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Abstract

Open-vocabulary human-object interaction (HOI) de-
tection, which is concerned with the problem of detecting
novel HOIs guided by natural language, is crucial for un-
derstanding human-centric scenes. However, prior zero-
shot HOI detectors often employ the same levels of fea-
ture maps to model HOIs with varying distances, leading
to suboptimal performance in scenes containing human-
object pairs with a wide range of distances. In addition,
these detectors primarily rely on category names and over-
look the rich contextual information that language can pro-
vide, which is essential for capturing open vocabulary con-
cepts that are typically rare and not well-represented by
category names alone. In this paper, we introduce a novel
end-to-end open vocabulary HOI detection framework with
conditional multi-level decoding and fine-grained seman-
tic enhancement (CMD-SE), harnessing the potential of
Visual-Language Models (VLMs). Specifically, we propose
to model human-object pairs with different distances with
different levels of feature maps by incorporating a soft con-
straint during the bipartite matching process. Further-
more, by leveraging large language models (LLMs) such
as GPT models, we exploit their extensive world knowl-
edge to generate descriptions of human body part states
for various interactions. Then we integrate the generaliz-
able and fine-grained semantics of human body parts to im-
prove interaction recognition. Experimental results on two
datasets, SWIG-HOI and HICO-DET, demonstrate that our
proposed method achieves state-of-the-art results in open
vocabulary HOI detection. The code and models are avail-
able at https://github.com/ltttpku/CMD-SE-
release.

1. Introduction
Human-object interaction (HOI) detection aims to localize
the interacting human and object pairs and then recognize

*Corresponding author

(a) Performance comparison between our method and THID on HOIs
with different distances on the open-vocabulary SWIG-HOI dataset.
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(b) t-SNE visualization of HOI concepts in semantic space.

Figure 1. (a) Previous method (THID) suffers from severe perfor-
mance drop on HOIs with larger distances in the open-vocabulary
setting. (b) Compared with HOI categorical names, body parts’
descriptions could better recognize the correlation of human pos-
tures between different actions. For instance, the action of hurling
and picking typically involves extended arms, whereas kicking is
characterized by extended legs.

their interactions, i.e. a set of <human, object, action>
triplets. Most existing HOI detection algorithms [4, 8, 24,
32, 35, 58, 61, 63–65] are unscalable in terms of vocabulary
size, i.e., they treat interactions as discrete labels and train
a classifier based on a predefined category space. However,
due to the combinatorial nature of interactions, it is imprac-
tical to create a data collection to include all possible HOIs,
especially when the action and object category space be-
comes large. This motivates us to study a transferable HOI
detector that can detect any HOI given its class name.
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Recent works [1, 16–18, 21] propose to utilize composi-
tional learning to enhance the generalization ability of HOI
detectors, particularly for unseen interactions. Their core
idea is to decompose the interaction into action and ob-
ject, followed by data augmentation to create novel com-
binations. However, lacking the help of semantics, the
above methods can only detect a small set of HOIs pre-
defined in the dataset. Besides, the aforementioned meth-
ods may struggle to detect rare concepts, which are more
likely to represent new Open Vocabulary (OV) concepts
not included in the annotated data during training. Other
works [34, 39, 56, 57] propose to incorporate language pri-
ors in zero-shot HOI detection, transforming one-hot HOI
labels into natural language supervision by CLIP [45].

Despite the progress, previous methods still face two ma-
jor challenges in solving the open-vocabulary HOI detec-
tion task. First, the distances between interactive human-
object pairs often exhibit diverse spatial distances. As a
result, modeling HOIs using uniform levels of feature maps
may lead to suboptimal performance [25]. As shown in Fig-
ure 1a, the existing state-of-the-art approach THID suffers
from a severe performance drop on HOIs with large dis-
tances. Second, previous detectors rely on category names
and overlook the rich contextual information that language
can provide. This oversight is particularly pertinent in the
context of open vocabulary, where rare concepts are preva-
lent. In such cases, text embeddings for rare concepts may
not be reliable and may fail to reveal the visual appear-
ance similarities between them. Consequently, these de-
tectors may face challenges in capturing the intrinsic con-
nections among different HOI concepts and in generaliz-
ing this knowledge from common categories to rare or un-
seen categories. For example, considering three actions:
hurling, picking, and kicking, we can visually discern that
hurling and picking involve extended arms and open hands,
while kicking is characterized by extended legs and feet.
However, in the semantic space depicted on the left side of
Figure 1b, the distances between the categorical names of
these three actions’ HOIs are equivalent, undermining the
model’s capacity to comprehend interactions in an open-
vocabulary scenario.

