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Abstract

We present a new egocentric procedural error dataset
containing videos with various types of errors as well as
normal videos and propose a new framework for procedural
error detection using error-free training videos only. Our
framework consists of an action segmentation model and a
contrastive step prototype learning module to segment ac-
tions and learn useful features for error detection. Based
on the observation that interactions between hands and ob-
jects often inform action and error understanding, we pro-
pose to combine holistic frame features with relations fea-
tures, which we learn by building a graph using active ob-
ject detection followed by a Graph Convolutional Network.
To handle errors, unseen during training, we use our con-
trastive step prototype learning to learn multiple prototypes
for each step, capturing variations of error-free step execu-
tions. At inference time, we use feature-prototype similari-
ties for error detection. By experiments on three datasets,
we show that our proposed framework outperforms state-of-
the-art video anomaly detection methods for error detection
and provides smooth action and error predictions.'

1. Introduction

We perform a wide range of procedural tasks in our per-
sonal life (e.g., cooking recipes, setting up devices, phys-
ical therapy routines) and professional life (e.g., medical
emergencies, mechanical repairs, assembling and operat-
ing instruments). The large number of daily tasks, the ne-
cessity of preparing the workforce for new tasks and en-
vironments and the growing population age calls for Wear-
able Intelligent Task Assistants (WITAs) that monitor and
guide users through familiar and unfamiliar tasks to im-
prove the accuracy and speed of task learning/execution.
This has motivated exciting recent research on learning
from instructional and procedural task videos, mostly fo-
cusing on learning step segmentation [2, 5, 17, 27, 29,
35, 36, 42, 46, 55, 59, 61-64, 74, 75, 80], recognition
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Figure 1. The normal and erroneous examples from the tasks of making

coffee, quesadilla, tea and oatmeal (top to bottom) in our dataset, showing
step Modification (M), Addition (A), and Slip (S).

[7,9,20,21, 38, 40, 47, 72], planning [8, 10, 56, 66, 70, 82]
and progress prediction [14] models from training videos
that correspond to correct executions of tasks.

On the other hand, the following may sound familiar:
in the morning you were in rush to make coffee and sand-
wiches and forgot to put some ingredients in your sandwich,
or when you were assembling an IKEA furniture and forgot
to put the washer into the bolt and after a few steps real-
ized it. Indeed, the chance of making errors during task
execution increases, when i) the complexity (e.g., duration,
number, difficulty) of steps or tasks increases, ii) we deal
with new tasks, iii) we are cognitively overloaded. There-
fore, detecting errors during or after task executions and
providing corrections for them is a much needed capabil-
ity in WITAs.
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Prior Works. Despite its importance, error understand-
ing in procedural tasks has not received much attention
in the literature, with almost all existing works addressing
segmentation, recognition and planning using correct/error-
free task videos [9, 21, 35, 42, 47, 70, 75, 82]. One limiting
factor has been the lack of a good egocentric procedural
error dataset with visually recognizable and diverse types
of errors. Therefore, few recent works have gathered error
datasets for assembling toys [13, 24] or chemical processes
[49], with [24] containing static view and [13, 49] contain-
ing egocentric view. However, only action ordering errors
are present in these dataset, where each action by itself is
still performed correctly. The recent work in [71] has re-
leased an egocentric two-person interactive task completion
dataset for assembling objects. The dataset contains errors
when performing a step, however, lacks other errors related
to omission, addition or modification of steps. Also, errors
are often quickly corrected by a human instructor at the be-
ginning of a step, which does not reflect the real-world error
scenarios where no human instructors are available.

Procedural errors are different from anomalies studied in
the anomaly detection literature [1, 4, 12, 30, 41, 48, 54, 68,
73, 7678, 81, 84]. Conventional anomalies correspond to
deviations from some regular pattern, are not goal-oriented
and are identifiable by their inherent semantics (e.g., a per-
son falling on the ground). On the other hand, procedu-
ral errors correspond to deviations from a procedure (e.g.,
missing, adding, modifying, incorrectly executing a step)
and depend on the goal, therefore require long-range tem-
poral reasoning. Additionally, most existing anomaly de-
tection methods work with static views, whereas egocentric
views pose challenges such as constantly changing scenes
and varying object sizes. As we show in the paper, existing
anomaly detection methods cannot properly address error
detection in egocentric procedural videos.

