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Figure 1. VIT-LENS for omni-modal representation learning. A) VIT-LENS consistently enhances the performance of understanding
tasks, such as classification, zero-shot classification (ZS) and linear probing (LP), across 3D point cloud([48]), depth([28]), audio([28]),
tactile([82]), and EEG([4]) modalities. The citations represent the compared previous methods. Further details in Sec. 4. B) By plugging
VIT-LENS into multimodal foundation models, it enables emergent applications “out-of-the-box”, including Any-modality Captioning/QA,
Any-modality-to-Image Generation and text-guided Any-modality-to-Image editing, to name a few.

Abstract

Aiming to advance AI agents, large foundation models
significantly improve reasoning and instruction execution,
yet the current focus on vision and language neglects the
potential of perceiving diverse modalities in open-world en-
vironments. However, the success of data-driven vision and
language models is costly or even infeasible to be reproduced
for rare modalities. In this paper, we present VIT-LENS that
facilitates efficient omni-modal representation learning by
perceiving novel modalities with a pretrained-ViT and align-
ing them to a pre-defined space. Specifically, the modality-
specific lens is tuned to project any-modal signals to an
intermediate embedding space, which are then processed
by a strong ViT with pre-trained visual knowledge. The en-
coded representations are optimized toward aligning with
the modal-independent space, pre-defined by off-the-shelf
foundation models. VIT-LENS provides a unified solution
for representation learning of increasing modalities with two
appealing advantages: (i) Unlocking the great potential of
pretrained-ViTs to novel modalities effectively with efficient

parameters and data regime; (ii) Enabling emergent down-
stream capabilities through modality alignment and shared
ViT parameters. We tailor VIT-LENS to learn representa-
tions for 3D point cloud, depth, audio, tactile and EEG, and
set new state-of-the-art results across various understand-
ing tasks, such as zero-shot classification. By seamlessly
integrating VIT-LENS into Multimodal Foundation Mod-
els, we enable Any-modality to Text and Image Generation
in a zero-shot manner. Code and models are available at
https://github.com/TencentARC/ViT-Lens.

1. Introduction

Humans interact with the world through various sensory
systems like vision, audition, touch, smell, and taste. To
advance versatile AI agents, deep learning models need to
replicate these human-like multi-sensory abilities and tackle
varied user-specified tasks. For instance, visually interpret-
ing road signs to ensure our safe driving, listening to sirens
to respond to emergency vehicles, and tactually assessing
clothing fabric quality to offer shopping guidance. Among
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these applications, omni-modal representation learning has
become a focal point, which enables comprehensive percep-
tion in open-world environments.

On the way to pursuing omni-modal AI agents, the re-
search community has utilized large-scale web data to make
substantial strides in language [6, 16, 49, 55, 63, 64, 72] and
vision [5, 12, 17, 20, 21, 35, 37, 59, 65, 84]. Consequently,
Multimodal Foundation Models (MFMs) [1, 11, 14, 18, 24,
25, 47, 90] that integrate vision representations with Large
Language Models (LLMs) have made great progress in both
vision-language comprehension and generation.

However, extending the success of unleashing LLMs to
comprehend and interact with a broader array of modalities
remains challenging. Despite recent initiatives [28, 75] in
pursuing omni-modal intelligence, their capabilities on cer-
tain modalities are often constrained by limited data used in
the training phase. In contrast to image, video, and text data,
which are abundant on the internet, acquiring large-scale
datasets for less common modalities can be non-trivial. This
scarcity of data leads to sub-optimal models with poor gen-
eralization, particularly when encountering novel categories,
thereby limiting their broader real-world applications.

In this work, we present a novel perspective. Given the
exceptional generalization and transfer learning capabilities
of the pretrained-ViTs [7, 20, 21, 56, 65], there is promise
in adapting their inherent knowledge to comprehend novel
modalities. This eliminates the necessity of collecting large-
scale data to train models from scratch for each modality,
which demands substantial time and resources. Recognizing
the rich knowledge encoded in a pretrained-ViT, we conjec-
ture that a pretrained-ViT is able to function as a multi-modal
processor – it possesses the capacity to sense and compre-
hend a spectrum of modalities as it interprets images.

From this standpoint, we introduce VIT-LENS, which en-
codes the out-of-image modalities through a set of pretrained-
ViT parameters, with the goal of maximizing the utilization
of pretrained model weights and the knowledge they encap-
sulate. Specifically, VIT-LENS employs a modality-specific
Lens along with a lightweight modality embedding module
to transform input data into an intermediate space. Subse-
quently, a frozen pretrained-ViT is applied for further encod-
ing. This approach enables the encoding of diverse modali-
ties, aligning their features with the established features of
anchor data, which can range from images, text to others,
from off-the-shelf foundation models.

