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Abstract

Large Vision-Language Models (LVLMs) have advanced
considerably, intertwining visual recognition and language
understanding to generate content that is not only coherent
but also contextually attuned. Despite their success, LVLMs
still suffer from the issue of object hallucinations, where
models generate plausible yet incorrect outputs that include
objects that do not exist in the images. To mitigate this is-
sue, we introduce Visual Contrastive Decoding (VCD), a
simple and training-free method that contrasts output dis-
tributions derived from original and distorted visual inputs.
The proposed VCD effectively reduces the over-reliance on
statistical bias and unimodal priors, two essential causes of
object hallucinations. This adjustment ensures the generated
content is closely grounded to visual inputs, resulting in con-
textually accurate outputs. Our experiments show that VCD,
without either additional training or the usage of external
tools, significantly mitigates the object hallucination issue
across different LVLM families. Beyond mitigating object hal-
lucinations, VCD also excels in general LVLM benchmarks,
highlighting its wide-ranging applicability.

1. Introduction
Large Vision-Language Models (LVLMs) have become in-
tegral in the intersection of computer vision and natural
language processing, enabling a range of applications due
to their ability to generate contextually relevant textual de-
scriptions from visual inputs. These models are charac-
terized by their effectiveness in capturing and translating
complex visual patterns into coherent linguistic representa-
tions [5, 12, 18, 33, 45, 49, 71, 73, 78]. The evolution of
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Figure 1. An illustration of Visual Contrastive Decoding. The hal-
lucinated object “Surfboards” is highlighted in red, and it is elimi-
nated during the generative process by contrasting with the output
distribution that favors hallucinations.

LVLMs is marked by ongoing improvements in model archi-
tecture, training methodologies, and data diversity, leading
to enhanced performance and application versatility. Despite
these advancements, specific challenges persist, with the
issue of object hallucination [20, 38, 43, 48] being a promi-
nent concern that impacts the reliability and applicability of
LVLMs across domains.

Object Hallucination in this context refers to the phe-
nomenon where LVLMs generate textual content that is
semantically coherent but inconsistent with ground-truth
objects in the given image. This challenge not only reveals
fundamental issues of LVLMs, such as over-reliance on sta-
tistical bias [1, 2, 19, 38] and unimodal priors [21, 22, 51,
68, 70, 75], but also has direct implications for the practi-
cal deployment of LVLMs. In applications where precision
and reliability of generated content are paramount, object
hallucinations can lead to misinformation, misinterpreta-
tion, and subsequent erroneous decision-making. In domains
like healthcare [26, 66], autonomous systems [8, 69], and
robotics [46, 50], such inaccuracies are not just undesirable
but could have significant consequences. Addressing the hal-
lucination issue is therefore essential to enhance the integrity,
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reliability, and broad applicability of LVLMs in various real-
world scenarios.

Various approaches have been explored to curb object
hallucinations in VLMs. Early works made attempts on
small-scale VLMs by either performing fine-grained modal-
ity alignment [6] or reducing the statistical bias of object
co-occurrence with data augmentation [30, 54]. However, the
behaviors of LVLMs differ significantly from small-scale
VLMs, making related methods impractical to generalize
and scale up [29, 67]. Several recent studies address this
issue by proposing hallucination-targeted datasets for fine-
tuning [20, 42], training a post-hoc revisor to reconstruct
less hallucinatory outputs [77] or adapting factually aug-
mented Reinforcement Learning from Human Feedback
(RLHF) [60]. While existing interventions for object hal-
lucination in LVLMs have shown effectiveness, the incurred
human effort and computational cost highlight a pressing
need for a simpler but efficient approach.

In this work, we analyze the effect of visual uncertainty
on the two primary causes of object hallucinations in LVLMs,
namely statistical bias and unimodal priors (i.e., language
priors). Building on the analysis above, we introduce Vi-
sual Contrastive Decoding (VCD), a training-free technique
designed to mitigate object hallucination in LVLMs. As
shown in Figure 1, VCD is grounded in the principle of
contrasting output distributions from original and distorted
visual inputs. Hence, it acts as a corrective mechanism
and calibrates the model’s over-reliance on language pri-
ors from integrated LLMs and statistical bias of LVLMs’
pretraining corpus. In the realm of efficiency, VCD stands
out due to its minimal computational overhead compared
with previous studies [20, 42, 60, 77], circumventing the
need for additional training or the usage of external tools
(e.g., other pretrained models). Our experiments demon-
strate VCD’s effectiveness, with consistent improvements
on multiple object hallucination benchmarks (e.g., up to
+7.4 F1 score boost on POPE [38] and +18% improvement
on MME [16]) across different LVLM families, including
LLAVA-1.5 [44, 45], InstructBLIP [12], and Qwen-VL [5].
In addition, our method is also beneficial to the general per-
ception capacities of LVLMs as evidenced by benchmarking
on MME and LLaVA-Bench1, indicating its potential appli-
cability beyond the scope of object hallucination mitigation.

