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Abstract

3D shape generation from text is a fundamental task in
3D representation learning. The text-shape pairs exhibit a
hierarchical structure, where a general text like “chair”
covers all 3D shapes of the chair, while more detailed
prompts refer to more specific shapes. Furthermore, both
text and 3D shapes are inherently hierarchical structures.
However, existing Text2Shape methods, such as SDFusion,
do not exploit that. In this work, we propose HyperSD-
Fusion, a dual-branch diffusion model that generates 3D
shapes from a given text. Since hyperbolic space is suitable
for handling hierarchical data, we propose to learn the hier-
archical representations of text and 3D shapes in hyperbolic
space. First, we introduce a hyperbolic text-image encoder
to learn the sequential and multi-modal hierarchical fea-
tures of text in hyperbolic space. In addition, we design a
hyperbolic text-graph convolution module to learn the hi-
erarchical features of text in hyperbolic space. In order to
fully utilize these text features, we introduce a dual-branch
structure to embed text features in 3D feature space. At last,
to endow the generated 3D shapes with a hierarchical struc-
ture, we devise a hyperbolic hierarchical loss. Our method
is the first to explore the hyperbolic hierarchical represen-
tation for text-to-shape generation. Experimental results
on the existing text-to-shape paired dataset, Text2Shape,
achieved state-of-the-art results. We release our implemen-
tation under HyperSDFusion.github.io.

1. Introduction
Text-to-Shape synthesis [5, 7, 26, 31, 36] involves the task
of generating high-quality and faithful shapes given a text
prompt and holds significant promise for a wide range
of applications including augmented/virtual reality and de-
sign, offering the potential for automated, diverse, and cost-
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Figure 1. Hyperbolic text-shape representations. (a) The hierarchi-
cal structure between text and 3D shape. (b) The syntactic tree of
text. (c) The hierarchical part-to-whole relationships of 3D shape.

effective 3D content. Unlike image-based media [1, 18, 60],
natural language provides a more direct means of expres-
sion. However, effectively marrying the realms of 3D ge-
ometry and natural language is challenging, leading to no
established standard for text-guided 3D shape generation.

We argue that hierarchy, preordering elements of a set
in increasing complexity is fundamental to linking geome-
try and language as illustrated in Fig. 1. 3D shapes inher-
ently exhibit compositionality [33, 44], possessing hierar-
chical part-to-whole relationships [32]. On the other hand,
language exhibits a hierarchical tree-like syntactic struc-
ture [8, 12, 57], rooted in inter-word relationships. Recog-
nizing these parallel hierarchical natures requires rethinking
text-to-shape correspondence also within a similar hierar-
chical framework. For example, a general prompt like “a
chair” can correspond to thousands of 3D shapes. In con-
trast, a more detailed description like “a wooden chair with
armrests and four legs” narrows down the possible shapes to
those with specific attributes. Fully embracing and leverag-
ing such hierarchical nuances can significantly improve the
fidelity and specificity of generated shapes, making strides
in the field of text-to-shape synthesis.

Existing text-to-shape methods can be divided into two
categories depending on the data type they handle: one for
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paired text-shape data [5, 7, 14, 25, 28, 31, 47] and the other
for unpaired data [21, 26, 36, 39, 41, 42, 50, 52]. Some
methods [21, 26, 36, 39, 50, 52] for unpaired data generate
intermediary images, and then transform these images into
3D shapes by 3D generative models, like NeRFs [26, 52].
Others [41, 42] leverage a shared text-image embedding
space, generating 3D shapes by an image-3D generator.
These methods do not directly learn the text-shape repre-
sentation. In contrast, methods using text-shape paired data
have the advantage of directly learning the text-shape repre-
sentation by GANs [5], Variational Autoencoders [14, 31],
or Diffusion Models [7, 25], generating 3D shapes from
texts. To date, all these methods ignore the joint hierarchical
structure of 3D shapes and natural language.