Paper Contributions. We present a new procedural error
dataset from egocentric cameras and with various types of
errors and also propose a new framework for procedural er-
ror detection. Our dataset consists of 28 hours of egocen-
tric videos from different procedural cooking tasks and con-
tains RGB, depth, audio, gaze and hand tracking modalities.
We temporally annotated videos with step labels, provide
ground-truth bounding boxes for objects and active objects
and annotate frames as being error or normal. We define
a new taxonomy of procedural errors (step omission, addi-
tion, modification, slip and correction) based on which we
gather normal and erroneous videos.

For procedural error detection by using only
normal/error-free videos during training, we propose
a framework that consist of an action segmentation and
a contrastive step prototype learning module. We learn
both holistic features and relational features (using active
object detection) and combine them for more effective
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Figure 2. The task graph of oatmeal (left) and coffee (right).
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action segmentation and error detection. To handle errors
that are unseen during training, we use a contrastive
learning approach to learn multiple prototypes for each
step, capturing variations of correctly performing a step.
By extensive experiments on three datasets, we show that
our framework improves over existing methods. We plan to
publicly release our code and the EgoPER dataset.

2. Related Works

Procedural Task Understanding. Learning from proce-
dural task videos has been studied under various setting,
such as action/step recognition, action/step segmentation
and procedure planning. Action recognition methods aim
to classify the action labels of short, trimmed video clips
by studying various end-to-end video backbone models
[7, 9, 20, 21, 38, 40, 47, 72]. Action segmentation meth-
ods take a step further to classify the action label of each
frame in long, untrimmed procedural videos, thus they fo-
cus on better modeling of long temporal relationships [2, 5,
17,27, 29, 35, 36, 42, 46, 55, 59, 61-64, 74, 75, 80]. Many
works also explore the segmentation task in un-, weakly-
or semi-supervised settings [3, 15, 16, 19, 22, 28, 32—
34, 39, 44, 44, 45, 51-53, 58, 60, 64, 85] to reduce the
amount of annotations. Procedure planning methods aim to
anticipate the actions between the given start and end state
observations [8, 10, 56, 66, 70, 82], thus they have focused
on modeling the dependencies between actions and flexi-
ble procedures to achieve certain goal states. To support
the tasks above, many procedural video datasets have been
released. While some datasets are egocentric, e.g., GTEA
[18], EGTEA [37], MECCANO [50], Assembly101 [57],
HoloAssist [71], most datasets are third-person view, e.g.,
Breakfast [26], Coin [67], CrossTask [85], ATA [24], etc.
There are other video datasets, such as Ego4D [25] and
EpicKitchen [11], yet their videos consist of many different
actions and are non-procedural. In this work, we propose
a new egocentric and procedural dataset in the cooking do-
main for procedure understanding and error detection.
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Normal Videos Erroneous Videos

Task #Vid. Min. # Actions # Vid. Min. Avg # errors

Coffee 32 84 24 35 93 2.2
Pinwheels 42 5.6 14 42 42 10.8
Tea 47 2.6 11 32 25 4.9
Quesadilla 48 1.6 9 32 1.8 4.9
Oatmeal 44 4.2 12 32 4.3 4.6

Table 1. Information about the EgoPER dataset. The number of actions
indicates the number of action classes including the background class.
Min. denotes the average length of videos in minutes. The average number
of errors per video reflects repetitive actions, e.g., not inserting toothpicks
5 times will be counted as 5.

Error Detection for Procedural Tasks. Error understand-
ing in procedural tasks has been an understudied problem
on two fronts: i) lack of an (egocentric) procedural error
dataset with visually recognizable and diverse types of er-
rors, ii) lack of a specialized framework to address detection
of various procedural errors. Recently, a few works released
error datasets for assembling toys [13, 24, 57] or chemical
processes [49]. However, they contain only action order-
ing errors, where each action itself is still performed cor-
rectly. [57] also assume having access to error videos during
training, which is restrictive. On the other hand, [71] has
released an egocentric two-person task completion dataset
for assembling objects with a performer wearing egocentric
cameras and an instructor watching videos and correcting
the performer in real-time. However, [71] does not contain
step omission, addition and modification errors, which we
will consider in addition to step slip errors. Also, the errors
in [71] are often quickly corrected by a human instructor
at the beginning of a step, which does not reflect the real-
world scenarios where the performer often proceeds with
their action before realizing the presence of error.