To sum up, our main contributions are as follows:
1. We conduct an in-depth analysis of the effect of visual un-

certainty on object hallucinations in LVLMs, particularly
from the aspects of statistical bias and unimodal priors.

2. Inspired by the analysis above, we design VCD, a
training-free technique that can effectively mitigate ob-
ject hallucinations in LVLMs. It calibrates the model’s
outputs by contrasting output distributions derived from

1https://huggingface.co/datasets/liuhaotian/llava-
bench-in-the-wild

original and distorted visual inputs, ensuring more con-
sistent content generation.

3. Through comprehensive experiments, we demonstrate
the efficacy of the proposed VCD in alleviating object
hallucination and enhancing general perception capability.
Our method yields notable improvements without the
need for additional training or external tools.

2. Related Work
2.1. Visual-Language Models

The development of Vision-Language Models (VLMs)
has transitioned from being rooted in BERT-based lan-
guage decoders [13, 31, 47] for merging visual and tex-
tual data [34, 36, 59, 64], to a notable advancement ush-
ered by the integration of Large Language Models (LLMs)
[4, 7, 10, 11, 17, 53, 61–63]. The advent of LLMs heralded
the emergence of Large Vision-Language Models (LVLMs)
[3, 9, 14, 34], characterized by enhanced capabilities and
performance. In this phase, LVLMs, supported by end-to-
end training techniques, demonstrated unified decoding of
visual and textual tokens, marking a significant enhancement
in their performances and adaptability. Recent developments
have seen a focus on Visual Instruction Fine-tuning [45],
showcasing adaptability to a variety of vision-language tasks.
The methodologies adopted, ranging from integrating cross-
modal alignment networks to fine-tuning LLaMA models,
underscore a trend of diversification and specificity in the
approach [5, 12, 33, 71].

2.2. Hallucination in VLMs

Prior to the advent of LLMs, the NLP community has pri-
marily defined “hallucination” as the generation of non-
sensical content or content that deviates from its sources
[28, 32, 39, 57, 74, 76]. In the realm of VLMs, “object hal-
lucination” is also well-documented, referring to models
producing plausible outputs that include objects that do not
match or are missing from images [6, 38, 54]. Mitigating ob-
ject hallucination in VLMs has typically involved strategies
such as fine-grained contrastive learning [72], ROI feature
fusion [6], and the curtailment of co-occurrence patterns
via data augmentation [30]. However, with the distinct train-
ing paradigms and model architectures that characterize tra-
ditional VLMs and contemporary LVLMs, adapting these
strategies to the newer auto-regressive approaches in LVLMs
poses significant challenges [29, 67].

Recent efforts have sought to navigate these complex-
ities, with studies delving into the evaluation and detec-
tion of object hallucinations within the domain of LVLMs
[38, 42, 48, 65]. For example, POPE [38] converts the hal-
lucination into a binary classification problem to probe the
model’s awareness of whether a specific object exists in the
image. Concurrently, there has been a notable push towards
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the development of refined datasets tailored for fine-tuning
existing LVLMs [20, 35, 42], training a post-hoc revisor to
detect and reconstruct less hallucinatory outputs [77], and
adapting factually augmented RLHF [60]. Nevertheless, ex-
isting approaches that acquire additional datasets, conduct
fine-grained tuning on original or newly introduced models,
or utilize other off-the-shell pretrained models can be time-
consuming, labor-intensive, and computationally costly. In-
stead, we propose a conceptually different and training-free
approach, VCD, that contrasts the output distributions with
original and distorted visual inputs to calibrate the model’s
over-reliance on unimodal priors and statistical bias, without
utilizing external models.

