoised latents of the
ancestral sampling trajectory. This transforms the ancestral
sampling process into an optimization framework, generat-
ing coarse-to-fine details over the course of optimization.
As a result, RSD is able to achieve sharper details com-
pared to SDS while also producing LR-consistent features
compared to ancestral sampling.

Our method requires only low-resolution multi-view im-
ages of a target scene, thus alleviating the cumbersome need
for high-resolution reference images or large scale multi-
view HR image datasets. Our qualitative and quantitative
results show that DiSR-NeRF can outperform existing base-
lines to achieve effective super-resolution NeRF. Our con-
tributions are as follows:

• We introduce DiSR-NeRF, a method that achieves high
quality super-resolution NeRF using only LR training im-
ages and a pretrained 2D diffusion upscaler.

• We propose Iterative 3D Synchronization (I3DS) that
achieves convergence to view-consistent SR details.

• We design Renoised Score Distillation (RSD), a score-
distillation objective that produces sharper details and
maintains consistency towards the conditioned LR image.

2. Related Works
2.1. 2D Image Super-Resolution

Image super-resolution is inherently an ill-posed problem
since there can be a distribution of possible SR solutions
for a LR image. Most state-of-the-art approaches therefore
seek to learn the conditional distribution p(x | y,w) of pos-
sible SR images x that correspond to the conditioned LR
image y using a generative model parameterized by w.
GANs. Generative Adversarial Networks (GANs) are a
class of generative models that have demonstrated impres-
sive results in image SR. GAN-based SR models [17, 47,
48] utilize adversarial training objectives to produce SR im-
ages that appear photorealistic to human visual perception.
However, GAN-based SR models are often difficult to train
and may encounter mode collapse.
Normalizing Flows. Flow-based SR models [15, 20, 24,
54] employ conditional normalizing flows to model the con-
ditional SR image distribution. Unlike GANs, flow-based
SR models learn to explicitly compute the probability den-
sity of SR images conditioned on the LR image. However,
flow-based SR models are restricted to invertible architec-
tures due to bijectivity constraints and lack expressiveness
compared to other approaches.
Diffusion Models. Diffusion-based SR models [11, 18,
36, 37, 51] learn to generate SR images from pure Gaus-
sian noise using a trained denoising network to iteratively
restore structure and details while being conditioned on a
text prompt and LR image. In our work, we use the Stable
Diffusion ×4 Upscaler (SD×4), which is a pretrained la-
tent diffusion upscaler [36] to guide the generation of high-
resolution details in 3D. Latent diffusion models use a pre-
trained variational autoencoder (VAE) to project images to
a lower-dimensional latent space for diffusion. Executing
the diffusion process in the latent space improves speed and
GPU memory usage.

2.2. Super-Resolution NeRF

Super-Resolution NeRF is currently an area that has yet to
be well-explored. Some works improve NeRF details via
anti-aliasing or ray supersampling [1, 2, 44], but remain
fundamentally limited by the level of detail available in the
input images. Other works achieve super-resolution NeRF
[13, 44] under a reference-guided setting, requiring HR ref-
erence images of the target scene to be available. Such
requirements can be impractical when only low resolution
imaging solutions are available.

Super-NeRF [8] is a recent work with similar motiva-
tion to ours, and it achieves high-resolution detail genera-
tion for LR NeRF by searching the latent space of ESRGAN
[47] for view-consistent solutions. However, the proposed
framework only explicitly constraints view consistency in
the LR domain. In contrast to Super-NeRF, we utilize the
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Figure 2. I3DS seperates upscaling and NeRF fitting in seperate,
alternate stages. NeRF renders are upscaled via RSD in the up-
scaling stage, and upscaled images are used as training images to
learn view-consistent details. The two stage process is repeated
over several cycles to achieve detail convergence.

score function of diffusion-based upscaler models to pro-
duce sharp and coherent SR details. Furthermore, we also
introduce a 3D synchronization mechanism to converge on
view-consistent features.