Anomaly Detection. There has been a large body of lit-
erature on anomaly detection in videos, most focusing on
surveillance videos [1, 4, 12, 30, 31, 41, 48, 54, 68, 73, 76—
78, 81, 83, 84]. Unlike procedural errors, which correspond
to deviations from a procedure (e.g., missing, adding, mod-
ifying, incorrectly executing a step) and depend on the goal,
conventional anomalies are not goal-oriented and are iden-
tifiable by their inherent semantics (e.g., a person falling
on the ground). Moreover, most existing anomaly detec-
tion methods work with static views, whereas egocentric
views pose challenges such as changing scenes, head mo-
tions and varying object sizes. As we show by our exper-
iments, anomaly detection methods cannot effectively ad-
dress error detection in egocentric procedural videos.

3. EgoPER Dataset

We describe the data collection and annotation for our Ego-
centric Procedural ERror (EgoPER) dataset, see Figure 1.
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Figure 3. Examples of the errors in EgoPER dataset. Orange: Omission.
Blue: Correction. Red: Modification. Purple: Slip. Green: Addition.

3.1. Data Collection

We have collected a multimodal egocentric procedural error
dataset for cooking tasks from 11 participants at two dif-
ferent environments using Microsoft HoloLens2. We gath-
ered normal and erroneous egocentric videos while captur-
ing RGB, depth, gaze, audio and hand tracking data for task
executions. Prior to collecting data, we manually built the
task graph for each recipe, which encodes all possible ways
that the recipe could be made (see Figure 2).

Using the task graphs, we generated different transcripts
for correct and incorrect executions of each task. For correct
(normal) videos, the sequence of steps is consistent with
the task graph (although each video can have a different se-
quence from others) and the execution of each step follows
the specific description of the step. For incorrect (abnormal)
videos, there will be some deviation with respect to the task
graph, e.g., some steps are omitted, some unnecessary steps
are added, some steps are modified (e.g., using a different
tool or different ingredients from the ones specified by the
recipe) or some steps are performed with errors (e.g., drop-
ping the tortilla or pouring water into the wrong mug).

After recording each video, settings such as the set of ob-
jects on the desk, initial object locations and the room light-
ing are randomly changed to better capture the real-world
variability in task executions and prevent the undesired bias
towards certain configurations of objects for recognition
(e.g., placing tortilla and jam on the table while making tea).
More details are provided in the supplementary materials.

3.2. Data and Annotations

EgoPER contains multimodal (RGB, depth, audio, gaze,
hand) data from 5 tasks/recipes: making pinwheels, que-
sadilla, oatmeal, coffee, and tea. It consists of 386
untrimmed videos with 213 normal and 173 erroneous
videos for a total of 28 hours of footage. Table | shows
the detailed information for each task. The video resolu-
tion is 1280 x 720 pixels with a frame rate of 15 fps. Ta-
ble 2 compares EgoPER with other procedural task video
datasets. Notice that our dataset is egocentric and has both
object and active object bounding boxes, errors and multi-
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Dataset name Has Errors ~ Egocentric ~ Obj bbx  Active obj bbx =~ Multimodal Domain  Hours  # Vid. Year
GTEA [18] X v X X X cooking 0.6 28 2012
50 Salads [65] X X X X X cooking 4.5 50 2013
Breakfast [26] X X X X X cooking 77 1,712 2014
EGTEA [37] X v X X v cooking 28 10,321 2018
CrossTask [85] X X X X X multiple 375 4,700 2019
COIN [67] X X X X X multiple 476 11,827 2019
IKEA [6] X X v X v assembly 353 1,113 2021
MECCANO [50] X v X v v assembly 7 20 2021
Assembly101 [57] v v X X X assembly 167 1,425 2022
ATA [24] v X v X X assembly 24.8 1,152 2023
HoloAssist [71] v v X X v assembly 166 2,221 2023
EgoPER (Ours) v v v v v cooking 28 386 2024

Table 2. Comparison between EgoPER with the existing procedural task datasets.

modal data. From our results, utilizing active object infor-
mation can achieve a better error and action understanding
in egocentric videos.