In this work, we focus on text-shape paired data. In-
spired by prior works on leveraging hierarchies in im-
ages [2, 13, 20], point clouds [27, 32], or text-image
pairs [9], we propose to embed the tree-like hierarchical
structure of text and shape, jointly, into a more natural non-
Euclidean, hyperbolic space. This incurs less distortion
than in Euclidean space, primarily due to the exponential
expansion of hyperbolic space ideally suited to represent-
ing trees [30]. Our approach, deemed HyperSDFusion,
first utilizes a Signed Distance Field (SDF) based Autoen-
coder [7] to embed the SDF representation of 3D shapes
into a compact latent space, learning a latent feature for
each 3D shape. Then, to concurrently exploit the sequential
(word order) and hierarchical structures of an input prompt,
we propose a dual-branch latent diffusion model in hyper-
bolic space to generate a desired latent feature close to the
ground truth latent feature from a noise. In one branch, we
leverage a pre-trained text-image model [9], learning both
sequential features of language and multi-modal hierarchi-
cal features of text-image, in hyperbolic space. In a paral-
lel branch, we devise a hyperbolic text-graph convolution
model that parses the input prompt into a syntax graph and
learns the hierarchical features of language in hyperbolic
space. Notably, to maintain the hierarchical structure of 3D
shapes during the generation process, we introduce a hy-
perbolic hierarchical loss, which correlates the distance be-
tween 3D deep and shallow features with the distance to the
origin of the Poincaré ball (hyperbolic space).

Finally, we conduct a series of experiments on the exist-
ing text-shape paired dataset, Text2Shape [5]. The exper-
iments demonstrate that our method achieves high-quality
generation results while preserving the hierarchical charac-
teristics of text and shape. Our main contributions are:
• We are the first to learn a joint hierarchical representation

of text and shape in the hyperbolic space, improving the
quality of text-to-shape generation.

• We introduce a dual-branch diffusion to fully capture both
sequential and hierarchical structures of texts in hyper-
bolic space.

• Our proposed hyperbolic hierarchical loss ensures that the
generation process of the diffusion model maintains the
hierarchical structure of 3D shapes.

2. Related works

Text-to-Shape Generation. In recent years, text-to-shape
generation has garnered significant attention in 3D repre-
sentation learning. In this task, annotating paired text-shape
data is time-consuming and laborious. The Text2Shape
dataset [5], a text-shape paired dataset, is widely used
in text-to-shape generation. This dataset was proposed
by Chen et al.as the first text-shape paired dataset, and
Chen et al.implemented a GAN-based text-shape genera-
tion on it. Later, a series of methods [7, 14, 25, 28, 31, 47]
were proposed for paired data, which can be divided into
VAE-based methods, Autoencoder-based methods, Auto-
regressive-based method, and diffusion model-based meth-
ods according to the advanced models used. In VAE-based
methods [14, 31], Fu et al. [14] propose ShapeCrafter, a re-
cursive text-shape generation method by recursively embed-
ding text features. In Autoencoder-based methods [28, 47],
Tian et al. [47] propose a structure-aware method to align
the text feature space and the 3D shape feature space at the
part level, by dividing the feature space. In Auto-regressive-
based methods, Luo et al. [29] propose an improved Auto-
regressive Model for 3D shape generation, by applying
discrete representation learning in a latent vector instead
of volumetric grids. In diffusion-based methods [7, 25],
Cheng et al. [7] propose SDFusion that employs latent dif-
fusion to generate an ideal latent feature, close to the ground
truth latent feature embedded by a Quantised-VAE.

Recently, with the development of multi-modal learn-
ing, researchers have used existing multi-modal models
to generate 3D by unpaired text-shape data. Some meth-
ods [26, 36, 39, 52] use images as intermediate genera-
tions, firstly leveraging pre-trained text-to-image models to
produce images, then employ 3D reconstruction methods
such as NeRFs to reconstruct 3D shapes from the images.
Other methods [41, 42] leverage a shared text-image em-
bedding space, generating 3D shapes by an image-3D gen-
erator. However, these methods cannot directly learn the
representation between text and 3D. In this work, we fo-
cus on 3D generation by paired text-shape data, aiming to
directly learn the representation between text and 3D.
Diffusion Models. Diffusion models as new powerful gen-
erative models have shown record-breaking performance in
many applications, like 3D shape generation [17, 43, 48,
55, 58], image synthesis [11, 40, 51], human motion gener-
ation [19, 54, 56], video generation [3, 15], etc. Diffusion
models can be divided into two categories based on whether
they directly generate the final output: standard diffusion
models [6, 56] and latent diffusion models [34, 40]. The
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Figure 2. Overview of the proposed HyperSDFusion. (a) The forward and reverse processes of the proposed dual-branch diffusion model
from Z0 to ZT . In particular, the detailed denoising process of the latent feature Zt based on text conditions {C1, C2} is showcased. (b)
The architecture of a VQVAE for 3D shape represented by SDF. (c) The attention module in the denoiser of the diffusion model.