3. Our Method
3.1. Preliminaries

Diffusion Models. Diffusion models [10, 34, 39–41] are
generative models which transform a sample from a noise
distribution towards a data distribution using a fixed forward
process and a learned reverse process. The forward process
introduces noise to data based on a predetermined noising
schedule and gradually destroys detail and structure. A data
sample z0 can be noised into zt using the closed-form for-
mula [10] of the forward process:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ (1)

which produces noised latents zt at timestep t ∈ [0, T ]
given timestep-dependent noising coefficient ᾱt and Gaus-
sian noise sample ϵ ∈ N (0, I).

The reverse process restores structure from noise. It is
learned by a network ϕ that is trained to denoise a noised
latent zt by predicting its noise component ϵϕ(zt, y, t) con-
ditioned upon y (text prompt/image) and timestep t. In dif-
fusion image generators, y comprises the embedded text
prompt, while in diffusion upscalers, a lightly noised LR
image and the image noising level is also included. Dif-
fusion models are typically trained with an evidence lower
bound (ELBO) objective [10] given by:

L = Et∼U(0,T ),ϵ∼N (0,I)[γ(t)∥ϵϕ(zt, y, t)− ϵ∥22]. (2)

The sampling process which is also referred to as ancestral
sampling, iteratively denoises a Gaussian noise sample zT
according to:

zt−1 =
1

√
αt

(
zt −

1− αt√
1− ᾱt

ϵϕ(zt, y, t)
)
+ σtϵ (3)

for a DDPM [10] scheduler, where σt is the standard devi-
ation of Gaussian noise samples. In ancestral sampling, the
latent zt is gradually denoised into z0 from the data distri-
bution via a sample trajectory given by:

(zT , zT−1, ..., z1, z0), (4)

where z0 is the generated output image.

Score Distillation Sampling. Diffusion models are also
score-based generative models [41, 45] which learn a score
function ∇zlogpt(z) as the gradient of the log probabil-
ity density with respect to data. Score Distillation Sam-
pling (SDS) [35, 45] is an optimization objective that uses
the score function of pretrained diffusion models to provide
gradients that guide the optimization of a differentiable im-
age parametrization [30] z = g(θ) towards the mode of
a conditional probability distribution p(zt | y). SDS has
demonstrated remarkable results in Text-to-3D generation
[5, 14, 22, 23, 25, 35, 45, 50, 58], but is known to encounter
issues such as over-saturation and over-smoothing [50].

Given an image z0 = g(θ), a pretrained diffusion model
predicts the noise component ϵ(zt, y, t) which is related to
the score function ∇zt logp(zt | y) by:

ϵ(zt, y, t) = −σt∇zt
logp(zt | y). (5)

Consequently, [35] proposes the SDS objective as:

∇θLSDS = Et,ϵ[γ(t)(ϵϕ(zt, y, t)− ϵ)
∂z0
∂θ

]. (6)

In 3D, z0 = g(θ) is a NeRF render where g(·) corresponds
to the volume rendering function and θ represents the NeRF
parameters. In 2D, g(·) is an identity transform and θ is the
pixel values of the image under optimization. In this paper,
we use the 2D formulation of g(θ).

3.2. Iterative 3D Synchronization (I3DS)

In our initial experiments, we observed that directly ap-
plying SDS on NeRF renders produces blurred details and
would fail to converge on detailed reconstructions. We pos-
tulate that this is because SDS supervision is only provided
over a small local patch of rays in each training step, which
does not optimize NeRF towards globally consistent fea-
tures. Rendering multiple patches concurrently is also in-
tractable due to significant GPU memory required. To re-
solve this issue, we propose Iterative 3D Synchronization
(I3DS) which disentangles upscaling and NeRF synchro-
nization by performing both processses in seperate alternate
stages.