Error Taxonomy. EgoPER aims at error understanding
from cooking egocentric procedural videos. We define error
as any deviation from the task graph. An erroneous video
contains one or several of the following types of steps.

— Step Omission: corresponds to skipping one or multiple
steps, e.g., not checking water temperature in the kettle, or
not putting bananas on the tortilla.

— Step Addition: corresponds to having unnecessary extra
steps that are not in the task graph, e.g., adding raisins to
the tortilla when making pinwheels.

— Step Modification: corresponds to performing a step in
a different way than the one specified by the recipe, e.g.,
using a different tool such as stirring using knife instead of
spoon or using different ingredients such as using sugar to
sweeten the tea instead of honey. This does not necessarily
change the outcome of the step.

— Step Slip: corresponds to executing a step in a way that
leads to not achieving the goal of the step, e.g., adding water
to a different bowl from the one containing oats, or dropping
tortilla on the floor. Therefore, a slip is an error that needs
corrective action(s) subsequently.

— Step Correction: corresponds to performing an action to
mitigate the effect of an slip error, e.g., transferring water
from the second bowl to the one containing oats or discard-
ing the tortilla on the floor and picking a new one.

Annotations. We annotated the start and end time of each
step, including the normal steps and different error-related
steps defined above. Thus, our dataset has dense framewise
annotations with action labels and whether each frame has
error or not. For videos that contained one or multiple er-
rors, we also annotated the type of error (defined above) in
the associated frames. In addition to framewise step and
error annotations, we annotated object and hand bounding-
boxes for at least three frames (beginning, middle, end) of

every step segment and also specified which objects are ac-
tive (i.e., objects related to the step) or inactive, see Figure
5. We additionally gathered the contact state of the active
objects with hands (touching or not touching).

4. Procedural Error Detection

In this section, we present our Egocentric Procedural Error
Detection (EgoPED) framework.

4.1. Problem Setting

Assume we have a training set of normal (error-free) ego-
centric videos from a given task, which has S steps. Each
video n in the training set consists of pre-extracted frame-
wise features and ground-truth step labels as

)]

where x,, ; denotes the pre-extracted feature vector of frame
t in video n and y,, + € {1,...,5 + 1} denotes its ground-
truth label. We use I3D [9] to extract framewise features
and use the additional label S + 1 for the background class,
i.e., task-irrelevant actions and additional steps not seen in
the training videos. Notice that we assume i) having only
normal (error-free) videos during training, ii) having full su-
pervision (framewise step labels) for training videos. We do
not assume access to task graphs during training and testing.
During inference, a test video could be normal or erro-
neous. Our goal is to segment the video into different steps
and background and find all frames, if any, in the test video
that correspond to errors, defined in Section 3.2. In the pa-
per, we consider the offline action segmentation and error
detection setting, where we have an entire video at inference
time. This is particularly useful for task evaluation and pro-
viding feedback after task execution to improve learning.

4.2. EgoPED Framework

Xn = (mn,ly Ln,2y-- -)a yn = (yn7layn,27 .. ')7

We propose EgoPED, which is a contrastive learning-based
framework for simultaneous action segmentation and error
detection in egocentric procedural videos, see Figure 4. Our
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Figure 4. EgoPED uses an action segmentation backbone for
holistic feature learning and an active object detection (AOD) and
GCN for relational feature understanding. We use both types of
features for final action predictions as well as in a contrastive
step prototype learning module, which learns multiple prototypes
per step capturing different variations of the step across error-free
videos. We use these prototypes for detecting deviations from
steps, hence, errors.

method leverages composite features by aggregating holis-
tic features with learned relational graph features, has an ac-
tion segmentation model that learns to segment videos into
steps or background and a contrastive step prototype learn-
ing (CSPL) module that learns multiple prototypes for each
action to allow error detection at inference time.