3. Method
3.1. Decoding of Vision-Language Models

We consider an LVLM parametrized by θ. The model takes
as input a textual query x and a visual input v, where v
provides contextual visual information to assist the model
in generating a relevant response y to the textual query. The
response y is sampled auto-regressively from the probability
distribution conditioned on the query x and the visual context
v. Mathematically, this can be formulated as:

yt ∼ pθ (yt | v, x, y<t) ,

∝ exp logitθ (yt | v, x, y<t) ,
(1)

where yt denotes the token at time step t, and y<t represents
the sequence of generated tokens up to the time step (t− 1).
In the decoding phase of LVLMs, object hallucinations of-
ten emerge when probabilities are erroneously allocated to
tokens that do not align with the presented visual input v.
Previous studies have identified two primary causes of this
problem: (1) statistical biases inherent in training data (e.g.,
prevalent but superficial object correlations) [1, 2, 19], and
(2) over-reliance on language priors embedded within the
powerful LLMs used as decoders [22, 38, 70, 75]. Our ap-
proach to mitigate object hallucinations first amplifies these
undesirable behaviors with vague inputs and subsequently
contrasts with them in the decoding process.

3.2. Visual Uncertainty Amplifies Hallucinations

The fidelity of visual input is pivotal for LVLMs to accurately
encode visual features and generate outputs faithfully. Yet,
the introduction of uncertainty in visual inputs can tilt the
equilibrium. This section delves into a comprehensive analy-
sis aiming to validate the assumption that increased visual
uncertainty can amplify the language priors and statistical
biases in LVLMs, thus exacerbating object hallucination.

Introduction of Visual Uncertainty In this paper, we pro-
pose to adopt the most elementary method—applying a Gaus-
sian noise mask to the original image—to introduce visual
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Figure 2. An illustration of visual uncertainty amplifying lan-
guage priors. Given an image featuring a black banana among
other colorful fruits, LVLMs favor more conventional banana col-
ors—such as ”yellow” and ”green”, with increasing visual uncer-
tainty. The ground-truth color ”black” diminishes in probability
(logp(y|x, v′)) as the distortion escalates, making LVLMs over-
reliant on the language priors from LLM pre-training that typically
associate bananas with being yellow or green.

uncertainty. This method, although straightforward, provides
an initial benchmark to estimate the baseline effects of visual
uncertainty on model outputs. Following the forward diffu-
sion process in image generation [24], the distorted image is
modeled as follows:

q (vt | vt−1) = N
(
vt;

√
1− γvt−1, γI

)
q (vT | v0) =

T∏
t=1

q (vt | vt−1) ,
(2)

where v0 denotes the original visual input (i.e., original im-
age) and I refers to an identity matrix. We incrementally add
a small amount of Gaussian noise for T steps, producing a
sequence of distorted images v1, . . . , vT . The original image
v0 gradually loses its distinguishable features as step t goes
larger, where the amount of noise added in each step is con-
trolled by γ. Eventually, when T → ∞, visual uncertainty
reaches the maximum and vT will become indistinguishable
from Gaussian noise.

Visual Uncertainty Amplifies Language Priors Figure 2
shows that visual uncertainty can compel LVLMs to over-
look visual evidence and overly exploit language priors for
decision-making. However, this tendency is not entirely un-
expected, as LLMs are designed to predict next-word prob-
abilities based on vast textual corpora. When confronted
with ambiguous visual stimuli, an LVLM might misinterpret
these conventional, text-based predictions as a “safety net”.
These priors, while generally useful, can introduce biases
or assumptions that are inconsistent with the actual visual
content, particularly when the visual input lacks clarity.

Visual Uncertainty Amplifies Statistical Bias The construc-
tion of most vision-language pretraining datasets is predom-
inantly based on MSCOCO [40], which inherently suffers
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from an unbalanced object distribution and biased object
correlations. Previous works [38, 77] point out that LVLMs,
trained on such data, may inherit those statistical biases to
generate descriptions with hallucinated objects. To further
examine the hypothesis that visual uncertainty may amplify
statistical biases from pretraining, we designed two targeted
experiments to verify (1) if LVLMs hallucinate frequent ob-
jects more with distorted visual inputs and (2) if LVLMs are
more prone to hallucinate objects that frequently co-occur
with ground-truth objects in the image with distorted visual
inputs. Figure 3 shows an evident tendency that LVLMs
are more prone to hallucinate frequent and co-occurring ob-
jects, attributing to the imbalanced object distributions and
spurious object correlations inherited from the training data.