According to the challenges mentioned above, we build
an end-to-end open vocabulary HOI detector with large
foundation models, which not only models human-object
pairs with different distances by utilizing different levels of
feature maps, but also exploits the generalizable and fine-
grained semantics of human body parts to distinguish var-
ious interaction concepts. Firstly, to deal with the prob-
lem of suboptimal performance with single-level feature
maps, we propose the utilization of multi-level feature maps
tailored to HOIs at different distances. Our strategy in-
volves decoding HOIs in parallel from these multi-level
feature maps. Specifically, we guide the low-level fea-

ture maps to correspond with human-object pairs that have
a smaller H-O distance, and the opposite for higher-level
maps. This targeted matching is facilitated by introducing
an additional constraint during the bipartite matching pro-
cess [27]. Secondly,, we propose to utilize the generaliz-
able and fine-grained semantics of human body parts be-
sides category names for interaction recognition. By focus-
ing on body parts, which are more fundamental and elemen-
tary compared to the human body as a whole, we aim to
enable a more generalizable visual perception across seen
and unseen scenarios. Inspired by the remarkable world
knowledge on a variety of topics of large language models
(LLMs) like GPT models [2, 43, 44], we utilize it as an im-
plicit knowledge base to exploit the generalizable and fine-
grained semantics of human body parts to enhance the un-
derstanding of interaction concepts. Specifically, we query
a LLM with natural language to let it describe the states of
human body parts given a HOI. Then, we utilize the gener-
ated descriptions of human body parts for interaction recog-
nition, guiding the model in a fine-grained semantic space.
As illustrated on the right side of Figure 1b, body parts’
descriptions can align the two closely related actions (hurl-
ing and picking), which share common patterns in body
parts involvement. Simultaneously, this enhancement effec-
tively distinguishes them from kicking, thereby amplifying
the model’s ability to comprehend a broader range of inter-
actions.

Our contributions are summarized below. (1) We pro-
pose to utilize different levels of feature maps of VLM to
model HOIs with varying distances in the open-vocabulary
scenario through a conditional matching mechanism. (2)
We incorporate the generalizable and fine-grained seman-
tics of human body parts obtained by querying LLM to
enhance the understanding of a large vocabulary of inter-
actions. (3) Experiments on two datasets, SWIG-HOI and
HICO-DET validate that the proposed method can achieve
state-of-the-art results on Open-Vocabulary HOI detection.

2. Related Work

2.1. Generic HOI Detection

According to the network architecture design, previous HOI
detection methods can be categorized into two-stage [4, 11,
12, 28, 30, 41, 63, 64] and one-stage [7, 13, 23, 25, 26, 33,
51, 61, 68] paradigms. Two-stage methods usually apply
an object detector first to detect humans and objects, fol-
lowed by specifically designed modules for human-object
association and interaction recognition. They typically
use multi-steam [14, 18, 31, 35] or graph-based [52, 59]
methods to support interaction understanding. In con-
trast, one-stage methods typically employ multitask learn-
ing to perform instance detection and interactive recogni-
tion jointly [24, 33, 50, 61]. Despite the progress, stan-
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dard HOI detection treats interactions as discrete labels and
learns a classifier based on a predefined category space,
lacking the ability to detect numerous potential unseen in-
teractions.