Fig. 2 illustrates our I3DS framework. The first stage is
the upscaling-stage. Starting from a NeRF ωlr pretrained
from low resolution inputs, we render images in 4× reso-
lution from all training poses. Each rendered image is then
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Figure 3. Our RSD produces LR-consistent HR details by optimizing z′t−1 towards predicted denoised latents ẑt−1 following a linearly
decreasing time schedule. After optimization, the residuals hθ contain HR details that is added to z0 to obtain upscaled latents z′0, which
is decoded into LR-consistent upscaled images x′

0. Refer to the text in Sec. 3.3 for more details.

independently upscaled using RSD (refer to Sec. 3.3) with
SD×4 to generate high resolution details. Since the initial
rendered images are less detailed, the upscaling process can
generate varying HR details which may not be multi-view
consistent. The second stage is the synchronization-stage.
This stage resolves multi-view inconsistency by using the
RSD-refined images as training inputs for the NeRF ω that
is initialized from ωlr. During synchronization, NeRF ω
is updated using the standard NeRF training procedure [28]
where rays are randomly sampled across all training views.
Here, we leverage the view-consistent property of NeRF to
capture coherent details across views. This stage transfers
view-aligned details generated in the upscaling stage into
the 3D representation.

There is a synergistic effect between the upscaling and
synchronization stages. The synchronization-stage en-
ables NeRF to capture view-consistent details and incon-
sistent details are naturally discarded. Consequently, the
upscaling-stage receives increasingly detailed and view-
consistent input images rendered from NeRF. This allows
RSD to generate additional details with lower cross-view in-
consistency. Furthermore, since RSD is always conditioned
on the original LR training images, the I3DS process does
not degrade into degenerate solutions. Over successive iter-
ations, I3DS updates NeRF ω to learn highly detailed and
view-consistent features to produce SR NeRF ωsr.

Our I3DS process shares some similarity to NeRF edit-
ing approaches [9, 33] which also utilize an alternating
training regime to exploit the multi-view consistent prop-
erty of NeRFs. Nonetheless, we differ from [9, 33] by
performing optimization processes in both stages. Fur-
thermore, we optimize all renders concurrently and replace
all training images in a single batch after RSD optimiza-
tion to achieve efficient parallelization and reduce unnec-

essary image-to-latent encoding. This design consideration
achieves 4× reduction in optimization duration.

3.3. Renoised Score Distillation (RSD)

The upscaling-stage in I3DS involves upscaling NeRF
renders in 2D. A straightforward solution would be to
use ancestral sampling, which is the de-facto method for
diffusion-based upscalers. However, we find that using an-
cestral sampling with I3DS does not lead to high quality
results. Although ancestral sampling produces sharp SR
images, structural features may deviate from the LR im-
age conditioning which aggravates cross-view inconsisten-
cies (cf . Fig. 6 for visualization). Another approach would
be to use SDS optimization for 2D upscaling in lieu of an-
cestral sampling. However, SDS produces images that are
less detailed than ancestral sampling despite being LR con-
sistent. The over-smoothed results of SDS optimization,
which has also been observed in [50], limits I3DS from pro-
ducing high quality NeRFs. These observations lead us to
the idea of getting the best of both worlds – we propose
Renoised Score Distillation (RSD) to incorporate elements
of SDS optimization into the ancestral sampling process to
achieve detailed SR images that are also LR consistent.

