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Abstract

Recent advances in the diffusion models have signifi-

cantly improved text-to-image generation. However, gener-

ating videos from text is a more challenging task than gen-

erating images from text, due to the much larger dataset and

higher computational cost required. Most existing video

generation methods use either a 3D U-Net architecture that

considers the temporal dimension or autoregressive gener-

ation. These methods require large datasets and are limited

in terms of computational costs compared to text-to-image

generation. To tackle these challenges, we propose a simple

but effective novel grid diffusion for text-to-video genera-

tion without temporal dimension in architecture and a large

text-video paired dataset. We can generate a high-quality

video using a fixed amount of GPU memory regardless of

the number of frames by representing the video as a grid

image. Additionally, since our method reduces the dimen-

sions of the video to the dimensions of the image, various

image-based methods can be applied to videos, such as text-

guided video manipulation from image manipulation. Our

proposed method outperforms the existing methods in both

quantitative and qualitative evaluations, demonstrating the

suitability of our model for real-world video generation.

1. Introduction

The advancement of diffusion models has resulted in sig-

nificant improvements in the performance of text-to-image

models [9, 18, 23, 24, 26]. Unlike GAN-based models, the

diffusion model is easier to train, offering desirable proper-

ties such as distribution coverage, a stationary training ob-

jective, and easy scalability [8]. Based on these strengths,

various studies [5, 16, 45, 47] are being conducted to ma-

nipulate or generate images from text using diffusion, and

research on generating videos [4, 6, 12, 15, 17, 29] from text

is also actively being pursued. However, video generation

is more challenging than image generation because videos

have higher dimensions [17], there is a scarcity of text-video

*These authors contributed equally to this work.

datasets [11, 15], and it incurs higher costs [15, 17, 34] than

generating an image from text. Previous studies [4, 15, 17,

29] generate a video by using additional temporal dimen-

sions and super-resolution models to maintain the temporal

consistency and resolution of videos. This characteristic of

videos makes efficiency an important issue in video gen-

eration, which is one reason why many video generation

studies [12, 17, 46] focus on efficiency. Unlike the exist-

ing video generation paradigm, we propose novel grid dif-

fusion models that reduce the high dimensionality of videos

to that of images, allowing for high-quality video generation

without substantial GPU memory costs and a large paired

dataset. We leverage the strengths of diffusion actively to

generate videos from text.

Our model consists of two stages: 1) key grid image gen-

eration and 2) autoregressive grid image interpolation. To

reduce video generation to image generation, we select four

frames from the video in chronological order and generate

an image as in Figure 2, called a key grid image. The image

consists of four inside frames that represent the video gener-

ated from the text. We fine-tune a pre-trained text-to-image

model [26] using the prompt as the condition to generate

the key grid image. According to Stable Diffusion [26], due

to VAE latent in representing global spatial image structure,

we can prevent the naive generation of the four similar in-

side frames and generate individual inside frames in the key

grid image with temporal consistency.

However, unlike prior text-to-video generation mod-

els [13–15, 17, 29, 34] that generate only 16 frames, our

key grid image consists of four inside frames. Therefore, we

need to interpolate inside frames of the key grid image while

maintaining temporal consistency and order. Since we re-

duce the video to an image dimension, we can use an image

manipulation method [5]. Inspired by [5], we propose an

autoregressive grid image interpolation method. Our inter-

polation model takes the masked grid image as the input and

the previously generated key grid image as the condition.

Our model concatenates the embedding spaces of the two

images in the latent dimension. This enables us to generate

coherent video frames that are consistent within the current

grid image and with the previously generated grid image.
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Also, to generate more frames, we use the next key grid

image generation model by autoregressively using the pre-

vious key grid image as a condition. This approach allows

our model to maintain temporal consistency and generate

videos with more than 28 frames.

Additionally, since we represent a video as a grid im-

age, our model can be applied to various applications with

image-based models, such as video manipulation from us-

ing image manipulation.

In our experiments, we achieve better performance than

existing text-to-video models without large paired training

datasets and can generate more frames with a fixed amount

of GPU memory costs. These results indicate that our grid

diffusion for text-to-video generation can be applied in the

real world.

In summary, our contributions are as follows:

• We propose simple but effective novel grid diffusion mod-

els for efficient text-to-video generation by reducing the

temporal dimension of video.