4.2.1 Action Segmentation with Hybrid Features

To assign a step label to every frame in a long and
untrimmed video, we use a temporal action segmenta-
tion (TAS) model. TAS consists of an action segmenta-
tion backbone, which receives pre-extracted features X' =
(®n,1,Tn 2, ..., ) and learns refined holistic framewise fea-
tures Z" = (2h |,z ,....,) by capturing long-range tem-
poral dependencies among frames. TAS has also an action
classifier head, which assigns a label to each frame using its
refined feature vector. As we show in the experiments, our
error detection method works with any existing TAS model.

We use TAS not only for action segmentation, but also
for error detection. Given the fine-grained nature of most
errors, which correspond to small deviations from the cor-
rect way of performing a step (e.g., using knife instead of
spoon for stirring or spilling coffee beans), it is important to
capture fine-grained frame details that are mostly ignored
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Q—0O [ ]
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Figure 5. Our frameworks detects active from non-active objects (left)

and use them to build a relational graph (right) for better feature learning
and subsequently action segmentation and error detection.

by holistic pre-extracted and refined framewise features. To
do so, we leverage an active object detection (AOD) model,
which extracts bounding-boxes from objects and hands and
provides contact states between objects with hands (objects
that are manipulated by hand are active), see Figure 5 (left).

Next, we build a graph for each frame whose nodes cor-
respond to object classes and its edges connect active ob-
jects together, see Figure 5 (right). For example, when a
user is pouring water from a kettle with right-hand into a
mug held with the left-hand, the active objects are the two
hands, kettle and mug and they will be connected by edges.
Notice that this graph allows us to encode fine-grained and
relevant scene information about how the user interacts with
the step-relevant objects and subsequently to better detect
errors, as we also show in our experiments. We use a Graph
Convolutional Network (GCN) to extract relational features
from our interaction graph Z9 = (2} 1,2 ,,...,) (see
Section 5 for details). We use the concatenation of the two
types of features z,,; = [ZZ HZ ] as input to the action
classification head of TAS and our step prototype learning
module, which we describe next.

4.2.2 Contrastive Step Prototype Learning (CSPL)

During training, we have seen only normal videos corre-
sponding to correct task executions. Therefore, it is not pos-
sible to train an error detection head on hybrid features to
classify a frame into normal or error. To address this chal-
lenge, we propose to learn multiple prototypes for each step
to capture normal ways of performing it. Therefore, erro-
neous frames can be detected by measuring similarities to
these normal step prototypes.

More specifically, for each step ¢ € {1,2,...,5 + 1},
we use the hybrid features Z = (25,1, 2n,2,--.,) to learn
k prototype vectors C; = {¢;1,...,¢;x} using Kmeans.
They represent different variations of the step across dif-
ferent videos. To make the features of frames/prototypes
associated with the same action distinct from the features
of other actions, we use contrastive learning using InfoNCE
[69]. For a video n, let A,, denote the set of its ground-
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Method Quesadilla Oatmeal Pinwheel Coffee Tea All
etho EDA AUC EDA AUC EDA AUC EDA AUC EDA AUC EDA AUC
Random 199 500 11.8 500 157 500 820 500 170 500 145 50.0
HF2-VAD [43] 345 626 254 623 29.1 527 100 596 366 62.1 27.1 599
HF2-VAD + SSPCAB [54] 304 609 253 619 339 517 100 601 354 632 270 596
S3R [73] 526 518 478 616 505 524 163 510 478 579 43.0 549
EgoPED (with AF) 627 656 514 651 596 550 553 583 560 660 57.0 62.0

Table 3. Error detection results of different methods on the EgoPER dataset for each task and the average over all tasks.

truth actions. For each action ¢ € A, in video n, let P, ;
be the set of ‘positive’ frames that belong to action ¢ and
let Nn,t be the set of ‘negative’ frames from other actions.
We use the cosine similarity function cos(+, ) to compute
the similarity between a frame z,; belonging to action %
(i.e., yn,+ = ©) and the closest prototype from C;, denoted
by c;,, as well as the similarity between c; ;, and several
negative examples in V,, ; and form

+ cos(€; 1, Zn,t)
sti= ), exp(—— =),

tE'Pny,; T (2)
. cos(¢i,, Znt')
Spi = Z exp — )

t'eN, +

where 7 is a learnable temperature value. We then form the
contrastive step prototype learning loss as

Log = — Zlog( e ) 3

The final loss £ to train our method consists of Ly for
contrastive step prototype learning and the temporal action
segmentation loss L,; from the backbone we use.