standard diffusion models directly generate the final output,
such as images or 3D shapes. However, as the scale or res-
olution of the output increases, standard diffusion models
consume significant GPU resources. The latent diffusion
models utilize a learned latent space to generate a latent fea-
ture and then transform it into the final output, substantially
reducing GPU consumption. In this work, we also employ
the latent diffusion model to generate a latent feature, and
then transform it into a 3D shape.
Hyperbolic Representation learning. In recent years,
there has been a growing interest in deep representation
learning in hyperbolic spaces [35, 53, 59]. It has been
proved that hyperbolic space is more suitable than Eu-
clidean space for processing data with a tree-like struc-
ture or power-law distribution due to its exponential growth
property. There are a few works about hyperbolic represen-
tation learning in Computer Vision [2, 9, 13, 20, 23, 27, 32],
such as learning hierarchical representation of images in hy-
perbolic space [2, 13, 20], analyzing and utilizing the hierar-
chical property of point cloud in hyperbolic space [27, 32],
etc. Desai et al. [9] presented the hierarchical structure in
text-image and proposed a hyperbolic contrastive learning
model for text-image paired data. As far as we know, we
are the first to learn the hierarchical representation of text
and shape in hyperbolic space, which is beneficial for text-
to-shape generation.

3. Preliminaries

Hyperbolic space. Hyperbolic space is a non-Euclidean
space, also an n-dimensional Riemannian manifold of con-
stant negative curvature. The hyperbolic space can be mod-
eled by several isometric models [53]. The most popular
model is the Poincaré ball model, which we adopt. The r-

dimensional Poincaré ball Bn
c := {x ∈ Rn | ∥x∥2 < r2}

with a negative curvature c, endowed with the canonical
metric of the Euclidean space gBx admits the structure of
a Riemannian manifold B := (Bn

c , g
B
x ) with the geodesic

distance d(·) : B × B → R given by:

d(x, y) =
1√
c
arcosh

(
1 +

2∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
. (1)

Identifying its tangent space TxB with Rn allows us to
transform data between Euclidean and hyperbolic spaces
through the exponential and logarithmic maps with origin
at x, respectively denoted by Expx and Logx. Explicit ex-
pressions are explained in Mettes et al. [30].
Hyperbolic Graph Convolution (HGC) HGC extends the
standard graph convolution to hyperbolic spaces and is suit-
able for processing tree-like graph data. Generally, an HGC
consists of feature initialization, feature updating and ag-
gregation, and activation. Formally, a graph is defined as
G = (V, E), where V = {xE

i ∥i = 0, ..., N} is the node fea-
ture set in Euclidean space, and E is the edge set. Firstly, an
Exp function transfers node features to hyperbolic space,
initializing node features on the hyperbolic manifold, xB

i .
Then a Möbius-layer [22] updates and aggregates node fea-
tures, which is a generalization of the fully connected layer
in hyperbolic space. Finally, a non-linear hyperbolic activa-
tion σB acts on these features by: (i) mapping them back to
Euclidean space, (ii) transforming them by traditional (Eu-
clidean) non-linear layers, and (iii) mapping them back to
the hyperbolic space. This yields hyperbolic node features
yBi . This procedure is defined as:

yBi = σB(Möbius(Exp(xB
i ))). (2)

We refer the reader to Yang et al. [53] for further details.
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4. Method

In this section we present our method, called HyperSDFu-
sion, for text-to-shape generation. Similar to the visual at-
tribute hierarchies of Li et al. [24], we encode the semantic
hierarchy in a hyperbolic space, where the root of the hi-
erarchy (i.e., at the center of Poincaré ball) is a category,
e.g., chair. The finer-grained separations are at lower lev-
els, such as subcategories or details. Finally, the category-
irrelevant features are at the lowest level, e.g., legs of a chair
(cf . Fig. 1). We achieve this through hyperbolic text-shape
feature learning under the supervision of our proposed hy-
perbolic hierarchical loss. We now describe our model and
provide additional details in our supplementary material.

4.1. A Dual-branch Latent Diffusion Model

The architecture of our proposed HyperSDFusion for text-
to-shape generation is shown in Fig. 2. HyperSDFusion is
a dual-branch Latent diffusion model, including 3D shape
compression, the forward and reverse process of the latent
diffusion model based on text conditions.
3D Shape Compression As the scale of the 3D shape in-
creases, the GPU consumption yields a significant incre-
ment. Embedding the 3D shape into the low-dimensional
latent space tends to greatly reduce resource consumption.
Hence, we encode 3D shapes into a compact latent space,
representing each 3D shape as a latent feature.