• We generate high-quality videos using a fixed amount of

GPU memory regardless of the number of frames and less

training data.

• Since our model represents video as grid image, one may

easily apply image based models for corresponding video

tasks such as video manipulation and video style editing.

• In experimental results, our model is able to generate

faithful and high quality videos from text and outperforms

baselines in both quantitative and qualitative evaluations.

2. Related Work

Text-to-Image Generation. Research on generating high-

quality images from text has been long studied [25, 38, 42,

44], and recent advancements in diffusion models have en-

abled the generation of high-quality images from general

text, leading to significant societal impact. Recent stud-

ies have utilized architectures such as Transformers, vari-

ational autoencoder (VAE), and diffusion models to gen-

erate higher-resolution and more general images from text

descriptions. For instance, DALLE [23] and Parti [41]

train Transformer models on large-scale text-image paired

datasets to enable the generation of images from general

text inputs. On the other hand, models like GLIDE [18],

DALLE2 [24], and Stable Diffusion [26] utilize diffusion

models to generate images. These diffusion-based mod-

els have shown promising results in image generation tasks.

We propose an approach that leverages the strengths of dif-

fusion models and uses Stable Diffusion [26] which has

been pre-trained on large-scale text-image pair datasets, to

generate high quality videos from text without the temporal

dimension.

Text-to-Video Generation. Text-to-video generation is

confronted with two major challenges: the lack of a large-

scale high-quality text-video dataset and the complexity

of modeling the temporal dimension [1, 29]. Make-A-

Video [29] extends a diffusion-based text-to-image model,

DALLE2 [24], to text-to-video by leveraging joint text-

image priors and introducing super-resolution strategies

for high-definition and high frame-rate video generation.

Video diffusion models [14] trains image and video jointly

with the 3D U-Net diffusion model architecture. Latent-

Shift [12] generates video by shifting the spatial U-Net fea-

ture map forward and backward in the temporal dimen-

sion which enables to ensure temporal coherence in the

video and efficiency. Also, the PYoCo [11] extends text-

to-image diffusion models into a 3D dimension and fine-

tune a pre-trained diffusion model. Additionally, it utilizes

a noise prior and a pre-trained eDiff-I [3] model for gener-

ating videos. Despite active research being conducted in the

field of text-to-video generation, there are still challenging

issues due to the complex model structure and large train-

ing data required. We address these problems through a

simple architecture with an effective approach, presenting

a new paradigm of text-to-video generation without large

text-video paired training datasets.

3. Method

We propose a simple but effective novel approach for text-

to-video generation using a grid diffusion model. As shown

in Figure 1, our model consists of two main stages: (i) key

grid image generation and (ii) autoregressive grid image in-

terpolation. In the first stage, we generate a key grid im-

age that represents video from the given text. In the second

stage, we interpolate the generated key grid image to gen-

erate the video. This approach enables us to generate high-

quality videos with a fixed amount of GPU memory costs

and less training data than existing text-to-video generation

models [13–15, 17, 29, 34], and also allows for video ma-

nipulation in the image dimension.

3.1. Key Grid Image Generation

To generate videos by reducing the temporal dimension, we

generate a key grid image. The key grid image consists

of four inside frames representing the primary motions or

events of the video. Figure 2 shows key grid image gener-

ation process and model training overview. In training, we

first select four frames from the video in chronological or-

der. Second, we arrange the frames in the selected order.

The generated key grid image has a resolution of 512×512

and is composed of four inside frames, each with a resolu-

tion of 254×254. To train key grid image generation model,

we fine-tune a Stable Diffusion [26] model pre-trained with

LAION-5B [28] on 0.1 million samples of Webvid-10M [2].

As described in [26], VAE latent may capture global spatial

structure in image, therefore we can encode temporal dy-

namics order with the same interval. Also we empirically
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Figure 1. Overview of our approach. Our approach consists of two stages. In the first stage (a), our key grid image generation model

generates a key grid image following the input prompt. In the second stage (b), our model generates masked grid images by applying

masking between each of the four frames and performs a 1-step interpolation using ’Fill in the blanks,’ as a prefix with the prompt. Then,

our model conducts a 2-step interpolation with the 2-step interpolation model, using the masked grid image from the 1-step interpolation

images as input.