Our proposed method offers several advantages in advanc-
ing omni-modal representation learning: (1) Parameters
and data efficient approach. Our method adopts a shared
set of pretrained-ViT parameters across various modalities,
enabling an efficient utilization of model parameters. More-
over, it efficiently enhances representations for less common
modalities by leveraging the advanced ViT model, reducing
the demand for extensive data collection. (2) Emergent

capabilities. By training VIT-LENS with the ViT used in
an off-the-shelf MFM, we can seamlessly obtain an Any-
Modality MFM via VIT-LENS integration. The integrated
model extends the original MFM’s capabilities to various
modalities, without any specific instruction tuning. For in-
stance, without direct training for tactile data, the model
broadens its image generation capability to include tactile-
to-image generation. As a result, it can generate an image of
a sofa upon receiving tactile signals indicating “leather”.

We conducted comprehensive experiments across mul-
tiple modalities, extending beyond images and videos to
encompass 3D point cloud, depth, audio, tactile, and EEG.
This experiments were evaluated across 11 benchmarks. As
is shown in Fig. 1A, VIT-LENS demonstrates state-of-the-
art performance in 3D zero-shot classification. Particularly,
when LVIS classes are excluded during training, VIT-LENS
achieves an impressive zero-shot classification accuracy of
50.1% on Objaverse-LVIS [15], surpassing the prior SOTA
by 11.0%. It consistently outperforms ImageBind [28] on
depth and audio benchmarks, and surpasses previous works
on tactile [82] and EEG [4] related tasks.

Beyond understanding tasks, we plug VIT-LENS into two
recent MFMs, InstructBLIP [14] and SEED [24, 25]. As il-
lustrated in Fig. 1B, this empowers the MFMs to comprehend
any modality in a zero-shot manner, making Any-Captioning,
Any-QA, Any-to-Image Generation and text guided Any-to-
Image editing right out of the box, all without the need for
specific instruction tuning.

2. Related Work
Vision Language Pretraining: Advancements and Im-
pacts. Recent advancements in vision-language pretrain-
ing, including models such as CLIP [65], ALIGN [37],
CoCa [84], Flamingo [1], and LiT [86], have leveraged
image-text pairs to achieve remarkable zero-shot perfor-
mance on a wide range of vision and language tasks. Mean-
while, pretrained CLIP models have served as influen-
tial teachers and their joint embedding space has demon-
strated efficacy in diverse zero-shot tasks such as seg-
mentation [40], detection [31, 89], 3D shape understand-
ing [48, 80, 81, 87, 91], 3D open-vocabulary segmenta-
tion [58], mesh animation [83], audio understanding [33]
and more. VIT-LENS extends these models’ capacities to
diverse modalities by integrating pretrained-ViT, enhancing
its omni-modal understanding ability and enabling superior
performance across various tasks and modalities.
Multimodal Learning. Previous studies explored joint train-
ing across multiple modalities in both supervised [23, 27, 44]
and self-supervised settings [2, 29, 45, 52, 71]. Several ap-
proaches aim at aligning various modalities to CLIP for
multimodal zero-shot learning. AudioCLIP [33] adds au-
dio to CLIP for zero-shot audio classification, while Image-
Bind [28] aligns six modalities to CLIP using paired image
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data. Besides, ONE-PEACE [75] introduces a unified en-
coder that is pretrained from scratch to align vision, language,
and audio. Zhang et al. [88] pretrain a transformer with
LAION-2B, following CLIP’s methodology, for downstream
supervised tasks across modalities. In contrast, VIT-LENS
stands out by leveraging a pretrained-ViT to understand and
unite diverse modalities without manual annotations. Its
seamlessly integration with Multimodal Foundation Models
(MFM) allows easy plug-and-play in emergent applications.
Multimodal Foundation Models. Recent advancements in
Large Language Models (LLMs) [55, 72] have demonstrated
remarkable language understanding and reasoning abilities.
Afterwards, substantial efforts [1, 43, 46, 47, 90] have been
directed towards enabling LLMs to perceive and interact
with the visual world with the help of visual representa-
tion models. Similar paradigms enable LLMs to understand
more modalities by algning the well-trained encoders of vari-
ous modalities to the textual space of LLMs [32, 34, 68].
Beyond understanding tasks, recent works [24, 25, 69]
empower LLMs with the ability to generate images, and
NextGPT [76] extends the generative capabilities to encom-
pass audio and video. Most of these Multimodal Foundation
Models (MFMs) require specific instruction-following data
within particular domains for training. In this study, we
demonstrate that VIT-LENS can seamlessly integrate with an
MFM without additional training, extending its capabilities
to various modalities.

3. Method
Overview. VIT-LENS advances omni-modal representation
learning by leveraging pretrained-ViT parameters to encode
features for various modalities, utilizing the pre-existing
knowledge in ViT. Specifically, a modality-specific encoder,
composed of a modality embedding module, the modality-
specific Lens, and the pretrained-ViT, is optimized to embed
robust representations through the training objective of cross-
modal alignment. For each modality, we consider its asso-
ciated anchor modalities, like image and text, as reference
points for learning. For alignment, we leverage predefined
foundation models, such as CLIP [65], to extract features
from the anchor modalities. Our approach leverages the ex-
tensive knowledge embedded in both the foundation models
and pretrained-ViT, providing a strong basis for representa-
tion learning for each modality. This compensates for the
shortage of large-scale training data available for certain
modalities. We illustrate our approach in Fig. 2.