2.2. Vision-Language Modeling in HOI Detection

Although previous HOI detectors have achieved moderate
success, they often treat interactions as discrete labels and
ignore the richer semantic text information in triplet labels.
More recently, some researchers [19, 25, 34, 39, 56, 57, 67,
70] have investigated the generalizable HOI detector with
Vision-Language Modeling. Among them, PD-Net [67]
and SSRT [19] propose to aggregate language prior fea-
tures into the interaction recognition. RLIP [70] proposes
a pre-training strategy for HOI detection based on image
captions. GEN-VLKT [34] and HOICLIP [39] employ the
CLIP visual encoder to guide the learning of interaction rep-
resentation and utilize CLIP text embeddings of prompted
HOI labels to initialize the classifier. THID [56] proposes
a HOI sequence parser to detect multiple interactions and
first gets promising results on the recent open-vocabulary
HOI detection dataset [55]. OpenCat [66] leverages massive
amounts of weakly supervised data and proposes several
proxy tasks for HOI pre-training based on CLIP. However,
previous methods suffer from the limitation of utilizing the
same levels of feature maps to model HOIs with varying
distances, resulting in suboptimal performance. Addition-
ally, these methods overlook the valuable and generalizable
semantics of human body parts, which can enhance the un-
derstanding of interactions at a fine-grained level.

2.3. Leverage LLM for Text Classifier

Distinct from traditional methods like manually crafting
descriptions [15, 46] or utilizing external databases such
as Wikipedia [9, 37] or the WordNet hierarchy [10, 47,
49], recent studies have demonstrated the effectiveness of
Large Language Models (LLMs) in generating descriptive
prompts for the classification and detection tasks. Some
works [36, 38, 42] utilize GPT-3 [2] to create detailed sen-
tences that capture visual concepts for recognizing specific
categories. Others [40, 48] propose using LLMs to generate
semantic hierarchies or high-level concepts to improve se-
mantic understanding for zero-shot class prediction tasks.
Recently, many works [3, 20, 22, 29, 53, 60] also em-
ploy LLM to generate fine-grained descriptions for detec-
tion tasks. [60] proposes a novel framework that utilizes
contextual LLM tokens as conditional object queries to en-
hance the visual decoder. [53] leverages LLM’s semantic
prior as a filter to filter out HOIs that are unlikely to in-
teract. Given the value of external knowledge provided by
LLMs, it is crucial to investigate how to efficiently integrate
this knowledge for a better understanding of HOI concepts.
However, investigating how to integrate this knowledge is

underexplored in the HOI community. In our work, we ex-
plore the LLM-generated descriptions tailored for human-
centric relationship understanding. Instead of using the gen-
eral description of the object or action simply, we propose
to utilize the body parts descriptions generated by querying
LLM for fine-grained semantic enhancement during inter-
action recognition. The incorporation of body part descrip-
tions facilitates a more nuanced understanding of interac-
tions, enabling greater generalization across diverse human-
centric scenarios.

3. Method

In this section, we aim to design an open-vocabulary HOI
detector that can detect HOIs described by arbitrary text in-
puts leveraging large foundation models. An overview of
our Open-Vocabulary HOI detector is shown in Figure 2.
In the following, we start with the formal problem for-
mulation and introduce a basic pipeline with an encoder-
decoder architecture in Section 3.1, harnessing the potential
of CLIP [45]. We then introduce the process of multi-level
decoding with the conditional matching of our CMD-SE in
Section 3.2. This design motivates the model to detect HOIs
with different distances with different feature maps, allevi-
ating the potential suboptimal issue. In Section 3.3, we de-
scribe the generation and incorporation of fine-grained se-
mantics pertaining to human body parts behind the interac-
tion labels. This approach enhances the model’s ability to
discern correlations in human postures across different ac-
tions, guiding the model within a more structured semantic
space. At last, we present loss functions used to train our
CMD-SE in Section 3.4.