As shown in Fig. 2(b), we firstly represent 3D shapes
as a Truncated Signed Distance Field (TSDF) Γ of size
R × R × R × 1, where R is the resolution, and 1 is the
dimension of distance. A Vector Quantised-Variational Au-
toEncoder (VQ-VAE) [49] is employed to learn the latent
feature of Γ. The encoder E of VQ-VAE encodes Γ into a
latent representation Z = E(Γ), where Z ∈ Rd×d×d×m,
d is the resolution of the latent feature and m is the dimen-

sion of features. Importantly, the encoder downsamples the
TSDF by a factor f = R/d. Then, Z is discretized by the
codebook V Q. Finally, the decoder D of VQ-VAE recon-
structs the 3D shape from the discretized Z, represented as
Γ′ = D(V Q(Z)). The reconstruction loss between Γ and
Γ′ follows Van et al. [49].

Forward Process of The Latent Diffusion Model. With
the learned latent feature Z of each shape as ground
truth, the forward process is an iterative process that adds
Gaussian noise to Z in a Markovian manner, as shown
in Fig. 2(a). In detail, the ground truth latent feature of
shape is the input at time 0, defined as Z0. Then Z0 is
noised by Gaussian noise ϵ time by time. After T times, Z0

is noised to ZT , which is close to standard Gaussian noise.
The whole forward process is represented as:

q(Z1:T |Z0) =

T∏
t=1

q(Zt|Zt−1), (3)

where q is the feature distribution at each time.

Reverse Process of The Latent Diffusion Model based
on Text Conditions. Given a text prompt as the condi-
tion, the reverse process is to generate the latent feature of
the 3D shape coincident with the text from random Gaus-
sian noise. In detail, starting from random Gaussian noise
ZT at time T , we gradually sample it to remove noise by
a reverse Markov chain. As shown in Fig. 2(a), the noisy
latent feature at time t, Zt, is denoised to Zt−1 by a de-
noiser conditioned on text features, C1, C2. The denoiser
is a dual-branch 3D U-Net structured attention model [40].
Each module in the attention model consists of an up/down-
sample, residual blocks, self-attention, cross-attention, and
a feed-forward layer, as shown in Fig. 2(c). After T times,
the output Z0 is close to the ground truth latent feature. The
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reverse process is formulated as follows:

p(Z0:t|ZT ) = p(ZT )

T∏
t=1

p(Zt−1|Zt), (4)

where p is the feature distribution in the reverse process.
Dual-branch Denoiser. To well utilize text information,
we design a dual-branch denoiser. On the one hand, text is
composed of ordered words, indicating a sequential struc-
ture. We introduce a hyperbolic text-image encoder to learn
the multi-modal sequential feature of the text, defined as C1.
On the other hand, natural language also exhibits a syntactic
structure [8] that can be parsed into a syntax tree, as shown
in Fig. 1(b). We propose a hyperbolic text-graph convolu-
tion module to learn the hierarchical structure of the text,
defined as C2.

A common way to utilize the two conditions C1, C2 is
to concatenate them as a single condition and inject them
into a single-branch denoiser. However, this way may cause
feature interference. Hence, we propose a dual-branch de-
noiser to utilize respectively, which consists of two parallel
3D U-Nets structures. As shown in Fig. 2(a), C1 and C2 are
fed separately as conditions to the cross-attention of the 3D
U-Nets. Finally, the outputs of the two branches are con-
catenated. The dual-branch denoiser can preserve the in-
dependence of the two conditions, preventing confusion or
loss of information. In this way, one branch perceives the
sequential structure from C1, while the other branch per-
ceives the hierarchical structure from C2.

4.2. Text Feature Learning in Hyperbolic Space

As previously mentioned, text exhibits both sequential
structure and syntactic hierarchical structure. We now ex-
pose our hyperbolic text-image encoder (HTIE) and hyper-
bolic text-graph convolution module (HTGC) used to better
capture these structures.
Hyperbolic Text-image Encoder. Our hyperbolic text-
image encoder learns text features, not only capturing the
sequential structure of text but also embedding the multi-
modal hierarchical structure of text-image. As shown
in Fig. 3(a), HTIE consists of a transformer-based text en-
coder and an adaptation layer. The text encoder captures
long-range dependencies between words in a text, learning
the sequence features of text. Besides, the text encoder is
pre-trained from MERU [9], a text-image contrastive learn-
ing model that learns the hierarchical features between text
and image in a hyperbolic space. Hence, our text encoder
also embeds multi-modal hierarchical features of text and
image. Then, we introduce an adaption layer to narrow the
gap between the pre-trained text encoder and the text-shape
dataset, implemented by multiple transformer layers. In this
way, our HTIE learns a text condition, C1.