3.1. Architecture

Foundation Models for alignment. In VIT-LENS, the new
modalities are aligned to a unified feature space established
by a robust foundation model. Various options exist for this
model, ranging from language models [16, 49, 63, 64, 72],
vision models [7, 21, 35, 56] to vision-language models [12,
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Figure 2. Training Pipeline of VIT-LENS. VIT-LENS extends
the capabilities of a pretrained-ViT to diverse modalities. For
each novel modality, it firstly employs a Modality Embedding
(ModEmbed) and a Lens to learn mapping modality-specific data
into an intermediate embedding space. It subsequently employs
a set of pretrained-ViT layers to encode the feature. Finally, the
output feature is aligned with the feature extracted from the anchor
data (image, text, etc.) of the new modality using an off-the-shelf
foundation model.

41, 42, 65]. During training, we fix the foundation model’s
parameters and utilize it to encode features for the anchor
data, which serves as supervision for feature alignment.
Modality Encoder. As is shown in Fig. 2, the modality
encoder in VIT-LENS consists of a Modality Embedding
Module (ModEmbed), a Lens and a set of pretrained-ViT
layers. Due to the distinct characteristics of various modal-
ities, raw signals may not match the pretrained-ViT input
space. This mismatch can result in suboptimal performance,
despite utilizing a powerful model. Therefore, we employ
some heuristic designs: (1) Obtain modality token embed-
dings: for each modality, we adopt a specific tokenization
scheme to transform raw input signals into token embed-
dings. (2) Map modality token embeddings to the ViT input
space: the Lens learns to map the modality embeddings into
a group of latent embeddings, thereby constructing the input
for the pretrained-ViT. Subsequently, the latent embeddings
are forwarded to frozen pretrained-ViT layers to obtain the
final representation.

During training, the pretrained-ViT component remains
frozen, and only the parameters of ModEmbed and Lens are
updated. More details can be found in Supp.
Lens: Connecting Modalities to ViT. We introduce two
variants of Lens to link modality token embeddings to ViT.
We show their architectures in Fig. 3.
• Self-attention blocks (S-Attn). This variant involves a

stack of self-attention layers [74] that transforms the in-
put token embeddings into intermediate embeddings with
equal indices. We can potentially enhance this variant’s
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Figure 3. Lens Architecture used in VIT-LENS.

capability by initializing it with pretrained weights from
existing ViT layers. It suits modalities structured with
image-like inputs, such as depth maps.

• Iterative cross-self-attention blocks (Iter-CS-Attn).
This variant’s basis block involves a cross-attention mod-
ule coupled with a self-attention tower, inspired by [36].
It maps a latent array and input embeddings to a latent em-
bedding of matching length within the input latent array.
This manner condenses inputs of varied sized into a latent
bottleneck, making it apt for lengthy input modalities like
3D point clouds. Similar architectures are employed in
Vision-Language Models (VLMs) [1, 42] to extract visual
information for Large Language Models (LLMs). Our in-
novation lies in utilizing this structure to map signals from
diverse modalities into the pretrained-ViT’s input space,
enabling the ViT to understand modalities beyond images.

3.2. Training Objective

In this work, we study modalities of 3D, depth, audio, tactile
and EEG, among which all the data samples are associated
with text descriptions, image appearances, or both. We use
the pretrained CLIP [12, 65] as the foundation model. By
default, we employ pretrained layers of ViT in the founda-
tion CLIP as part of the modality encoder. Following the
approach in previous works [33, 48, 80, 81], we adopt multi-
modal contrastive learning for representation alignment.

We denote X = {x1, . . . , xN} as the collection of modal-
ity data to be learned, A = {A1, . . . , AM} as the set of an-
chor modalities, amn as the anchor data of xn from modality
Am, GA as the foundation model for anchor modality A,
and F as the modality encoder to be learned. The contrastive
loss for alignment is formulated as:

L = − 1

2B|A|

B∑
i=1

|A|∑
k=1

(
log

exp(hX
i · hAk

i /τ)∑
j exp(h

X
i · hAk

j /τ)

+ log
exp(h

Ak
i · hX

i /τ)∑
j exp(h

Ak
i · hX

j /τ)

)
,

where B is the batch size; τ is a learnable temperature; hX
i =

Norm (F(xi)), hAk
i = Norm

(
GAk

(aki )
)

are normalized
features of data xi and its anchor data aki from Ak.

3.3. Free Lunch for Multimodal Foundation Models

ViT

Prompt

LLM

ViT
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LLM
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abstractor abstractor

Trained Lenses

Figure 4. Demonstration of integrating VIT-LENS to MFM.
(A) Original overall pipeline of MFM for vision; (B) Illustration
of plugging well-trained Lenses of different modalities to MFM,
without additional instruction-following training.