3.1. Preliminary

Problem Formulation. We define an interaction as a tu-
ple (bo, bh, o, a), where bo, bh ∈ R4 denote the detected
bounding box of a human and object instance, respectively.
o ∈ O and a ∈ A denote the object and action category,
where A = {1, 2, ..., A} and O = {1, 2, ..., O} denote the
human action and object set, respectively. The objective
of open-vocabulary HOI detection is to accurately detect a
wide range of interactions. This entails the capability to rec-
ognize interactions that have not been encountered during
the training phase, encompassing unseen objects, actions,
and their various combinations.
A Basic Pipeline. We first build an end-to-end open-
vocabulary HOI detector with the help of the generaliza-
tion capability on classification tasks of CLIP [45] and cast
HOI detection as an end-to-end set matching problem simi-
lar to DETR [5], eliminating the need for handcrafted com-
ponents like anchor generation. Given an image I, the
global context representation Fimg is first extracted by a
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Figure 2. The framework of our CMD-SE. Given an image, the visual encoder is first applied to extract the multi-level visual features.
Then we decode the HOIs from multi-level feature maps through a shared HOI decoder parallelly and encourage the HOIs decoded from
low-level feature maps to model HOIs with small distances and vice versa via conditional matching. Additionally, we query GPT to
describe the states of human body parts for each HOI and utilize the generalizable and fine-grained descriptions as additional prompts to
improve interaction recognition.

pre-trained CLIP visual encoder EV:

Fimg = EV(I) (1)

where Fimg ∈ RHW×C denotes a sequence of feature em-
beddings of I. We then utilize a transformer-based decoder
D to decode the HOIs in I. Specifically, taking the pro-
jected context feature and HOI queries Q = (q1, q2, ..., qM )
as input, the output from the final layer of D serves as the
representation of interactions:

H = D(Q,Fimg) (2)

where Q is treated as query, and the projected con-
text representation is treated as key and value during the
cross-attention mechanism of the HOI decoder D, H =
(h1, h2, ..., hM ), where M denotes the number of HOI
queries. Then, we feed them to two different head networks:
1) a bounding box regressor Pbbox, which predicts a confi-
dence score c and the bounding box of the interacting hu-
man and object (bh, bo). 2) a linear projection Pcls which
maps the feature to the joint vision-and-text space. Similar
to [39, 56, 57], we compute its similarity with the features
from the text encoder for interaction recognition. Finally we
compute the box regression loss Lb, the intersection-over-
union loss Liou, and the interaction classification loss Lcls.
Similar to [34], the matching cost is formulated as:

Lcost = λb

∑
i∈{h,o}

Li
b + λiou

∑
i∈{h,o}

Li
iou + λclsLcls (3)

3.2. Conditional Multi-level Decoding

Since the variance of the distances between interactive
human-object pairs becomes larger as the vocabulary space
of interaction grows, we propose using multi-level feature
maps to model HOIs with different center distances to avoid
suboptimal performance [25]. In this subsection, we first
formulate the procedure of decoding HOIs from multi-level
feature maps. Then we introduce a conditional matching
mechanism that encourages different levels of feature maps
to model different types of HOIs explicitly, as illustrated in
Figure 2.
Multi-level Decoding. The visual encoder EV takes an im-
age I with a fixed resolution (e.g., 224 × 224), divides it
into small patches, and first projects them as a sequence.
Assume EV = (E0

V, E1
V, ..., EN

V), where Ei
V is the i-th block

of EV. Denote the input as X0, EV encodes the image via
the self-attention mechanism [54] in each layer:

Xi+1 = Ei
V(Xi) (4)

where Xi denotes the encoded feature map after the i-th
block of EV. Then we utilize multi-level feature maps to
decode HOIs in parallel:

Hli = D(Q,Xli), li ∈ L (5)

where L denotes the set of levels of interest. Then the de-
coded hidden states of HOIs Hli (li ∈ L) are fed to the
bounding box regressor and the interaction classifier to pre-
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dict the bounding boxes of human-object pairs and the in-
teraction categories, respectively.
Conditional Matching. During the bipartite matching [5]
between the set of N predictions ŷ and the set of ground
truth HOIs y = {yKi } per image, we design a unique loss to
explicitly encourage Hi decoded from the low-level feature
map to model HOIs with relatively small center distances
and vice versa to alleviate the performance gap across HOIs
with different distances. Specifically, besides the typical
matching loss Lcost introduced in Equation 3, we design a
novel constraint loss Ld between the normalized level index
of ŷi and the H-O distance in yj :

Ld = ∥(Lv(ŷi), g(yj))∥1 (6)

where Lv(ŷi) ∈ (0, 1) denotes the normalized level index
of ŷi, g(yj) denotes L2 distance between the center of the
annotated human and object in yj . This design encourages
the model to categorize HOIs with distinct distances into
separate groups and address HOIs within each group by uti-
lizing a specific feature map tailored to that group’s charac-
teristics.