Hyperbolic Text-graph Convolution Module. A text can
be parsed into a syntax tree according to its syntactic struc-
ture. As shown in Fig. 3(b), each word is endowed with
Part-Of-Speech (POS), and the dependency between words
is indicated by directed edges. Since hyperbolic space is
more suitable for processing tree-like structure data than
Euclidean space [53], we propose a hyperbolic text-graph
convolution module to learn the syntactic structure of text,
including syntax tree construction, text-graph initialization
in Euclidean space, and learning in hyperbolic space.

Firstly, the input text is processed by spaCy [16], a natu-
ral language processing library yielding a syntax tree. Sec-
ondly, the node and edge features are initialized in the Eu-
clidean space E. A given text prompt is converted into
tokens and then mapped to a vector representation by an
embedding layer. The vector representation is added with
the position encoding, following a linear layer to trans-
form features. At this point, the features of tokens in Eu-
clidean space are initialized as node features V E of the
text-graph, and the branches of the syntax tree serve as
edges E in the text-graph. The text-graph is defined as
GE = {VE , E}. Thirdly, the text-graph is projected to
hyperbolic space, learning the hierarchical structure of the
text-graph. In detail, the projected text-graph is represented
as GH = Exp(GE) = {VH , E}, where Exp is as defined
in Section 3, and H represents hyperbolic space. In hyper-
bolic space modeled by the Poincaré Ball model, stacked
hyperbolic graph convolutions propagate and update node
features on the text-graph, better capturing the hierarchical
structure of the text-graph. At last, the updated node fea-
tures of the text-graph are projected back into the Euclidean
space by the Log, yielding the other text condition C2.

4.3. Hyperbolic Hierarchical Loss for 3D shape

In this work, the denoiser predicts the latent feature of 3D
shapes from a random Gaussian noise conditioned on text,
denoted as Z ′. To ensure that Z ′ closely approximates the
ground-truth latent feature, the mean squared error Lmse

between Z and Z ′ is employed as the loss function. How-
ever, Lmse only supervises the similarity between features,
ignoring the hierarchical structure of 3D shapes.

As mentioned before, 3D shapes inherently exhibit a hi-
erarchical structure, namely the part-whole hierarchy. In the
feature space of 3D shape, this hierarchy manifests as hier-
archical relationships between deep and shallow features.
In this work, these deep and shallow features are the multi-
scale outputs of the 3D U-Net. As depicted in Fig. 3(c),
the small-scale features fh are the global feature of the 3D
shape, the large-scale features fs are the local feature, and
the medium-scale features fm line in between. To super-
vise these features to maintain the hierarchy, we propose a
hyperbolic hierarchical loss to regularize the feature space.

These features are first passed through a pooling layer
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and multi-layer perceptrons to unify their scale and fea-
ture dimension. Then, they are projected to the hyperbolic
space by Exp, and transformed to a unified distribution by
a shared Möbius layer. Due to the hierarchical property of
deep and shallow features, features in the hyperbolic space
should also maintain a tree-like hierarchical structure, as il-
lustrated in Fig. 3(c). Here, we use the relative distance
between features to constrain the feature distribution, i.e.,
d2 > d1, d3 > d2. di is the geodesic distance from the
i-th feature to the center point. Therefore, the hyperbolic
hierarchical loss is defined as:

Lh = max (0,−d2 + d1) + max (0,−d3 + d2) . (5)

The whole training loss is given by L = Lmse + αLh,
where α is a balancing factor.

5. Experiments
To evaluate the performance of our method, we conducted
a series of experiments on the paired text-shape dataset,
Text2Shape [5]. The details of the experiments are de-
scribed in the following subsections.
Implementation Details. Our method generates a 3D
shape from a text, which is represented as a TSDF with the
size of 64 × 64 × 64 × 1, where 64 is the resolution. Our
method includes a 3D VQ-VAE and a dual-branch diffusion
model. Firstly, we trained the 3D VQ-VAE on the ShapeNet
dataset [4] with 13 categories of 3D shapes. The 3D VQ-
VAE compresses the TSDF to a compact latent feature Z
with the size of 16 × 16 × 16 × 3. Then, the 3D VQ-VAE
is frozen, and the dual-branch diffusion model is trained on
the Text2Shape dataset [5]. The optimizer for the training
is AdamW with an initial learning rate of 1e-5. During in-
ference of the diffusion model, the sampler is the DDIM
sampler [45], where the sample step T is set to 100.
Dataset. In this work, we choose Text2Shape dataset [5] to
conduct experiments. The reason is that this work aims to
learn hierarchical representations of text and 3D directly,
which requires paired data. Text2Shape dataset [5] is a
widely used dataset in paired text-to-shape generation. This
dataset provides rich natural language annotations for tables
and chairs in ShapeNet [4], describing their shape, color,
texture, material, etc. This work only focuses on how to
generate shapes from text.
Evaluation Metrics. In order to assess the generation qual-
ity, we adopt Intersection over Union (IoU), Chamfer Dis-
tance (CD), F-score, and Fréchet Inception Distance (FID)
as evaluation metrics. IoU computes the intersection vol-
ume between generated and GT 3D shapes. CD is com-
puted between generated and GT point clouds that are sam-
pled from 3D shapes by farthest point sampling. F-score
computes the harmonic mean between precision and recall,
based on the distance between generated 3D shapes and