Plug VIT-LENS into MFM. Recent MFMs for vision [14,
24, 25, 46, 47, 90] enables LLMs to understand visual con-
tent. As shown in Fig. 4A, this process begins with the use
of a frozen ViT to extract visual features. Subsequently,
a well-trained abstractor module processes these features,
constructing inputs that can be understood by the LLM.

By incorporating the ViT from MFM as part of the modal-
ity encoder and as the foundation model in VIT-LENS train-
ing, the yielded modality Lenses can be seamlessly inte-
grated into the MFM for plug-and-play application, as de-
picted in Fig. 4B. In later experiments, we showcase the
emergent abilities facilitated by this tuning-free adaptation.

4. Experiments
4.1. Experimental Setup

For this part, we describe the main experimental setup and
provide full details in Supp.

Dataset Task #cls Metric #test
ModelNet40(MN40) [78] 3D shape cls 40 Acc 2,468
Objaverse-LVIS(O-LVIS) [15] 3D shape cls 1,156 Acc 46,832
ScanObjectNN(SONN) [73] 3D shape cls 15 Acc 581
SUN Depth-only(SUN-D) [66] Scene cls 19 Acc 4,660
NYU-v2 Depth-only(NYU-D) [54] Scene cls 10 Acc 654
Audioset Audio-only(AS-A) [26] Audio cls 527 mAP 17,1321

ESC 5-folds(ESC) [60] Audio cls 50 Acc 2,000
Clotho(Clotho) [19] Retrieval - Recall 1,046
AudioCaps(ACaps) [39] Retrieval - Recall 8131

VGGSound(VGGS) [9] Audio cls 309 Acc 15,4341

Touch-and-Go(TAG-M) [82] Material cls 20 Acc 29,879
Touch-and-Go(TAG-H/S) [82] Hard/Soft cls 2 Acc 29,879
Touch-and-Go(TAG-R/S) [82] Rough/Smooth cls 2 Acc 8,085
ImageNet-EEG(IN-EEG) [67] Visual Concept cls 40 Acc 1,997

Table 1. Details of Downstream Datasets across various modali-
ties including 3D, depth, audio, tactile, and EEG. The evaluation of
VIT-LENS is performed following feature alignment. The informa-
tion presented includes the task type (classification/retrieval), the
number of classes, the evaluation metric (Accuracy/mean Average
Precision/Recall), and the quantity of test samples in each dataset.

Pretraining Datasets. Beyond image/video and text, we
train VIT-LENS on a variety of modalities, including 3D

1# test samples may differ from those used in previous work due to the
unavailability of certain data.
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Top1 Top5
Trained on ULIP-ShapeNet [80]
ULIP-PointNet++(ssg) [80] 55.7 75.7
ULIP-PointNet++(msg) [80] 58.4 78.2

ULIP-PointMLP [80] 61.5 80.7
ULIP-PointBERT [80] 60.4 84.0

VIT-LENS-B 65.4 92.7
VIT-LENS-L 70.6 94.4

Trained on ULIP2-Objaverse [81]
ULIP2-PointNeXt [81] 49.0 79.7
ULIP2-PointBERT [81] 70.2 87.0

VIT-LENS-B 74.8 93.8
VIT-LENS-L 80.6 95.8

(a) Zero-shot 3D of classification on ModelNet40.
Models are pretrained on triplets from ULIP-
ShapeNet and ULIP2-Objaverse respectively.

Objaverse-LVIS ModelNet40 ScanObjectNN
Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5

2D inference, no 3D training
PointCLIP [87] 1.9 4.1 5.8 19.3 28.6 34.8 10.5 20.8 30.6

PointCLIP v2 [91] 4.7 9.5 12.9 63.6 77.9 85.0 42.1 63.3 74.5
Trained on OpenShape-Triplets (No LVIS) [48]

ULIP-PointBERT [80] 21.4 38.1 46.0 71.4 84.4 89.2 46.0 66.1 76.4
OpenShape-SparseConv [48] 37.0 58.4 66.9 82.6 95.0 97.5 54.9 76.8 87.0
OpenShape-PointBERT [48] 39.1 60.8 68.9 85.3 96.2 97.4 47.2 72.4 84.7

VIT-LENS-G 50.1 71.3 78.1 86.8 96.8 97.8 59.8 79.3 87.7
Trained on OpenShape-Triplets [48]

ULIP-PointBERT [80] 26.8 44.8 52.6 75.1 88.1 93.2 51.6 72.5 82.3
OpenShape-SparseConv [48] 43.4 64.8 72.4 83.4 95.6 97.8 56.7 78.9 88.6
OpenShape-PointBERT [48] 46.8 69.1 77.0 84.4 96.5 98.0 52.2 79.7 88.7

VIT-LENS-G 52.0 73.3 79.9 87.6 96.6 98.4 60.1 81.0 90.3
(b) Zero-shot 3D classification on Objaverse-LVIS, ModelNet40 and ScanObjectNN. Models are
pretrained on OpenShape Triplets. “NO LVIS” denotes excluding the Objaverse-LVIS subset.