3.3. Fine-grained Semantic Enhancement

To enhance the differentiation of various HOI concepts that
can be challenging to distinguish based solely on their cat-
egory names, we propose to leverage the underlying states
of human body parts associated with the interaction labels.
The descriptions of these states serve to provide a more fine-
grained and comprehensive understanding of HOI concepts.
In this subsection, we present the process of generating de-
scriptions for the states of human body parts involved in
HOIs via prompting with GPT. Additionally, we introduce
how the semantics of human body parts are integrated to our
model to improve interaction recognition.
Prompt with GPT. To harness the generalizable and re-
combinant nature of human body parts for interaction
recognition, we employ GPT [2] to produce state descrip-
tions of body parts. However, directly querying GPT for
body part descriptions may yield verbose descriptions, ne-
glecting the varying relevance of different body parts in in-
teractions. Consequently, we implement a two-step mech-
anism to query GPT for generating body part descriptions
for each HOI. As illustrated in Figure 3, our approach in-
volves utilizing a standardized pipeline and set of templates
as language commands to interact with GPT for each HOI
category. Specifically, given an HOI name consisting of an
action name acti, and an object name obji, we initiate the
query to GPT by asking: “Which body parts are involved
in the interaction when a person acti a/an obji?” This com-
mand aids in identifying a subset of body parts BPi that are
pertinent to the current i-th interaction:

BPi = GPT (BP,Queryi) (7)

GPT

Surfing surfboard

Riding horse
…

HOI Concepts

Which body parts 
are relevant to 

each interaction？

Remove: 
redundant descriptions

Surfing surfboard: Legs, Arms

Riding horse: Legs, Hand
…

GPT

Use a brief phrase 
to describe the 
state of each 

human body part. 

Legs: bent and engaged, providing strength and 
stability for maintaining balance on the surfboard.

Legs: straddling the horse, ……

Arms: extended and balanced, reaching out for 
stability and steering.

Hand: steadying the reins, ……
…

Body-parts Descriptions

Legs: bent and engaged.

Legs: straddling the horse.

Arms: extended and balanced.

Hand: steadying the reins.
…

Step2：Descriptions 
Generation

Step1：Body-parts
Selection

Step3：Heuristic
Postprocess

Figure 3. Illustration of generating prompts with GPT. The main
purpose of the entire process is to find the most simple and general
body parts descriptions for each HOI.

where BP represents a predefined list of human body parts,
including “mouth, eye, arm, hand, leg, foot”. For example,
if the interaction is “surfing surfboard”, the returned BPi

from GPT would include arm and leg. The main purpose of
this step is to limit the description to a few important body
parts. If it is generated directly without adding this restric-
tion, the description will not be able to distinguish between
key body parts and non-key body parts. This will make it
difficult for us to accurately identify the characteristics of
the action state and cause confusion in HOI concepts.

Then we further query GPT with the prompt Query′i:
“Use a brief phrase to describe the state of each human
body part in BPi when a person acti a/an obji.” to acquire
the state descriptions Si of the corresponding human body
parts:

Si = GPT (BPi, Query′i) (8)

Finally, we use a heuristic postprocess to remove some re-
dundant descriptions, making the status description more
simple and general.
Enhance Interaction Recognition. The primary objec-
tive of interaction recognition is to convert the textual de-
scription of interactions into a feature space and compare
them with the output generated by the HOI decoder in Sec-
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tion 3.2. In order to address the limited distinctions among
HOI names, we also propose leveraging the semantic infor-
mation provided by descriptions of body parts associated
with each HOI. This means that for each HOI, we encode
not only its name but also the states of the relevant human
body parts. Following [56, 69], given a HOI category de-
fined as an action-object pair, denoted as (acti, obji), we
form a sentence using global learnable context tokens Ctx.
As illustrated in Figure 2, we use a few prefix tokens Ctxpre

at the beginning of the sentence and a few learnable con-
junct tokens Ctxcon to automatically determine how to con-
nect the category names of the action and object. Then, we
generate the text embedding for each HOI label through the
pre-trained CLIP text-encoder ET:

Thoi = ET(Ctxpre, acti, Ctxcon, obji) (9)

The resulting embeddings of all HOI names are denoted as
Thoi ∈ RN×Ct , where N denotes the number of HOI triplet
categories, and Ct represents the dimension of text embed-
ding from CLIP text encoder.