SDFusion Ours
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ours-white and black, L shape 
model, steal and wooden , home  
dinner model.
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with a tapered back and semi-

wide arms.

Figure 4. The showcase of text-to-shape generation results. Above
the dotted line are some examples generated by our method, and
below is the result compared to SDFusion [7].

Table 1. Evaluating text-to-shape generation on random 1000 sam-
ples of Text2Shape [5] test set. Bold indicates the best results.

Methods IoU↑ CD↓ F-score↑ FID↓
Liu et al. [28] 12.21 1.41 13.34 1.00
SDFusion [7] 13.98 1.246 12.67 5.47
HyperSDFusion(Ours) 16.21 0.7433 15.16 0.70

GT 3D shapes. We set the distance threshold is set to 1%,
as in Tatarchenko et al. [46]. FID calculates the Fréchet
distance between the feature representations of images ren-
dered from predicted and GT 3D shapes.

For evaluating the hierarchy of generated 3D shapes,
we introduce two metrics, Hierarchical Mutual Difference
(HMD) and Hyperbolic Distance (HD). HMD computes the
Chamfer distance between 3D shapes generated from a gen-
eral text and a detailed text, assessing the text-shape hier-
archical structure. HD computes the geodesic distance in
hyperbolic space among the deep and shallow features of
100 randomly selected generated 3D shapes, evaluating the
hierarchical structure of 3D shapes.

5.1. Text-to-Shape Generation Results

Method for Comparison. There are few existing diffusion-
based methods for paired text-to-shape generation, includ-
ing SDFusion [7] and Diffusion-SDF [25]. SDFusion learns
the mapping between a 3D latent space and text feature
space, while Diffusion-SDF is for patch-wise latent spaces.
Because our method aims to learn the hierarchical repre-
sentation in a joint text-shape latent space, we compare our
method with SDFusion [7] in the experiment. SDFusion
learns text features in Euclidean space, and generates the
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Table 2. Comparsion results on texts with different lengths.

Method words ≤ 8 8 < words ≤ 16 16 < words
IoU↑ F-sc.↑ CD↓ FID↓ IoU↑ F-sc.↑ CD↓ FID↓ IoU↑ F-sc.↑ CD↓ FID↓

SDFusion [7] 8.52 12.15 1.71 7.51 8.04 10.28 1.92 8.19 10.13 12.01 1.48 6.59
Ours 15.41 13.58 0.99 3.64 14.56 15.37 0.81 4.22 13.25 16.11 0.71 4.91

Table 3. Ablations on architectures and loss functions. 1⃝ refers to
the single-branch diffusion model. 2⃝ represents the dual-branch
diffusion model. In bold indicates the best results.

Group Model IoU↑ CD↓ F-score↑
0 Baseline 12.74 11.04 8.93

1
Baseline+T5 12.26 11.29 8.14
Baseline+CLIP 13.99 9.41 8.77
Baseline+HTIE 14.26 10.49 9.42

2
Baseline+HTIE+HTGC+ 1⃝ 14.18 10.45 8.988
Baseline+HTIE+HTGC+ 2⃝ 15.73 8.99 9.50
Baseline+HTIE+GCN+ 2⃝ 15.41 9.28 9.19

3 Baseline+HTIE+HTGC+ 2⃝+Le 13.51 11.72 9.79
Baseline+HTIE+HTGC+ 2⃝+Lh 16.44 9.053 9.917

3D shape without hierarchical supervision.