4.2.3 Inference

At the inference time, we use the learned action segmen-
tation model and the learned step prototype sets {C; }S L
We apply the action segmentation model on the test v1deo,
which gives labels to all frames. We then compute the sim-
ilarities between a frame and prototypes associated with its
predicted action label and take the maximum similarity. We
use a threshold 6; for each step ¢ to decide if a frame labeled
as ¢ is normal or erroneous: if the similarity between the
frame and the closest prototype of step ¢ is lower than the
threshold, it is classified as error, otherwise normal. After
classifying frames as normal or erroneous, we use majority
voting on the predictions of the frames in a step segment to
determine the final prediction of the segment as being nor-
mal or erroneous. To set 6;, we compute the mean p; and
standard deviation o; from the similarities of all the frames
belonging to step 4 in the validation set and 6; = u; +v - oy,
where v € {—2.0,—1.9, ..., 1.9, 2.0} is a hyper-parameter.
Notice that the above approach, using which frame is la-
beled as erroneous or normal, applies to all error types ex-
cept omission error. For omission error detection, we first

find the closest sequence of steps among training videos to
the predicted steps in the test video, using Edit distance. Let
D denote the set of predicted steps from the output of the
action segmentation and G be the set of steps corresponding
to the best matched training sequence. We estimate the set
of omitted steps as D, = G\D.

5. Experiments
5.1. Experimental Setup

Dataset. We perform evaluation on EgoPER and HoloAs-
sist [70] when using framewise annotations and on ATA
[24] using weak supervision. We train our model and the
baselines on each task in EgoPER separately using RGB
data (we do not use audio, depth, gaze for any method and
leave it for future studies). HoloAssist consists of 20 tasks
with 2,221 egocentric videos, and its errors correspond to
slip errors, e.g., unable to insert a battery into GoPro. We
use verbs and nouns as the labels of actions. ATA has 1,152
videos from 4 viewpoints and errors correspond to omission
or reordering. For EgoPER, we use 80% of normal videos
for training, 10% for validation, and the remaining 10% plus
all erroneous videos for testing. For HoloAssist and ATA,
we follow the same splits mentioned in their work.

Evaluation Metrics. We report the performance of error
detection and action segmentation. For error detection, we
use different metrics. First, we compute segment-wise Er-
ror Detection Accuracy (EDA) as D./GT,, where D, and
GT, are the total number of correct predictions and seg-
ments of all test videos. The ground-truth action segment is
erroneous if some of its frames have an error, otherwise cor-
rect. Second, we follow [23] and report micro Area Under
the Curve (AUC) based on framwise error predictions. For
omission error, we use Omission Accuracy (O-Acc), which
measures if each ground-truth omitted error is detected, and
Omission Intersection over Union (O-IoU), which equals to
|GT, n D,|/|GT, v D,|, where GT, is the set of ground-
truth omission errors. Finally, for action segmentation, we
report the conventional TAS metrics (Acc, IoU, edit score
and F1@0.5) as in [24].

Baselines. Given the lack of a prior general method for
procedural error detection, we compare our EgoPED frame-
work with video anomaly detection baselines. HF?-VAD
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Verb Noun
Method EDA AUC EDA AUC
Random 112 500 13.0 50.0
HF2-VAD [43] 240 380 232 382
HF2-VAD + SSPCAB [54] 237 380 229 39.1
S3R [73] 512 486 51.6 495
EgoPED (MSTCN++) 456 551 678 543
EgoPED (DiffACT) 682 464 714 476
EgoPED (AF) 68.0 473 710 508

Table 4. The results of error detection on HoloAssist.

Method EDA AUC

EgoPED (MSTCN++) 484 58.5
EgoPED (DiffACT) 492 619
EgoPED (AF) 57.0 62.0

IoU Edit F1@0.5 Acc

479 712 528 74.6
39.4 638 476 695
446 613 475 685

Table 5. Error detection and segmentation results for different TAS mod-
els on the EgoPER dataset.