Furthermore, as the descriptions of body parts are al-
ready semantically rich, they do not require learnable vec-
tors as context. To encode the state descriptions Si of the
human body parts for each HOI, as obtained in Equation 8,
we directly utilize the CLIP text encoder ET:

Tb = ET(Si) (10)

where Tb ∈ RN×Ct represents the embeddings of body
parts’ descriptions for all HOIs. Note that we only need
to forward the body parts descriptions once since there are
no learnable parameters in this branch, which significantly
enhances its efficiency. The final interaction prediction is
obtained by combining the output logits of Thoi and Tb:

pj = αhoihjT
T
hoi + αbhjT

T
b (11)

where hj represents the hidden state of a HOI, pj repre-
sents the corresponding interaction prediction, αhoi and αb

are learnable scalars used to weigh the contributions of the
HOI embeddings (Thoi) and body part embeddings (Tb) re-
spectively.

3.4. Training and Inference

In this subsection, we elaborate the processes of training
and inference of our model.
Training. During the training stage, we follow the query-
based methods [5, 34, 50, 56] to assign a bipartite matching
prediction with each ground-truth using the Hungarian algo-
rithm [27]. The matching cost Lcost for the matching pro-
cess and the targeting cost for the training back-propagation
share the same strategy, which is formulated in Section 3.1.
Then considering the additional constraint loss Ld intro-
duced in Section 3.2, the final matching loss can be defined

as:
L = Lcost + λdLd (12)

where λd is the hyper-parameter weight for the additional
constraint.
Inference. For each HOI prediction, including the
bounding-box pair (b̂ih, b̂io), the bounding box score ĉi from
the box regressor, and the interaction score ŝi from the in-
teraction classifier, the final score ŝi

′ is computed as:

ŝi
′ = ŝi · ĉiγ (13)

where γ > 1 is a constant used during inference to suppress
overconfident objects [62, 63].

4. Experiment
4.1. Experimental Setting

Datasets. Our experiments are mainly conducted on two
datasets, SWIG-HOI [55] and HICO-DET [6]. The SWIG-
HOI dataset encompasses 400 human actions and 1000 ob-
ject categories. The test set of SWIG-HOI comprises ap-
proximately 14,000 images and 5,500 interactions, with
around 1,800 interactions not present in the training set.
The HICO-DET dataset provides 600 combinations involv-
ing 117 human actions and 80 objects. We follow [16, 56]
to simulate a zero-shot detection setting by holding out 120
rare interactions from all 600 interactions.
Evaluation Metric. We follow the settings of previous
works [6, 34, 35, 56] to use the mean Average Precision
(mAP) for evaluation. We define an HOI triplet prediction
as a true-positive example if the following criteria are met:
1) The IoU of the human bounding box and object bound-
ing box are larger than 0.5 w.r.t. the GT bounding boxes; 2)
the predicted interaction category is accurate.
Implementation Details. Our model is built upon the pre-
trained CLIP and all its parameters are frozen during train-
ing. We employ the ViT-B/16 version as our visual encoder
following [56]. We set the cost weights λb, λiou, λcls and
λd to 5, 2, 5, and 5 during training and train our model for
80 epochs with a batch size of 128 on 2 A100 GPUs.

4.2. Comparison with Other Methods

We compare the performance of our model with exist-
ing methods on SWIG-HOI and HICO-DET datasets. As
shown in Table 1, our model significantly outperforms the
previous state-of-the-art on the SWIG-HOI dataset on all
splits, achieving a relative gain of 15.08% on all interac-
tions. This shows the strong capability of our CMD-SE to
detect and recognize the interactions of human-object pairs
in the open-vocabulary scenario.