Figure 2. Visualization of key grid image generation model

training. We train the key grid image generation model with

2D U-Net after representing the video as a key grid image, con-

ditioned on the prompt.

find that the key grid image dataset adequately reflects mo-

tion, and therefore, our key grid image generation model

effectively represents scene changes and dynamic motions.

3.2. Autoregressive Grid Image Interpolation

Since our key grid image is composed of a total of four in-

side frames, more frames are required to generate a video.

In addition, it is desirable to have each frame connected to

each other and keep temporal consistency between frames.

Therefore, we propose and train interpolation models to

generate the output grid image conditioned on the previ-

ously generated grid image and the masked input grid image

in an autoregressive manner. As shown in Figure 1, our in-

terpolation models are composed of two models (1-Step In-

terpolation and 2-Step Interpolation). We train interpolation

models using grid images with different intervals for each

model. Specifically, as shown in Figure 3, we use a grid im-

age which is masked on the second and third frames as an

input so that our model can interpolate and generate frames

between the first and fourth frames in the grid image. Build-

ing upon Instructpix2pix [5] approach, we concatenate the

embeddings of the input grid image and the conditioning

previous grid image. We initialize the weights of the U-Net

Figure 3. Visualization of the interpolation model training. In

the training process, we select 8 frames f1 to f8 from the frames

of the original video in chronological order. Among them, we use

f1 to f4 as the previous grid image, which serves as a condition

and f5 to f8 as the input image which has masked on f6 and f7.

as pre-trained on the LAION-5B [28] and then we expand

the input channels of the U-Net architecture. Since it cor-

responds to the image editing task that fills the masked im-

age, we generate the filled grid image by using “Fill in the

blanks” as a prefixed instruction and text prompt as condi-

tion for interpolation.

3.3. Inference for Video Generation

Our model conducts text-to-video generation following the

process described in Figure 4. The inference process of our

model consists of three steps: key grid image generation, 1-

step interpolation, and 2-step interpolation. Firstly, we uti-

lize our key grid image generation model to generate a key

grid image. The generated key grid image comprises four
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Figure 4. Our inference procedure. We generate a key grid im-

age following a text prompt with our key grid image generation

model. Our interpolation model generates frames between them

given the masked grid image (denoted as M(1) and M(2) in the

figure), while also ensuring temporal consistency by generating

frames autoregressively conditioned on previous frames.

inside frames, with each frame being spaced at an interval

of nine frames. Secondly, as depicted in Figure 4 (M1), we

interpolate between the first and second frames by apply-

ing masks, namely between f1 and f10 in the figure, to fill

the gap with two frames. We repeat this process to gener-

ate more fine-grained frames in Figure 4 (M2). To enforce

temporal consistency, when generating frames between the

first and fourth frames in a grid image, we use previously

generated grid image as conditioning image and repeat this

process in an autoregressive manner. Consequently, by inte-

grating the four inside frames produced via the key grid im-

age generation process with the eight frames derived from

interpolation steps, we successfully generate a video com-

posed of 28 frames, derived from 2×2 grid images.

3.4. Video Generation with More Frames

To expand more frames from a text prompt, we train a

next key grid generation model. It generates the next key

grid image autoregressively, conditioned on the previous

key grid image. Then we interpolate the newly generated

key grid image, as illustrated in Figure 4. Consequently,

our model is capable of generating more frames with both

context and temporal consistency while adhering to a fixed

GPU memory constraint as described in Section 4.4.

3.5. Extensions of Our Method

Text-guided video manipulation. As discussed above, by

reducing video generation to image generation, we can ap-

ply various image-based methods to video domain. We ex-

plore text-guided video manipulation among them. First,

we select four frames from the original video to create a

key grid image. Then with the prompt as a condition, we

manipulate the key grid image by using Instructpix2pix [5].

Subsequently, we generate the video by interpolating the

key grid image using our interpolation model. Our inter-

polation model can generate videos with temporal consis-

tency by autoregressively conditioning on previously gen-

erated frames. Also we empirically find that the Instruct-

pix2pix [5] model does not change the temporal order and

according to the [5], this model edits style while preserving

contents approximately.