As discussed in Sec. 3.1, ancestral sampling follows a
latent trajectory (zT , zT−1, ..., z1, z0) that gradually trans-
forms a Gaussian noise sample zT to a data sample z0.
Given a noisy latent zt obtained from encoding and nois-
ing a source image x0, we set our optimization target as
the previous timestep latents zt−1 of the ancestral sam-
pling trajectory. Additionally, we use a linearly decreas-
ing time schedule that follows ancestral sampling instead of
randomly sampled timesteps t as in SDS. As a result, we
incrementally build details onto our optimized image sim-
ilar to ancestral sampling. We find that our RSD is able
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to achieve sharper details compared to SDS and with im-
proved LR consistency compared to ancestral sampling. In
contrast to ancestral sampling that uses one noise predic-
tion ϵϕ(zt, y, t) to obtain zt−1 from zt, our RSD guides the
image under optimization (parametrized by latent residuals
θ) towards zt−1 over multiple noise predictions. Our opti-
mization objective is given by:

LRSD = ∥zt−1 − ẑt−1∥, (7)

where zt−1 is the current noised latent at t− 1, and ẑt−1 is
the predicted denoised latent from zt. Unlike SDS which is
defined as a loss gradient that is applied in z0 space, RSD
is formulated as a loss function in order to backpropagate
gradients through z′t−1.

Fig. 3 provides a detailed illustration of the RSD opti-
mization process. We first interpolate a randomly sampled
image patch x0 by 4× and encode it to latent z0 using the
pretrained VAE encoder of SD×4. We then create zero-
initialized learnable latent residuals hθ for each z0 such that

z′0 = z0 + hθ, (8)

where z′0 is the refined latents representing the upscaled
image x′

0. Subsequently, we apply the forward process in
Eq. (1) twice on z′0 at timesteps t and t − 1 to obtain two
noised latents z′t and z′t−1. The UNet backbone of SD×4
(parameterized by ϕ) then takes z′t and conditioning y (com-
prising text prompt, LR image, noise level) as input to pre-
dict noise residual ϵϕ(z′t, y, t).

We then pass ϵϕ(z′t, y, t) to Eq. (3) of the DDPM reverse
process to construct the predicted denoised latent ẑt−1. Fi-
nally, we compute the L1 error between z′t−1 and ẑt−1 using
Eq. (7) and backpropagate gradients through z′t−1 towards
hθ. After optimization, hθ contains the latent HR residuals
that can added to z0 to produce SR latents z′0. We can then
decode z′0 using the VAE decoder of SD×4 to obtain SR
image x′

0 that is used for training in the NeRF synchroniza-
tion stage of I3DS. In the supplementary, we provide the
pseudocode for I3DS and RSD. We also relate the formula-
tion of RSD to SDS and we show that RSD can be viewed
as a renoised variant of SDS.

4. Experiments
In this section, we provide both qualitative and quantita-
tive comparisons to demonstrate the effectiveness of the
proposed DiSR-NeRF. We also show ablation results under
with different upscaling and 3D synchronization methods.

4.1. Experimental Settings

We compare DiSR-NeRF with five baseline models, all of
which utilize the Instant-NGP [31] backbone:
• NGP. We train NGP only on LR images as a baseline

NeRF and render at HR resolution following [8].

• SD×4. NeRF trained over images independently up-
scaled (via ancestral sampling) by the SD×4 upscaler.

• NeRF-SR. We compare with NeRF-SR [44] without its
HR refinement module as it requires HR reference im-
ages.

• DreamFusion. We adapt the SD×4 upscaler to provide
SDS guidance under the DreamFusion [35] framework,
where SDS gradients are backpropagated through ren-
dered image patches to the NeRF parameters.

• IN2N. We adapt Instruct-NeRF2NeRF [9], and replace
the InstructPix2Pix editor with the SD×4 upscaler. IN2N
applies Iterative Dataset Update with ancestral sampling
to gradually replace training images with upscaled images
in each iteration.

4.2. Dataset and Metrics

We evaluate our models over the NeRF-synthetic [28]
dataset containing 8 synthetic subjects and the real-world
LLFF [27] dataset containing 8 real-world scenes. On the
NeRF-synthetic dataset, we use LR images of 400×400
resolution for training, and we render at 1600×1600 res-
olution. On the LLFF dataset, we train over LR images
of 504×378 resolution, and render at 2016×1512 resolu-
tion. When evaluating each scene, we use 100 test poses
distributed in a circular arrangement with all cameras di-
rected towards the scene center.