We also compare our method with state-of-the-art meth-
ods on the simulated zero-shot setting of the HICO-DET
dataset in Table 2. Note that earlier methods [16, 18] lack
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Method Non-rare Rare Unseen Full

QPIC [50] 16.95 10.84 6.21 11.12
THID [56] 17.67 12.82 10.04 13.26
CMD-SE (Ours) 21.46 14.64 10.70 15.26

Table 1. Comparison of our proposed CMD-SE with state-of-the-
art methods on the SWIG-HOI dataset.

Method
Pretrained
Detector Unseen Seen Full

Zero-shot Methods
VCL [16] ✓ 10.06 24.28 21.43
ATL [17] ✓ 9.18 24.67 21.57
FCL [18] ✓ 13.16 24.23 22.01
GEN-VLKT [34] ✓ 21.36 32.91 30.56
HOICLIP [39] ✓ 23.48 34.47 32.26

Open-vocabulary Methods
THID [56] ✗ 15.53 24.32 22.38
CMD-SE (Ours) ✗ 16.70 23.95 22.35

Table 2. Comparison of our proposed CMD-SE with state-of-the-
art methods on HICO-DET under the simulated zero-shot setting.

Method Non-rare Rare Unseen Full

Base 15.69 11.53 7.32 11.45
+ MD 18.66 12.93 7.29 12.87
+ CM 21.33 14.26 9.32 14.69
+ SE 21.46 14.64 10.70 15.26

Table 3. Ablations of different modules of our CMD-SE on the
SWIG-HOI dataset. MD: multi-level decoding. CM: conditional
matching. SE: semantic enhancement.

semantic understanding of interaction categories and pre-
determine the unseen interactions during the training stage.
Although recent zero-shot methods [34, 39] employ CLIP
text embeddings for interaction classification, they typi-
cally rely on a DETR architecture and pretrained DETR
weights (pretrained on object detection datasets with finite
categories), which is unscalable in terms of the vocabulary
size, thereby limiting their applicability in open-world sce-
narios. Note that it’s not a fair comparison between our
method and theirs on HICO-DET, as the HICO-DET dataset
and the COCO dataset used for DETR pretraining share the
same object label space. In contrast, open-vocabulary meth-
ods [56] break free from this constraint and do not pretrain
on any detection datasets. In comparison to the previous
open-vocabulary HOI detector, our CMD-SE achieves new
state-of-the-art performance on unseen HOIs.

4.3. Ablation Study

Network Architecture. In this section, we empirically
investigate how the performance of the proposed method
is affected by different model settings on the SWIG-HOI
dataset. We denote the basic pipeline model introduced in
Section 3.1 as Base in Table 3. The first modification is
applying multi-level features for HOI decoding. We ob-
serve an improvement of 1.42% mAP. Subsequently, we
apply the soft constraint to perform conditional matching,
denoted as +CM, explicitly guiding different levels of fea-
ture maps to represent HOIs with varying distances. The
results show that +CM brings a significant improvement
across all splits, contributing to a 2.4% mAP gain on all
categories. To further enhance the model’s semantic under-
standing of interaction concepts, we incorporate the fine-
grained semantics of human body parts, denoted as +SE.
This modification yields the best performance, with a no-
table relative gain of 22.8% in the mAP for unseen classes.
This outcome underscores the substantial potential of our
framework in enhancing interaction understanding within
an open-vocabulary scenario.
Distance Types and Matching Strategies. In this section,
we explore the impact of different H-O distance types and
matching strategies on model performance. Initially, we
examine the effectiveness of absolute versus relative dis-
tances for matching. While intuition may suggest relative
distance would be more effective, as it encapsulates inher-
ent HOI properties, our results, depicted in the first two lines
of Table 4, empirically favor absolute distance. We attribute
this to its alignment with ViT’s attention mechanism, where
each patch’s attention expands outward by a distance corre-
sponding to the absolute distance in the image. As shown
in Table 4, matching low-level features with short-distance
HOIs achieves superior results compared to matching low-
level features for long-distance HOIs, with an improvement
of 0.45 and 1.33 mAP on seen and unseen classes, respec-
tively. This finding suggests that low-level features are more
effective in capturing interactions that occur in relatively
close proximity.
Additional Constraint for Conditional Matching. We
discuss the weight of the additional constraint during bi-
partite matching. As shown in Table 5, when setting the
weight to 0, the model is optimized to detect HOIs with dif-
ferent distances with the same set of feature maps, leading
to suboptimal performance due to the variation in distances
between interactive humans and objects. Setting the weight
to 5 encourages our model to differentiate and model HOIs
with different distances using distinct feature maps, leading
to the best performance and a notable 1.46 mAP gain. How-
ever, increasing the weight further to 10 causes a marginal
decline in the model’s performance. This can be attributed
to the higher weight potentially causing the model to neglect
other pertinent factors during bipartite matching.
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(a) communicating. (b) kissing. (c) hurling. (d) kicking.