Table 2. Zero-shot 3D classification on downstream datasets, measured in accuracy(%).

point cloud, depth, audio, tactile, and EEG data. These
datasets are anchored to text descriptions, images, or both
for feature alignment.

For 3D point cloud experiments, we utilize a combina-
tion of ShapeNet [8], 3D-FUTURE [22], ABO [13], and
Objaverse [15]. We incorporate rendered images and text
captions from previous works, resulting in three pretraining
datasets: ULIP-ShapeNet [80], ULIP-2-Objaverse [81], and
OpenShape-Triplets [48]. Depth data is sourced from the
SUN RGB-D dataset [66], utilizing paired image and scene
labels for alignment. Audio data is obtained from the Au-
dioset dataset [26], accompanied by associated video and
text label metadata. Tactile data is sourced from the Touch-
and-Go dataset [82], featuring paired frame and material
label text. Finally, EEG data from [67] is aligned with paired
ImageNet image and text labels.
Evaluation on Downstream Understanding Tasks. We
evaluate VIT-LENS across diverse modalities and protocols
via a comprehensive set of downstream tasks. The primary
datasets used for evaluation are summarized in Tab. 1.
Main Implementation Details. We use the pretrained vision
and text encoders from OpenCLIP [12]. We apply different
model sizes: VIT-LENS-B based on ViT-B/16, VIT-LENS-L
based on ViT-L/14, and VIT-LENS-G based on ViT-bigG/14.

For 3D point cloud data, we follow the baseline meth-
ods [48, 80] to uniformly sample 8,192 or 10,000 points
and grouping them into sub-clouds through Farthest Point
Sampling (FPS) followed by KNN grouping of neighboring
points. For depth input, we follow [28] to use in-filled depth
values and convert them to disparity for scale normalization.
For audio data, we sample 5-second clips and extract a single
frame randomly from the video clip if video serves as anchor
data. The audio waveform is converted into a sequence of
128-dimensional log Mel filterbank features using a 25ms
Hamming window every 10ms, following [30]. For tactile

input, we use RGB data collected from GelSight [38]. For
EEG signals, we employ 128-channel temporal sequences
and use the frequency range of 5-95Hz following [4].

4.2. Results on Understanding Tasks

Zero-shot 3D Classification. We follow [48, 80, 81] to use
(point cloud, image, text) triplets to train VIT-LENS. We
conduct zero-shot classification on downstream benchmarks.
The overall results can be found in Tab. 2. In particular,
when pretrained on ULIP-ShapeNet or ULIP2-Objaverse,
VIT-LENS outperforms ULIP with different 3D encoders [50,
61, 62, 85], as is shown in Tab. 2a.

We present the results of training on OpenShape-Triplets
in Tab. 2b. To align with [48], we adopt VIT-LENS-G and
train on both “NO LVIS” (excluding all shapes from the
Objaverse-LVIS subset) and the entire set for comparison.
VIT-LENS outperforms models adopted in OpenShape [48].
Notably, VIT-LENS significantly improves the accuracy on
the long-tail categories of Objaverse-LVIS, from 46.8% to
52.0%. Additionally, when trained on the NO LVIS sub-
set, VIT-LENS achieves a top-1 accuracy of 50.1%. This
performance beats ULIP by roughly 30% and surpasses
OpenShape-PointBERT trained on the entire set by 3.3%,
demonstrating the data-efficient merit of VIT-LENS. Regard-
ing ModelNet40, VIT-LENS achieves an 87.4% accuracy,
surpassing previous SOTA. Moreover, on ScannetObjectNN,
which contains challenging real scans with noise and occlu-
sion, our method exhibits decent sim-to-real transfer ability.
It achieves a 60.1% zero-shot accuracy without specific sim-
to-real training, surpassing the previous SOTA.
Audio Classification and Retrieval. In our comparison pre-
sented in Tab. 3, VIT-LENS-L consistently outperforms prior
approaches in both audio classification and text-to-audio
retrieval tasks. When aligned to images (I), VIT-LENS-
L outperforms ImageBind based on Huge CLIP [12], and
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anchor
AudioSet VGGSound⋄ ESC⋄ Clotho⋄ AudioCaps⋄

mAP Top1 Top1 R@1 R@10 R@1 R@10
AVFIC [53] - - - - 3.0 17.5 8.7 37.7
ImageBind-H [28] I 17.6 27.8 66.9 6.0 28.4 9.3 42.3
VIT-LENS-L I 23.1 28.2 69.2 6.8 29.6 12.2 48.7
AudioCLIP [33] I+T 25.9 - 69.4 - - - -
VIT-LENS-L I+T 26.7 31.7 75.9 8.1 31.2 14.4 54.9
Prev. ZS SOTA - - 29.1/46.2⋆ [77] 91.8 [75] 6.0 28.4 [28] 9.3 42.3 [28]