Results on Text-to-shape Generation. Tab. 1 compares
our HyperSDFusion against the previous SOTA text-to-
shape generation method, SDFusion [7]. Quantitatively,
our method outperforms SDFusion by a significant margin
(87% decrease in FID, 40% decrease in CD, 23% improve-
ment in IoU, and 19.7% gain in F-score.). We achieved
the best results on all these metrics for assessing genera-
tion quality. In particular, the large drop in FID indicates
that shapes generated by our method are visually closer to
the desired ones indicating high-quality text-to-shape gen-
eration. Some samples generated by our method are shown
in Fig. 4. We observe that these shapes are complete and
crisp in detail, when compared to SDFusion, which per-
forms poorly on long texts. In contrast, our approach ade-
quately captures text features and generates shapes faithful
to the text, such as S-shapes, L-shapes, and rocking chairs.

Generation Performance on Texts with Different
Lengths. For evaluating the generation performance on
texts with different lengths, we conducted a comparison on
Text2Shape++ dataset [14], which is built on Text2Shape
dataset. In Text2Shape++, each text prompt is represented
as a phrase sequence, and each phrase sequence corre-
sponds to one or more shapes. We generate shapes with
texts of length less than 8, more than 8 less than 16, and
more than 16, respectively, to compare the performance of
our method with SDFusion [7]. The comparison results are
listed in Tab. 2. It can be observed that our method out-
performs the existing methods on both long and short texts.
We also showcase more generations of texts with different
lengths in Fig. 6(a). Our method generates shapes consis-
tent with both short and long texts. These results indicate
that our method sufficiently learns and utilizes the text fea-
ture.

“A chair.”

“A soft chair.”

SDFusion Ours

“A brown color 
soft chair with 4 
stands.”

“A new-fashioned, 
grey soft chair, with 
two arms and four 
legs base.”

SDFusion Ours

Figure 5. Visualizing text-shape hierarchical structure. High-
lighted parts of the prompt represent the detailed information.

Table 4. The result of comparing the performance of capturing the
text-shape hierarchical structure. More results are in the supple-
mental material.

Text HMD↓
SDFusion [7] Ours

“A chair.” - -
“A soft chair.” 1.29 0.57
“A brown color soft chair with 4 stands.” 0.70 0.20
“A new-fashioned, grey soft chair, with two arms and four legs base.” 0.60 0.43

5.2. Ablation Studies

We conducted ablation studies on a mini-set of Text2Shape
dataset to demonstrate the effectiveness of our proposed
method. We choose SDFusion [7] as the baseline because
the text encoder of SDFusion is the standard sequential
model in Euclidean space, Bert [10], and its denoiser is
without the hierarchical supervision.
Hyperbolic Text-image Encoder. We compare our HTIE
with the text encoder of the baseline, which is most used
in existing methods [7, 25, 31]. We replace the text en-
coder of the baseline with our HTIE. As listed in Group 1
of Tab. 3, the baseline with our HTIE significantly improves
the quantitative results, both IoU, CD, and F-score, indicat-
ing that our HTIE enhances the generation quality, owing
to the multi-modal hierarchical features learned by the pre-
trained MERU model.

In order to further verify the performance of our HTIE,
we compare it with the other common text encoder, T5 [38],
and the Euclidean text-image encoder, CLIP [37]. Results
in Group 1 of Tab. 3 show that T5 performs worse than CLIP
and our HTIE. This is because T5, pre-trained on text-to-
text generation, learns embedding in favor of text generation
over contextual understanding. Moreover, our HTIE per-
forms better than CLIP, manifesting that hyperbolic space
is more suitable for text-image multi-modal learning.
Dual-branch Diffusion Model. Our HTIE and hyperbolic
text-graph convolution module (HTGC) learn different text
features. We compare two ways of utilizing these two
text features in diffusion models, single-branch and dual-
branch. The comparison results are shown in Group 2
of Tab. 3. The performance of the single-branch slightly
decreases on IoU and F-score. The reason is that concate-
nating features of the single-branch lead to feature interfer-
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ence. In contrast, our dual-branch diffusion model further
improves the performance of the model with HTIE, illus-
trating that our dual-branch architecture more effectively
leverages the text features captured by HTIE and HTGC.
Learned text features are visualized in the supplementary.

In addition, we compare our HTGC with the standard
Euclidean graph convolution (GCN), as listed in Group 2
of Tab. 3. It can be observed that our method yields better
results, demonstrating hyperbolic space is more suitable for
learning the syntactic structure of texts.
Hyperbolic Hierarchical Loss. We compared the perfor-
mance of our model with and without hyperbolic hierarchi-
cal loss. As shown in Group 3 of Tab. 3, the model with
the hyperbolic hierarchical loss yields improvements in IoU
and F-score while remaining comparable in CD, compared
without the loss. It suggests that supervising the hierarchi-
cal structure of features during the denoising process con-
tributes to improving the generation quality.