[43] adopts optical flow reconstruction and frame prediction
to determine if the next frame is an error. HF?-VAD with
SSPCAB module [54] uses a mask convolution structure
to enhance the capacity of the feature extractor. S3R [73]
generates normal and anomalous features for classification
by using pseudo anomaly samples from dictionary learning.
We also report the performance of a Random method, which
randomly predicts error or normal label for each frame with
the same probability. Given that HoloAssist and ATA do
not provide active object labels, we run our method on them
without the active object detection branch.

Implementation details. We use and compare three tem-
poral action segmentation models as our action segmen-
tation backbone and classifier: ActionFormer (AF) [79],
MSTCN++ [36] and Diffusion Action Segmentation (Dif-
fACT) [42]. AF generates frame-wise step and boundary
predictions. We follow the same inference step as in AF
by combining boundary predictions and the corresponding
steps with non-maximum suppression. For MSTCN++ and
DiffACT, we simply use the frame-wise step predictions to
find the segment of each step. To obtain the graph fea-
ture vector for each frame, we use a 3-layer Graph Convo-
lutional Networks (GCN). We trained a fasterRNN model
to output object and hand bounding-boxes and the object
classes and states (active or inactive).

We first pretrain our model with the temporal action seg-
mentation loss L and then end-to-end train it with all
losses. We randomly use 50 percent of training videos to
form prototypes and use the rest to train the model in ev-
ery epoch of training. During inference, we use all training
videos to generate prototypes. We compute the mean (; and
standard deviations o; for the step threshold 6; using the
validation set that also consists of only normal videos. By
default, we use 2 prototypes to represent each step and use 2
negative segments for each positive segment. We show the
effect of these hyperparameters in the experiments.

50 100

a7.0 384
32 32
1 HH

AF DiffACT MSTCN++

56.7 56.7
60 [~ 476 4t |

inin

DiffACT MSTCN++

O-IoU
O-Acc

Figure 6. Omission detection results of our method for three TAS models.

AOD  # Prototypes # Negatives EDA  AUC

v 1 2 55.5 58.2
v 3 2 55.4 58.8
v 4 2 55.7 57.8
v 2 1 574 60.4
v 2 3 55.8 60.0
v 2 4 56.7 59.8
X 2 2 52.5 58.7
v 2 2 57.0 62.0

Table 6. Ablation results for the effect of active object detection (AOD),
number of step prototypes and negative frames for contrastive learning.

5.2. Experimental Results

Error Detection Results. Table 3 shows the error detection
performance of different methods on EgoPER. Our method
outperforms all the baselines, especially on the EDA score,
achieving 57.0% over the dataset compared to 43% by S3R
and 27.0% by HF?-VAD. On AUC, our method achieves at
least 2.1% higher score than other methods. The predictions
of HF?-VAD are framewise and often fluctuate (see Figure
7), which leads to much lower EDA score.

Table 4 shows the error detection results on the HoloAs-
sist dataset when we use the ground-truth verb or noun as
the label of each ground-truth segment. Our method sig-
nificantly improves the EDA score by 17% over baselines
for both cases. This is due to having a better understanding
of action segments provided by our method and the con-
trastive learning, which allows having refined representa-
tions of frames and step prototypes. Notice that for HoloAs-
sist, we did not use the AOD branch in our framework, since
i) the dataset does not have object bounding-boxes, ii) ap-
plying our trained AOD model for cooking on HoloAssist
and ATA, which are for assembly, did not work well.

Omission Error Detection. Figure 6 shows the perfor-
mance of detecting omission error when using the tran-
scripts of training videos vs using the ground-truth task
graph (the latter would be an upper bound). Notice that
the scores for using training transcripts are close to using
the ground-truth task graph. This is because our dataset has
diversity of action sequences among normal videos. For
all methods, the O-IoU scores are lower than O-Acc, since
some normal steps are not detected in the action segmen-
tation and therefore are predicted as omission. It is worth
mentioning that in our dataset, omission errors and other
types of errors often happen together, making the (omis-
sion) error detection challenging.
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Oatmeal Quesadilla

Figure 7. Qualitative error detection results for tea, oatmeal, and que-
sadilla tasks in EgQoPER. Top row shows the ground-truth action segmenta-
tion, where each color represents a step. Second row visualizes some error
frames. Third, fourth, fifth, and sixth rows show, respectively, ground-
truth, HF2-VAD, S3R and our predictions of errors (in red).