Table 3. Audio classification and retrieval on Audioset, VGGSound, ESC, Clotho and
AudioCaps. ⋄denotes zero-shot evaluation. Gray-out denotes using larger audio-text
datasets in pretraining. ⋆denotes using augmented captions for training.

modality R@1 R@5 R@10
MIL-NCE [51] V 8.6 16.9 25.8
SupportSet [57] V 10.4 22.2 30.0
AVFIC [53] A+V 19.4 39.5 50.3
ImageBind-H [28] A+V 36.8 61.8 70.0
VIT-LENS-L A+V 37.6 63.2 72.6
Zero-shot SOTA [10] V 49.3 68.3 73.9

Table 4. Video Retrieval on MSRVTT. V: use
video; A+V: use audio and video. Gray-out
means using video data in pretraining.

anchor NYU-D SUN-D
Text Paired [28] T⋆ 41.9 25.4
ImageBind-H [28] I 54.0 35.1
VIT-LENS-L I 64.2 37.4
VIT-LENS-L I+T 68.5 52.2
Supervised SOTA [27] - 76.7 64.9

Table 5. Depth-only scene classification on
NYU-D and SUN-D. ⋆[28] rendered depth as
grayscale images for direct testing. The su-
pervised SOTA [27] used RGBD as input and
extra training data.

anchor Material H/S R/S
ImageBind-B∗ I 24.2 65.7 69.8
VIT-LENS-B I 29.9 72.4 77.9
VIT-LENS-L I 31.2 74.3 78.2
VIT-LENS-L I+T 65.8 74.7 63.8
Linear Probing
CMC [70, 82] I 54.7 77.3 79.4
VIT-LENS-B I 63.0 92.0 85.1

Table 6. Tactile classification on Touch-
and-go. ∗denotes our implementation. H/S:
Hard/Soft; R/S: Rough/Smooth.

anchor Val Test
ImageBind-B∗ I 17.3 18.4
DreamDiffusion-L# [4] I 20.4 19.2
VIT-LENS-B I 24.6 25.3
VIT-LENS-L I 29.3 29.2
VIT-LENS-L I+T 41.8 42.7

Table 7. Visual concept classification on
ImageNet-EEG. ∗denotes our implementa-
tion. #We use the released EEG encoder and
paired text encoder for inference. We report
results on Val and Test set.

AVFIC [53], which leverages automatically mined audio-text
pairs for alignment. When aligned to images and texts (I+T),
VIT-LENS-L demonstrates stronger performance and signifi-
cantly outperforms AudioCLIP [33]. Although AudioCLIP
uses a audio encoder pretrained with Audioset supervised
classification, it falls behind VIT-LENS-L. Additionally, on
zero-shot VGGSound classification, VIT-LENS-L surpasses
the SOTA [77] when class names are used as text supervision
for alignment.
Audio and Video Retrieval. We use the MSR-VTT [79]
benchmark to evaluate the text to audio and video retrieval
performance, as presented in Tab. 4. We follow [28] to
combine audio (A) and video (V) modalities. VIT-LENS
outperforms several prior methods, even surpassing those
that incorporate video data for training [51, 53, 57].
Depth-only Scene Classification. In Tab. 5, we present our
results for depth-only classifications. VIT-LENS outperforms
ImageBind across SUN-D and NYU-D. By using image
and text as anchor data, VIT-LENS further improves the
performance and narrows the gap with the supervised SOTA
model [27] with extra training data.
Tactile Classification Tasks. Results for tactile tasks are
displayed in Tab. 6. Across various tactile classification
tasks like material, hard/soft, and rough/smooth classifica-
tion, VIT-LENS-B demonstrates superior performance com-
pared to our implementation of ImageBind-B. Even trained
with appearance or text labels for material, VIT-LENS can
perform well on the hard/soft and rough/smooth classifica-
tion tasks. This underscores the extensive knowledge transfer
by CLIP during training. Furthermore, scaling up to a larger
model and incorporating text during training can further
boost the performance. In comparing the image-aligned VIT-

LENS-B with CMC [82] using linear probing, we observe
significantly superior performance by VIT-LENS.
EEG Visual Concept Classification. Results in Tab. 7 show
that VIT-LENS consistently outperforms our implemented
ImageBind-B. Additionally, when compared to the EEG
encoder from [4], which used more EEG data for MAE-style
pretraining [35] and then aligned with the CLIP-L14 image
encoder, VIT-LENS demonstrates superior performance.

4.3. Few-shot Linear Probing
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Figure 5. Few-shot linear probing on depth and 3D point cloud.
We mark the zero-shot classification performance on the y-axis. We
train linear classifiers on fixed features for the ≥1-shot settings.