Video generation with higher resolution. Since we gener-

ate videos using a text-to-image model, we can apply text-

to-image model with high resolution such as SD-XL [20]

on our grid diffusion method. SD-XL can generate images

with a resolution of 1024×1024. Therefore, by applying a

2×2 grid, as shown in Figure 9, we can generate a video

with a resolution of 510×510. This shows that our approach

can be flexibly extended to high resolution video generation

by using text-to-image models.

4. Experiment

4.1. Experimental Setup

Datasets. To train our model, we use randomly selected 0.1

million samples from Webvid-10M [2]. Webvid-10M con-

sists of a total of 10.7 million short videos, each of which

has a paired textual description. To evaluate video genera-

tion performance, we use three datasets in a zero-shot man-

ner: MSR-VTT [37], UCF-101 [30], and CGCaption. The

CGCaption dataset, which we created, comprises a total of

500 prompts from GPT-4 [19] to assess video generation

performance for real-world prompts. We provide these cap-

tions in the supplementary material.

Baselines. For evaluation, we compare our model to ex-

isting text-to-video generation models such as [1, 10, 15,

17, 29, 34, 35, 46]. VideoFusion [17] trained on Webvid-

10M [2] and other public datasets, based on diffusion

model, utilizes a 3D U-Net and is designed for efficiency.

Additionally, it provides a pre-trained model, which serves

as the main baseline for our experiments. For other mod-

els, we use the respective reported scores. As a baseline

for video generation with more frames, along with Vide-

oFusion [17], we additionally use FreeNoise [21] that fo-

cuses on text to long video generation and also provide a

pre-trained model.

Implementation detail. We fine-tune the key grid image

generation and interpolation models using Stable Diffusion

1.5 [26]. In the key grid image generation model, the infer-

ence step is set to 80, the batch size is 28, and the training

8737



step is 82K. For both 1-step and 2-step interpolation mod-

els, the inference step is set to 20, the batch size is 20, and

the training step is 54K. We use two NVIDIA A100 80GB

GPUs for training and 50K training steps. Please refer to

the supplementary material for more detail.

4.2. Quantitative Results

4.2.1 Text to Video Generation

We compare our model with baselines using CLIPSIM [22]

(average CLIP similarity between video frames and text),

Frechet Video Distance (FVD) [31] and Inception score

(IS) [27] as evaluation metrics.

MSR-VTT experiment. To evaluate the MSR-VTT [37]

test set in a zero-shot manner, following prior work [11],

we generate 2,990 videos with 16 frames and a resolution

of 254×254 for each frame. As shown in Table 1, our

model outperforms other methods [1, 4, 10, 15, 17, 29, 33,

36, 43, 46] trained on large datasets on CLIPSIM [22] and

FVD [31], and achieved state-of-the-art performance.

UCF-101 experiment. To evaluate text-to-video genera-

tion on UCF-101 [30] in a zero-shot manner, we use the text

prompts for each class, as provided by previous work [11].

For the IS score [27], we generate 20 videos for each prompt

and to calculate FVD [31], we sample 2,048 videos for eval-

uation, following prior work [11]. As shown in Table 2, our

model outperforms other models [4, 11, 17, 29, 32, 43, 46]

trained on much larger datasets.

CGcaption experiment. Since the CGcaption dataset only

consists of prompts, we evaluate the model using CLIP-

SIM [22]. As shown in Table 2, in CGcaption, with a variety

of real-world prompts, our model obtains higher CLIPSIM

compared to VideoFusion [17].

Previous studies [1, 14, 17, 29] were trained on large

datasets such as Webvid-10M [2] or 10M subset from HD-

VILA-100M [39], but our model is trained using only 0.1

million samples from Webvid-10M. According to the ex-

perimental results, our model outperforms other methods

on MSR-VTT, UCF-101, and CGcaption. These results

demonstrate that our model is remarkably effective, gen-

erating high-quality videos with significantly less training

dataset than prior methods [1, 14, 17, 29].

4.2.2 Video Generation with More Frames

For the evaluation of video generation capabilities beyond

16 frames, we generate videos of 64 and 128 frames on the

MSR-VTT [37] dataset in a zero-shot manner. All settings

are consistent with Section 4.2.1. To evaluate the quality

of the generated frames from video generation with more

frames, we use the Block-FVD [40] which divides a video

into several clips, to calculate the average FVD [31] of these

clips. We also use CLIPSIM [22] to compare the text faith-

fulness of our model between the generated frames and text.