Since SR details are produced by a generative model,
different SR results can be valid for the same LR NeRF.
Consequently, we do not compare our SR results against
the HR ground truth. Instead, we follow [8] to use the
Naturalness Image Quality Evaluator (NIQE) [29] as a no-
reference evaluator to assess the quality of the rendered SR
views. The NIQE metric is a blind image quality analyzer
that measures statistical deviations against the natural scene
statistics of natural, undistorted images.

Following [12], we use the warped LPIPS metric to as-
sess consistency across viewpoints. The warped LPIPS
metric is given by:

Ewarp(Iv, Iv′) = LPIPS(Mv,v′ · Iv,W (I ′v)), (9)

where Iv and I ′v are renders from nearby viewpoints v and
v′, W (·) is a warping function and Mv,v′ is a warping mask.
The LPIPS [57] score is then computed between the target
and warped renders over the masked regions. We use the
predicted depths to backproject pixels in I ′v to a point cloud
in world space, and apply a point cloud rasterizer to render
the warped image W (I ′v) in viewpoint v. In our experi-
ments, we select v′ as the 3rd nearest test pose from v.

4.3. Qualitative Results

The qualitative comparisons are shown in Fig. 4 and Fig. 5.
Firstly, we observe that DiSR-NeRF produces clearer edges
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Figure 4. Qualitative Results on NeRF-Synthetic Dataset.

and sharper details compared to all baselines. For exam-
ple, Fig. 4 (3rd row), our DiSR-NeRF is able to generate
highly intricate details of the netting on the mast of the ship.
Secondly, as discussed in Sec. 3.2, DreamFusion (4th col-
umn) fails to converge and introduces severe blurring to the
rendered views. Instead, DiSR-NeRF resolves this effec-
tively by segregating upscaling and NeRF fitting with I3DS.
Lastly, we compare DiSR-NeRF against IN2N (5th column)
which uses ancestral sampling for upscaling. Across both
datasets, we see that our DiSR-NeRF consistently produces
sharper and well-defined details over IN2N. This validates
the effectiveness of our proposed RSD optimization over
ancestral sampling.

4.4. Quantitative Results

We show the quantitative results in Tab. 1. DiSR-NeRF
shows significantly improved NIQE scores compared to all
baselines, indicating that DiSR-NeRF is able to synthesize

Methods
NeRF-Synthetic LLFF

NIQE ↓ LPIPS ↓ NIQE ↓ LPIPS ↓
NGP 9.776 0.262 9.163 0.284
SDx4 6.286 0.189 7.461 0.201
NeRF-SR [44] 6.012 0.158 7.038 0.156
DreamFusion [35] 8.624 0.252 8.857 0.247
IN2N [9] 5.847 0.173 6.473 0.157
DiSR-NeRF (Ours) 5.386 0.144 5.544 0.141

Table 1. Quantitative comparison between DiSR-NeRF and the
baselines on NIQE and warped LPIPS.

views with greater perception quality including increased
detail and sharpness. Furthermore, our DiSR-NeRF also
achieves better warped LPIPS scores, validating the effec-
tiveness of I3DS in converging towards view-consistent de-
tails. Across both synthetic and real datasets, our DiSR-
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Figure 5. Qualitative Results on LLFF Dataset.

NeRF is able to effectively generate view-consistent SR de-
tails, validating its applicability to real-world scenarios.