We evaluate the label-efficiency of VIT-LENS through
few-shot linear probing using VIT-LENS-L (I) depth encoder
and VIT-LENS-G 3D encoder, as shown in Fig. 5. Lin-
ear classifiers are trained on fixed representation features.
For few-shot depth linear probing, we compare with Image-
Bind [28] and MultiMAE [3] trained on images, depth, and
semantic segmentation data. VIT-LENS consistently outper-
forms both methods in zero-shot and few-shot settings. For
few-shot 3D classification, we compare with SparseConv and
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U: Describe this object in detail.
R: The object in the image is an upright piano, which is a type of keyboard instrument known for its distinct sound and versatility. The piano is
placed on a wooden surface, possibly a floor or a stage, and it appears to be quite large in size. Additionally, there is a chair placed next to the
piano, suggesting that it may be used for seating during performances or lessons. The piano is positioned in the center of the image, making it the
focal point of the scene. Overall, the combination of the piano and the chair creates an inviting atmosphere for music enthusiasts or those interested
in learning how to play the piano.

dog wave

U: Describe the details of what you see.
R: A man is walking a dog on a beach near a body of water. The dog is wearing a collar and leash, and the man is wearing a shirt
and shorts. There are palm trees visible in the background, adding to the tropical atmosphere of the scene. The man and dog appear
to be enjoying their time together on the beach.

add a cat

(A)

(B)

rockcrackling 
firekitchen mountain 

tent

add Christmas atmosphere add Halloween atmosphere add Iron Man

dog wave grass cat leather
chair

(C)

(D)

(E)

Figure 6. Qualitative examples for plugging VIT-LENS into MFMs. (A-B) Integrate with InstructBLIP: Accurately capturing concepts
from single (A) or multiple modalities (B), providing detailed descriptions based on InstructBLIP’s instruction-following capability. (C-E)
Integrate with SEED: Extending SEED’s capability to emergent compositional Any-to-image generation. (C) Single modality to image
generation. (D) Text-guided any-to-image generation/editing. (E) Multi-modalities-to-image generation.

PointBERT trained in [48]. VIT-LENS significantly outper-
forms all methods by a large margin in all few-shot settings,
showcasing its robust feature generalization capabilities.

4.4. Results on VIT-LENS MFMs

In this section, we plug VIT-LENS across various modali-
ties into off-the-shelf MFMs, and show in our experimental
results that the MFMs’ capabilities can be transferred to
novel modalities and their combinations, without instruction-
following training. We present qualitative results below, with
additional quantitative results available in Supp.
MFM Selection in Practice. In this work, we select Instruct-
BLIP [14] and SEED [24, 25] to probe the emergent capa-
bilities of the MFMs with our VIT-LENS plugged in. Both
InstructBLIP and SEED utilize EVA01-g14 CLIP-ViT [21]
as the visual encoder. Following the practice in Sec. 3.2,
we use the same pretrained-ViT for VIT-LENS training in
MFMs experiments. More details can be found in Supp.
InstructBLIP with VIT-LENS. InstructBLIP [14] in-
troduced a framework for instruction tuning in a vision-
language model, demonstrating its capabilities in tasks like
complex visual reasoning and image descriptions. We show
in our experiment that these capabilities can be effectively
extended to novel modalities through the integration of VIT-
LENS. Qualitative examples in Fig. 6 (A-B) showcase the
model’s ability to follow instructions across various modali-

ties, enabling Any-modality QA, captioning, etc. Addition-
ally, the model demonstrates precise and detailed descrip-
tions, such as identifying a small “chair” next to a giant
piano in (A), emphasizing the superior alignment achieved
by VIT-LENS.
SEED with VIT-LENS. SEED-LLaMA [25] is an MFM
distinguished by its capacity for multimodal comprehension
and image generation. This is achieved through multimodal
pretraining and instruction tuning along with its SEED to-
kenizer [24]. We present qualitative results of integrating
VIT-LENS with SEED in Fig. 6 (E-G). The outcomes illus-
trate how the combined model extends SEED’s capabilities
to diverse modalities. Examples in (E-G) show the ability of
compositional any-to-image generation [25]. It can translate
input from any modality into an image, generate an image
based on a text prompt given input from any modality, and
seamlessly blend visual concepts from combinations of any
modalities into a coherent and plausible image.

4.5. Ablation Study

We conduct ablations studies to investigate the effectiveness
of various designs for VIT-LENS in omni-modal learning.
We report the main results here and full details are in Supp.
Lens designs for different modalities. We study the effect
of Lens designs as outlined in Sec. 3.1 for different modal-
ities. We use VIT-LENS-B and set comparable amount of
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Test Dataset ▶ MN40 SUN-D ESC TAG-M IN-EEG
S-Attn w/o pt weights 63.8 48.6 70.1 61.8 25.4
S-Attn w/ pt weights 65.4 50.9 70.9 63.6 26.3

Iter-CS-Attn 65.4 47.5 71.2 60.6 35.9

Table 8. Lens designs for different modalities. All modalities are
aligned to “I+T”. Lens w/ pt weights means tuning corresponding
Self-Attn blocks in the pretrained-ViT, and w/o means random
initialization. Default setting is marked with color box .