MSR-VTT [37]

Method Data (M) CLIPSIM (↑) FVD (↓)

CogVideo [15] 5.4 0.2631 1294

Video LDM [4] 10 0.2929 -

Make-A-Video [29] 20 0.3049 -

Latent-Shift [1] 10 0.2773 -

MMVG [10] 10 0.2644 -

MagicVideo [46] 27 - 998

VideoFactory [33] 10 0.3005 -

VideoComposer [33] 10 0.2932 580

SimDA [36] 10 0.2945 456

Show-1 [43] 10 0.3072 538

VideoFusion [17] 10 0.2930 550

Ours 0.1 0.3096 375

Table 1. Text-to-video generation on MSR-VTT [37]. Our

method gives significant performance gains compared to the prior

work both in CLIPSIM [22] and FVD [31] metrics. Data is train-

ing dataset size (million).

UCF-101 [30] CGcaption

Method Data (M) IS(↑) FVD(↓) CLIPSIM(↑)

CogVideo [15] 5.4 25.27 701 -

Make-A-Video [29] 10 33.00 367 -

Video LDM [4] 10 33.45 550 -

MagicVideo [46] 10 - 655 -

VideoFactory [32] 10 - 410 -

Show-1 [43] 10 35.42 394 -

PYoCo [11] 10 47.76 355 -

VideoFusion [17] 10 - 639 0.3025

Ours 0.1 62.88 340 0.3282

Table 2. Text-to-video generation on UCF-101 [30] and CGcap-

tion. Our method gives significant performance gains compared to

the prior work both in IS [27], FVD [31] and CLIPSIM [22] met-

rics.

MSR-VTT [37]

Frames CLIPSIM (↑) B-FVD-16 (↓)

VideoFusion [17] 64 0.2626 1106

FreeNoise [21] 64 0.2996 517

Ours 64 0.3044 370

VideoFusion [17] 128 0.2532 1239

FreeNoise [21] 128 0.3034 726

Ours 128 0.3000 364

Table 3. Text-to-video generation on MSR-VTT [37] with more

frames. To simplify, we name BlockFVD [40] as B-FVD-X where

X denotes the length of the short clips.

We chose VideoFusion [17] and FreeeNoise [21] capable

of generating more frames from a prompt as our baselines,

and they also provide pre-trained models to use. Table 3

shows the results of the performance evaluation for text-

to-video generation with more frames. As can be seen in

Table 3, our model shows better performance than Video-

Fusion [17]. In comparison with FreeNoise [21], which fo-

cuses on long video generation, our model shows compet-

itive results in CLIPSIM [22] and better results in Block-
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Figure 5. Text-to-video generation comparison with VideoFusion [17]. Our model can generate high-quality videos that align better

with the given text. Please refer to the supplementary material for more video samples.

Ours vs. VideoFusion [17]

TM VQ TC MQ

WIN LOSS WIN LOSS WIN LOSS WIN LOSS

MSR-VTT 48.40 17.08 46.32 29.50 48.45 28.57 47.53 25.00

UCF-101 58.54 17.00 55.10 30.46 54.12 28.08 56.54 29.16

CGcaption 51.25 28.34 60.00 24.28 52.10 23.16 55.32 25.08

Ours vs. VideoCrafter [7]

TM VQ TC MQ

WIN LOSS WIN LOSS WIN LOSS WIN LOSS

MSR-VTT 47.00 18.50 48.32 27.36 52.49 26.31 46.21 24.79

UCF-101 56.00 26.36 57.40 25.47 56.32 19.50 55.50 22.82

CGcaption 50.47 29.20 55.75 26.28 58.51 22.34 56.80 29.76

Table 4. Comparison with VideoFusion [17] and

VideoCrafter [7] in human evaluation on three datasets.

TM is text matching, VQ is video quality, TC is temporal

consistency, and MQ is motion quality. We report winning and

loss percentages of ours and omit TIE due to space.

FVD [40]. These results demonstrate that our model can

generate videos with more frames effectively with a fixed

GPU memory consumption.