As listed in Group 3 of Tab. 3, we also compare our hy-
perbolic hierarchical loss with an Euclidean version com-
puted by Euclidean distance, Le. The results show that Lh

is better, which reflects the advantage of hyperbolic space
in maintaining the hierarchical structure.

5.3. Analysis of Hierarchical Learning
Analysis for Text-shape Hierarchical Structure. Text-
shape exhibits hierarchical structure from general texts and
detailed texts. Our method embeds the hierarchical struc-
ture by hyperbolic learning, like our HTIE and HTGC. We
use HMD to qualitatively evaluate the ability to capture the
text-shape hierarchical structure. As shown in Tab. 4, we
enumerate the HMD of SDFusion [7] and our method on
texts, ranging from general text to detailed text. We can ob-
serve that our method achieves smaller HMD between 3D
shapes generated from different levels. It indicated that the
shape generated from general text has hierarchical relation-
ships with the shape generated from detailed texts. The hi-
erarchical relationships are showcased in Fig. 5. Compared
with SDFusion, given a general text, “a chair”, our method
learned a shape without much detail. Indeed, a general text
has no specific information, just like the root of the text-
shape tree. Then adding the word “soft” to the text, the chair
generated by our method looks softer. Finally, by adding
more detailed words, like “four legs”, “new-fashion”, “two
arms”, our method generated accurate shapes with natural
wrappings. We also visualized 3D shape features generated
from general and detailed texts in hyperbolic space. Dots
in Fig. 6(b) represent 3D latent shape features generated by
texts. The hierarchical distribution of these dots is consis-
tent with the text hierarchy.
Analysis of the Hierarchical Structure of 3D Shape. We
employ a hyperbolic hierarchical loss to regularize the fea-
ture space in the denoiser. We use HD to qualitatively eval-

Method d1 d2 d3 Order
SDFusion[7] 406.29 431.76 255.83 d2 > d1 > d3
Ours 3.04 3.44 6.06 d3 > d2 > d1

Table 5. Comparing the performance in maintaining the hierarchi-
cal structure of 3D shape.

“White office chair with 
padding.”

“it is a combination of light 
grey and brown color, square 
in shape with four long length 
legs and for entire body 
frame wood material is used 
and seating is leather padded 
and over all appearance looks 
like bar chair.”

“a white color 
square table with 
four sharp legs.”

“faux wood topped game 
table on a silver metal 
pedestal base.”

“This looks to be a brown 
desk. It has a small 
drawer on one side with a 
space under the drawer 
for a computer tower. It 
also has a pull out table 
that holds a keyboard.”

“It appears to be a chair with 
a contemporary modern 
design.  It has an enclosed 
back and arm rest part and 
appears to look like a half an 
egg shell standing on a short 
stand with a round base.  
Entire chair is gray in color.”

“a chair”

“a soft chair”

“a brown color soft chair 
with 4 stands”

“A new-fashioned, grey soft chair, 
with two arms and four legs base”

Hyperbolic space

(b)(a)

Figure 6. (a) More generation results, especially generated from
long and complex text. (b) 3D Shape features generated from gen-
eral and detailed texts in Poincaré Ball.

uate the ability to maintain the hierarchical structure of 3D
shapes. As shown in Tab. 5, d1, d2, and d3 are the distances
of deep, middle, and shallow features to the origin in Eu-
clidean space and hyperbolic space. If we compute the HD,
the order provided by SDFusion is d2 > d1 > d3, which
does not follow the hierarchical structure of the point cloud.
Instead, the order computed by our method is d3 > d2 >
d1, correctly following the hierarchy from deep to shallow
features. It indicates the denoiser supervised by our hyper-
bolic hierarchical loss guarantees the tree-like hierarchical
structure of 3D shape. We also provide the visualization of
the feature distribution in the supplementary materials.

6. Conclusion
We propose a hyperbolic learning method for text-to-shape
generation, namely HyperSDFusion. The key innovation
lies in learning the inherent hierarchical structure of text
and shape in hyperbolic space. In detail, we introduce a
dual-branch diffusion model to fully utilize sequential and
hierarchical features of text. The sequential features of the
text are captured by the designed hyperbolic text-image en-
coder, simultaneously embedding multi-modal image-shape
features. A hyperbolic text-graph convolution module is de-
vised for learning hierarchical text features. Additionally,
we propose a hyperbolic hierarchical loss to impart gener-
ated 3D shapes with hierarchical structure. Experimental
results of our method on the Text2Shape dataset demon-
strate the advantage of our method on text-to-shape genera-
tion. In the future, we will investigate more direct links to
bridge language and 3D geometry.
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