Effect of Action Segmentation Models. Table 5 shows
the effect of the action segmentation model in the EgoPED
framework. The error detection accuracies of our method
do not change much while using different TAS models.
This is an advantage that shows our active object detection
branch and the contrastive prototype learning can work well
with off-the-shelf action segmentation models. However, as
the results show, using that AF leads to better error detection
performance. This is because AF has a boundary detection
module, allowing better handling of additional, background
and error-related actions by finding their boundaries.

It is worth noting that better action segmentation accu-
racy itself does not necessarily translate to better error de-
tection. For example, MSTCN++ obtains higher F1@0.5
score (52.8%) than AF (47.5%) but lower AUC (58.7) than
AF (62.0). This is because a model (e.g., MSTCN++) can
learn features that are discriminative across actions yet fea-
tures of errors of an action are less distinct from normal
execution of the same action. Thus, the model can easily
classify those frames into normal steps rather than errors.

Ablation Studies. Table 6 shows the ablation of using ac-
tive objects detection with GCN, effect of different number
of step prototypes as well as negative examples in our con-
trastive framework for the AF action segmentation model
(results for other segmentation models were similar). No-
tice that using active object detection with GCN leads to
4.5% and 3.3% improvement of the EDA and AUC, respec-
tively. This demonstrates the effectiveness of leveraging ac-
tive (step-relevant) objects for better error understanding.
Having more than one prototype per step helps, improving
the EDA and AUC by 1.5% and 3.8%, respectively. How-
ever, further increasing the number of prototypes does not
help, due to over-representation of each action/step. We be-
lieve automatically selecting the right number of prototypes
for each action to better capture variations can improve the
results, however, it is a non-trivial problem, which we leave
for future studies. Finally, notice that our results are not
sensitive to the number of negative samples or prototypes.

Qualitative Analysis. Figure 7 visualizes the ground-truth

Method Acc  IoU Edit F1@0.5  Flegor

MuCon [64] 526 427 313 240 435
TASL [44] 405 277 573 271 0.0
CDFL [34] 592 455 600 519 0.0
ATA [24] 66.1 577 688 620 59.2
EgoPED (MSTCN++) w/o AOD ~ 63.6 546 660 572 575
EgoPED (DiffAct) w/o AOD 679 575 740 637 61.7
EgoPED (AF) w/o AOD 713 6L1 692 640 53.9

Table 7. Results of weakly-supervised TAS and error detection on ATA.

«1 Il I |
«1 HE | [ I |

Figure 8. Action segmentation results on Coffee in EgoPER.

Ours

and predictions of our framework, HF?-VAD and S3R. Our
method can capture step segments and errors simultane-
ously. However, HF2-VAD generates fluctuating error pre-
dictions, which shows a disadvantage of video anomaly
detection models for error detection in procedural videos.
Figure 8 shows that our method can more accurately seg-
ment videos than the baseline TAS model (AF), especially
for recognizing background segments (in purple), thanks to
leveraging relational features and contrastive learning.

Weakly-Supervised Action Segmentation and Error De-
tection. Table 7 shows the results on the ATA dataset
[24]. For fair comparison, we follow its setting to learn our
model with weak supervision and without AOD. We gen-
erate pseudo framewise labels using [34] for training and
use the framewise predictions without the post-processing
from [24] at inference. We observed that results from the
AF backbone contain many short incorrect action segments,
leading to a lower Edit score, F1@50 and eventually low
Flepor- Overall, our method with DiffAct backbone outper-
forms all previous methods.

6. Conclusions

We studied error detection in egocentric procedural task
videos. Our EgoPED framework has an action segmen-
tation model (can be any off-the-shelf model) and a con-
trastive step prototype learning module to learn useful fea-
tures (using holistic and relational featurss) for action and
error understanding. We introduced the EgoPER dataset
with both normal and erroneous procedural videos. Our ex-
periments on three datasets showed that our framework can
leverage any action segmentation model easily and obtain
promising results on detecting various types of errors.
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