4.3. Qualitative Results

4.3.1 Text to Video Generation

Qualitative analysis. Figure 5 shows the videos generated

by our model and VideoFusion [17]. As shown in Figure 5,

our model is capable of generating videos that are more

aligned with the given text compared to VideoFusion. As

observed in Figure 5, our model generates videos with var-

ied motions, effectively representing the content of the text.

Human evaluation. We conduct human evaluation on

Amazon Mechanical Turk (AMT) with 30 participants to

evaluate text matching, video quality, temporal consistency

and motion quality by our method in comparison to Video-

Fusion [17] and VideoCrafter [7] which are publicly avail-

able. For human evaluation, we randomly sample 100 gen-

erated videos from each of MSR-VTT [37], UCF-101 [30],

and CGcaption datasets, in total 300 samples. Please re-

fer to the supplementary material for more details. Table 4

shows the results of human evaluation: in all aspects, par-

ticipants preferred our model significantly more than the

baselines. These results demonstrate that our model is more

suitable for text matching and capable of generating high-

quality videos while maintaining temporal consistency and

motion quality, despite using a smaller training dataset com-

pared to VideoFusion [17] and VideoCrafter [7].

4.3.2 Video Generation with More Frames

Figure 6 shows the results of our model and baselines [17,

21] when generating more frames. As seen in Figure 6,

our model generates a 128 frame video maintaining tem-

poral consistency and text alignment. In contrast, when
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Figure 6. Text-to-video generation comparison with VideoFu-

sion [17] and FreeNoise [21] on MSR-VTT for 128 frames.

generating videos longer than 16 frames with VideoFu-

sion [17], it generates videos with background noise or a

more monotonous outcome. This may be due to the dif-

ference in the number of frames in the training set videos

and the number of inference frames [21]. As illustrated

in Figure 6, when considering 25 frame intervals, our

model generates videos with more dynamic motion, while

FreeNoise [21] tends to generate videos with relatively

static motions. These results indicate that our model main-

tains competitive quality in more frame generation, even

when compared with models focused on long video gen-

eration such as FreeNoise [21].

4.3.3 Text-Guided Video Manipulation

As mentioned in Section 3.5, by exploring a new method

from image manipulation to video manipulation, we can

manipulate videos easily and simply, without the need for

additional training for video manipulation. Figure 7 shows

the result of video manipulation derived from image ma-

nipulation. This provides the opportunity for diverse ex-

tensions in the video manipulation task. More samples are

provided in the supplementary material.

4.4. Efficiency Comparison

To evaluate the efficiency of our model, we compare the

inference GPU memory usage of VideoFusion [17] and

FreeNoise [21] with our model based on the number of

frames in the video. As shown in Figure 8, the GPU mem-

ory usage of our model remains almost the same as the

memory usage when generating a single image from Sta-

ble Diffusion [26], regardless of the number of frames in

the video. As observed, our model demonstrates a de-

crease of 74.08% in consumed memory when generating

128 frames, compared to FreeNoise [21]. But it is ob-

served that the GPU memory usage of VideoFusion [17]

Figure 7. The result of video manipulation. We select input

images from Webvid-10M [2] videos.

Figure 8. The efficiency comparison of GPU memory usage.

and FreeNoise [21] increases significantly as the number of

frames in the video increased, which may prevent to run the

model in limited GPU memory unlike our model. In terms

of inference time cost, FreeNoise [21] takes 1.68 seconds

per frame for a 64 frames video and 1.62 seconds per frame

for a 128 frame video, while our process requires 1.71 sec-

onds per frame for 64 frames and 1.76 seconds per frame for

128 frames. These results show that our model is efficient in

terms of GPU memory consumption and maintains compet-

itive inference time cost when generating videos with more

frames. Although generating video with more frames may

take longer, we can still generate videos on a fixed GPU

memory.

4.5. Ablation Study

To explore the impact of the proposed components in key

grid image generation, interpolation models, convolution

layers and attention layers, we conduct an ablation study

on MSR-VTT [37].