trainable parameters for the two variants. We also examine
the effectiveness of initializing S-Attn type Lens with pre-
trained weights. We train 3D point cloud on ULIP-ShapeNet
and follow the main settings for other modalities. The results
are shown in Tab. 8. We observe consistent performance
enhancement by initializing S-Attn Lens with pretrained
weights. For image-like inputs such as depth maps and
RGB-based tactile data, the S-Attn design exhibits superi-
ority. Conversely, modalities significantly different from
image inputs, like 3D point clouds, audio spectrograms, and
EEG, benefit more from Iter-CS-Attn design. Additionally,
it reduces the computational overhead by reducing the input
length for ViT. Further details are available in the Supp.
Modality encoder designs and settings. We investigate
the efficacy of integrating a set of pretrained-ViT layers into
the modality encoder. We use the same datasets for training
and testing as in the Lens design ablation. We compare VIT-
LENS-B with an architecture that combines ModEmbed and
ViT and employing different settings for the ViT component,
as detailed in Tab. 9. Results indicate that simply adding
the ModEmbed to a pretrained-ViT cannot fully exploit the
the potential of the pretrained-ViT (#2). Training the entire
encoder with pretrained weights outperforms training from
scratch, highlighting the effectiveness of utilizing the pre-
trained weights for learning (#1 vs #3). In comparison to
#3, VIT-LENS-B achieves comparable or better performance,
especially for the less common modalities. Moreover, our
VIT-LENS employs fewer trainable parameters than training
the entire encoder and reduces computational overhead for
modalities with lengthy inputs. Consequently, by introduc-
ing Lens, VIT-LENS effectively and efficiently transfers the
capabilities of pretrained-ViT to various modalities.

Test Dataset ▶ MN40 SUN-D ESC TAG-M IN-EEG
#1 M.E. → ViT (scratch) 62.4 46.3 68.8 55.6 20.5
#2 M.E. → ViT (pt, frozen) 50.0 36.8 54.9 24.8 14.2
#3 M.E. → ViT (pt, tune) 67.4 48.2 71.6 59.4 27.2

VIT-LENS-B 65.4 50.9 71.2 63.6 35.9

Table 9. Encoder designs and settings for different modalities.
All modalities are aligned to “I+T”. M.E. denotes ModEmbed. VIT-
LENS-B is the default setting.

Scaling up foundation model and VIT-LENS. We ex-
plore the effectiveness of scaling up VIT-LENS for fea-
ture alignment. We conduct experiments to pretrain for 3D
on ULIP-ShapeNet, and depth on SUN-D. While previous
works [28, 48] show that scaling to a large encoder(>100M)
degrades the performance, we show in Fig. 7 that scaling up

VIT-LENS can improve the 3D and depth representation and
enhance performance.

B L bigG
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Figure 7. Scaling the VIT-LENS on depth and 3D point cloud.
B: VIT-LENS-B, L: VIT-LENS-L, bigG: VIT-LENS-G.

Different pretrained-ViTs for VIT-LENS. We evaluate
different pretrained-ViT variants for omni-modal represen-
tation learning. We use CLIP-ViT-bigG/14 as the teacher
foundation model and apply different ViTs for the modalitiy
encoder. We use the same datasets for training and testing as
in the model scaling ablation. Results in Tab. 10 demonstrate
that the use of pretrained-ViTs including the self-supervised
and CLIP pretrained variants, outperforms training from
scratch on both depth and 3D modalities. This indicates that
different pretrained-ViTs possess the potential to serve as
effective omni-modal learners.

ViT
variant ▶

RndInit
ViT-B16

DINO [7]
ViT-B16

OpenCLIP
ViT-B16

OpenCLIP
ViT-L14

OpenCLIP
ViT-bigG14

SUN-D 48.0 50.9 51.4 53.2 54.5
M40N 66.2 68.5 68.3 71.4 72.2

Table 10. Different ViT for modality encoders in VIT-LENS. we
train the entire encoder for the baseline RndInit (random initial-
ization) , while others follow VIT-LENS training setting.

5. Discussion and Limitations
VIT-LENS is a straightforward yet effective method to ad-
vance omni-modal representations. It leverages the rich
knowledge embedded in pretrained-ViT from extensive data,
and eliminates the need for separate modality-specific ar-
chitectures. We demonstrate the effectiveness of VIT-LENS
across various modalities, including 3D point cloud, depth,
audio, tactile, and EEG, achieving leading performance in
understanding-based tasks. Furthermore, integrating VIT-
LENS into existing MFMs unlocks new capabilities, such
as any-modality instruction following and any-modality-to-
image generation. We anticipate that VIT-LENS will inspire
further research and innovation in omni-modal representa-
tion learning, fostering the development of more versatile
and robust AI systems. However, it is important to acknowl-
edge that VIT-LENS may inherit biases and errors from the
pretrained-ViT, and it cannot be readily used for deployment
in real-world scenarios.
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