4.5. Ablations

We also ablate the contributions of the various components
in DiSR-NeRF. The quantitative results of the ablations
are shown in Tab. 2 and the qualitative results in Fig. 7.
Firstly, we retain I3DS and replace the upscaling method
with SDS and ancestral sampling instead of RSD (Row 1-2
in Tab. 2). In both cases, replacing RSD results in an in-
crease in NIQE and LPIPS scores, indicating poorer visual
quality and lower view-consistency. This can also be ob-
served in the visual ablations in Fig. 7. Ancestral sampling
fails to produce sharp details in the SR NeRF as it tends
to generate high variance details which may be inconsistent
to the LR image conditioning, as shown in our 2D experi-
ments in Fig. 6. On the other hand, SDS produces NeRF
renders with increased blur compared to RSD. This effect

can also be observed from the 2D experiments in Fig. 6. We
hypothesize that the mode-seeking property of the SDS ob-
jective optimizes images towards modes which may be far
from typical samples [32]. Thus, SDS may guide an image
towards the mean of possible solutions which would result
in blurred details. Unlike SDS, RSD follows an optimiza-
tion trajectory similar to ancestral sampling, which guides
an image towards more plausible samples.

Methods
NeRF-Synthetic LLFF

NIQE ↓ LPIPS ↓ NIQE ↓ LPIPS ↓
w/o RSD (SDS) 6.273 0.175 5.903 0.164
w/o RSD (Anc.) 5.942 0.189 6.325 0.159
w/o I3DS 8.212 0.254 8.299 0.236
DiSR-NeRF 5.386 0.144 5.544 0.141

Table 2. Ablations on I3DS and RSD in DiSR-NeRF.
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Figure 6. Comparison of 2D upscaling results. Green boxes high-
light regions in ancestral sampling that deviate from LR condition-
ing (top left).

Figure 7. Quantitative ablations on upscaler method (Ancestral
sampling, SDS RSD) on DiSR-NeRF.

We also ablate I3DS by replacing it with the Dream-
Fusion framework. The results are shown in the 3rd row
of Tab. 2, which shows poor performance compared to our
DiSR-NeRF. This indicates that I3DS is an essential com-
ponent for super-resolution NeRF. Unlike Text-to-3D mod-
els which typically provide full image SDS supervision, the
SR scenario requires high-resolution SDS guidance. This
means small local patches need to be rendered at high reso-
lutions, and the NeRF can only be supervised over a small
region in each training step. As a result, each training step
guides the NeRF in different optimization directions and
thus preventing NeRF from converging towards high qual-
ity details. The segregation of the upscaling and NeRF syn-
chronization processes in our I3DS allows RSD guidance
to be efficiently applied without the memory constraints of
online rendering. Moreover, I3DS also allows the NeRF
synchronization to utilize batches of randomly sampled rays
across all training views which allows for more stable con-
vergence.

Figure 8. Qualitative comparison with Super-NeRF

4.6. Comparison with Super-NeRF

As the source code for Super-NeRF[8] is not publicly avail-
able and the manuscript contains insufficient details on the
evaluation method, we are unable to provide quantitative
comparisons with the published results. Nonetheless, we
conduct a qualitative assessment comparing Super-NeRF
and DiSR-NeRF based on available visual results in the pa-
per. The qualitative comparison is shown in Fig. 8. Under
similar settings, we observe that DiSR-NeRF can produce
sharper details and clearer edges in both examples. In the
LLFF-Flower scene, DiSR-NeRF is able to produce realis-
tic textures on the leaves in the background and is able to re-
solve details on the stigma of the flower. In the LLFF-Trex
scene, DISR-NeRF can generate clearer bone structures.

5. Conclusion

In conclusion, we propose DiSR-NeRF, a diffusion-guided
super-resolution NeRF framework that distils 2D super res-
olution priors to the 3D domain to generate view-consistent
high resolution details. DiSR-NeRF is able to achieve
NeRF super-resolution without requiring high-resolution
reference images or large multi-view image datasets. RSD
achieves highly detailed, LR-consistent upscaling, while
I3DS enables NeRFs to capture view-consistent details over
successive upscaling and synchronization cycles. We be-
lieve super-resolution methods such as DiSR-NeRF will
have significant practical applications especially for devices
equipped with low-resolution imaging capabilities.
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