Autoregressive Frame Interpolation. Table 5 shows the

results of the ablation study for both the autoregressive in-
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terpolation model and the non-autoregressive model. The

non-autoregressive interpolation model is trained using a

prompt “Fill in the blanks”, which simply fills in the

masked grid image without any conditions from previous

frames. Our model with autoregressive interpolation out-

performs the non-autoregressive one in CLIPSIM [22] and

FVD [31] on MSR-VTT [37]. As shown in Figure 9, the

autoregressive model exhibits better temporal consistency

and produce smoother frame generation compared to the

non-autoregressive model. Also we conduct human eval-

uation under the same settings as Section 4.3.1, and as

shown in Table 5, our model outperformed ablated non-

autoregressive model by a significant margin. These results

indicate that autoregressive interpolation model interpolates

each frame in a dependent manner, which helps keep tem-

poral consistency across the entire video.

4×4 Key Grid Image Generation. We generate a key grid

image consisting of four inside frames in a 2×2 grid that

represents the video from text. In ablation study, as shown

in Figure 9, instead of using key grid image in a 2×2 grid,

we generate key grid image in a 4×4 grid. A 4×4 grid im-

age is composed of 16 frames with a resolution of 126×126.

As shown in Table 5, the 2×2 model shows higher CLIP-

SIM [22] and IS score [27] than the 4×4 model. This is be-

cause the pre-trained Stable Diffusion (SD 1.5) [26] model

appears to be more capable of generating higher quality im-

ages for the 254×254 resolution of a 2×2 grid, compared

to the 126×126 resolution of a 4×4 grid. However, the

4×4 model performed slightly better than the 2×2 model

in FVD score [31]. This may be due to the tendency for the

FVD to worsen as the resolution of the video increases [17].

In the human evaluation results, as shown in Table 5, our

model outperformed 4×4 grid ablated model by a signifi-

cant margin. However, even though 4×4 has a smaller res-

olution and lower quality than 2×2, generating 16 images

of 126×126 is more efficient and requires no interpolation.

Convolution Layers vs. Attention Layers. Since we uti-

lize pre-trained SD 1.5 [26] models for U-Net and VAE,

our model can generate grid images by representing spa-

tial structure in the latent space. To analyze the impact of

the convolution and attention layers on U-Net of our model,

we fine-tuned SD 1.5 model with frozen attention layers

and another model with frozen convolution layers. In Ta-

ble 5, our model with frozen attention layers performed

slightly worse compared to our model in FVD [31] and

CLIPSIM [22]. But our model with frozen convolution lay-

ers performed significantly worse than our model in FVD

and CLIPSIM. Also in Figure 9 (c), the model with frozen

convolution layers generates a grid image that fails to main-

tain consistency with inside frames. These results show

that the convolution layers in U-Net may have the ability to

cover long range correlation in the latent of the grid image.

MSR-VTT
Human evaluation

TM VQ TC MQ

CLIPSIM FVD WIN LOSS WIN LOSS WIN LOSS WIN LOSS

Ours (4×4) 0.2902 343 50.50 17.70 60.28 17.34 58.50 19.26 56.07 22.46

Ours (w/o AR) 0.2982 504 56.50 22.53 60.83 21.77 55.13 19.13 59.13 21.86

Ours (fz conv) 0.2872 724 75.43 10.16 76.20 11.16 75.53 12.26 71.16 13.83

Ours (fz attn) 0.2956 512 51.26 26.26 49.63 26.86 52.96 22.93 52.53 23.23

Ours 0.3096 375 -

Table 5. Video generation evaluation on MSR-VTT [37] in ab-

lation study. The video generated by the 4×4 grid model has a

resolution of 126×126. For human evaluation, we report winning

and loss percentages of ours vs. ablated models and omit TIE due

to space.

Figure 9. Text-to-video generation comparison with ablated

models and Ours (SD-XL) on MSR-VTT [37].

5. Conclusion

In this paper, we propose novel grid diffusion models for

text-to-video generation, addressing the challenges posed

by the lack of large text-video paired datasets and the high

GPU memory costs on video generation. Unlike previous

studies, by representing the video as a grid image, we can

generate high-quality videos using a fixed amount of GPU

memory, regardless of the number of frames. Furthermore,

various methods in the image dimension can be easily ap-

plied to our model such as video manipulation. Our model

has a limitation as it relies on a pre-trained text-to-image

model, but the generated videos contain rich visual content.

In the experimental results, our model outperforms the base-

lines in both quantitative and qualitative evaluations. As

future work, we will explore applying our model to other

generative tasks with different modalities such as sound.
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