Figure 4. Qualitative results of our method on SWIG-HOI test set.

Distance Types Matching Strategies Seen Unseen

Relative Low-Small 16.57 10.30
Absolute Low-Small 16.79 10.70
Absolute Low-Large 16.61 10.47

Table 4. Ablations on the H-O distance types and matching strate-
gies between the levels of feature maps and the H-O distances.
Relative: using relative distance as H-O distance. Absolute: us-
ing absolute distance as H-O distance. Low-Small: matching low
layer with small distance HOI. Low-Large: matching low layer
with large distance HOI.

λd Non-rare Rare Unseen Full

0 19.80 13.94 7.89 13.80
5 21.46 14.64 10.70 15.26

10 20.18 14.06 9.64 14.40

Table 5. Ablations of the weight for the additional soft constraint
during conditional matching.

Prompts for Fine-grained Semantic Enhancement. In
this part, we explore different types of prompts for enhanc-
ing fine-grained semantics. A naive and straightforward ap-
proach is to describe the action and object associated with
each HOI, termed as “HOI Descriptions”. As shown in the
first line of Table 6, utilizing HOI descriptions leads to a
mAP of 16.92 and 10.52 on seen and unseen classes, re-
spectively. Considering the generalizable and recombinant
nature of human body parts, we further explore employ-
ing body parts for semantic enhancement. Simply utilizing
the names of body parts relevant to each HOI, generated by
GPT following the “Body-part Selection” procedure in Fig-
ure 3, results in a marginally inferior performance. This is
attributed to the finite set of body part combinations and the
presence of the same set of body part names across differ-
ent HOIs, potentially causing confusion in the model’s abil-
ity to distinguish them. By further incorporating descrip-
tions of the states of body parts—characteristics that are not
only generalizable and recombinant but also specific to each
HOI, our model achieves the best performance.

4.4. Qualitative Results

We visualize the prediction result and attention maps to il-
lustrate the characteristics of our method. As shown in Fig-

Prompts Seen Unseen

HOI Descriptions 15.73 10.10
Body Parts Names 16.08 9.81
Body Parts Descriptions 16.79 10.70

Table 6. Ablations on different types of prompts for fine-grained
semantic enhancement.

ure 4a and 4b, we find that our model can adaptively use
the output of different layers to predict HOIs with differ-
ent human-object pairs distances. For a farther interaction
of communicating person and a closer interaction of kissing
person, their optimal predictions are encoded by the output
of the 8th layer and the 5th layer of the encoder respectively.
This shows that our model has generalization ability in dif-
ferent human-object pairs distances. Additionally, as shown
in Figure 4c and 4d, we find that our model exhibits some
sensitivity to human body parts. For these two examples,
actions of hurling and kicking, our CMD-SE focuses on the
hands and arms for hurling, and the legs for kicking. This
shows that our model can use the characteristics of human
body parts to infer the HOI interaction through our design.

5. Conclusion

We utilize large foundation models to build an end-to-end
open vocabulary HOI detector that addresses two major
challenges in the field. First, we tackle the issue of diverse
spatial distances between interactive human-object pairs by
utilizing different levels of feature maps tailored to HOIs
at different distances. Second, we leverage fine-grained se-
mantics of human body parts, in addition to category names,
to enhance interaction recognition. By querying a LLM for
descriptions of human body parts given a HOI, the detec-
tor gains a deeper understanding of the correlation of hu-
man postures between different actions. Experimental re-
sults demonstrate the superior performance of our model in
open-vocabulary HOI detection.
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