3.3. Visual Contrastive Decoding

3.3.1 Contrasting the Predictions

Our observations in the previous section reveal that visual un-
certainty not only amplifies reliance on language priors but
also makes LVLMs more likely to be biased by superficial
object correlations present in pretraining datasets, leading
to more severe hallucinations. In light of this, we introduce
Visual Contrastive Decoding (VCD). VCD is formulated
to counteract the statistical biases and language priors in
LVLMs by contrasting model outputs generated from orig-
inal and distorted visual inputs. This is achieved without
necessitating additional training or external pretrained mod-
els, making VCD a cost-effective and efficient solution.

Specifically, given a textual query x and a visual input v,
the model generates two distinct output distributions: one
conditioned on the original v and the other on the distorted
visual input v′, which is derived by applying pre-defined
distortions (i.e., Gaussian noise mask) to v. Then, a new con-
trastive probability distribution is computed by exploiting
the differences between the two initially obtained distribu-
tions. The new contrastive distribution pvcd is formulated as:

pvcd (y | v, v′, x) = softmax [(1 + α) logitθ (y | v, x)
−α logitθ (y | v′, x)] ,

(3)
where larger α values indicate a stronger amplification of
differences between the two distributions (α = 0 reduces
to regular decoding). From the adjusted output distribution
pvcd, we can apply various sampling strategies, such as nu-
cleus sampling [25] and beam search [15].

Essentially, VCD serves as a corrective mechanism, re-
ducing hallucinations by contrasting against a distribution
predisposed to favoring them. Alternatively, VCD can also
be interpreted as a form of contrastive ensemble that differ-
entiates between the logits of pθ (y | v, x) and pθ (y | v′, x).
This method echoes the contrastive objective commonly
employed in image generation. For instance, classifier-
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Figure 3. The left subfigure shows the correlation between frequent
objects in MSCOCO and their propensity to be hallucinated in the
validation set. Objects with a higher occurrence rate in the dataset
are more likely to be hallucinated by LVLMs under distorted visual
scenarios. The right subfigure charts three objects that often appear
alongside ”dining table”, where they are also more frequently hal-
lucinated when presented with distorted visual inputs.

free diffusion models [23] estimate diffusion noise using
(1 + α)ϵθ(x, c) − αϵθ(x), where c serves as a controlling
factor. In the realm of text generation, several studies have
also exploited contrastive decoding for more faithful genera-
tion [37, 41, 52, 56].

3.3.2 Adaptive Plausibility Constraints

According to the formation of the contrastive distribution
pvcd in Equation 3, a challenge may arise as it penalizes
the model’s entire output behaviors influenced by distorted
visual inputs. However, this is not universally correct – the
output distributions with distorted visual inputs can still
uphold fundamental linguistic standards and common sense
reasoning. Indiscriminate penalization could inaccurately
punish these valid outputs and promote the generation of
implausible tokens. To address this issue, we follow Li et al.
[37] to implement an adaptive plausibility constraint that
is contingent upon the confidence level associated with the
output distribution with original visual inputs:

Vhead (y<t) = {yt ∈ V :

pθ (yt | v, x, y<t) ≥ βmax
w

pθ (w | v, x, y<t)},

pvcd (yt | v, v′, x) = 0, if yt /∈ Vhead (y<t) ,

(4)

where V is the output vocabulary of LVLMs and β is a
hyperparameter in [0, 1] for controlling the truncation of the
next token distribution. Larger β indicates more aggressive
truncation, keeping only high-probability tokens.

Combining the visual contrastive decoding and the adap-
tive plausibility constraint, we obtain the full formulation:

yt ∼ softmax [(1 + α) logitθ (yt | v, x, y<t)

−α logitθ (yt | v′, x, y<t)] ,

subject to yt ∈ Vhead (y<t)

(5)

Incorporating adaptive plausibility constraints refines the
contrastive distribution, bolstering confidence in straightfor-
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ward decisions. This ensures that when the model is highly
confident in its outputs associated with the original inputs,
the candidate pool is streamlined, often retaining a singular
token with high probability. Such an approach effectively
neutralizes potential adverse effects of VCD, preventing it
from inadvertently promoting the generation of implausible
tokens and maintaining the integrity of the generated content.

4. Experiments
This section details our assessment of the proposed Visual
Contrastive Decoding across various LVLMs.

4.1. Experimental Settings

Datasets & Evaluation Metrics
POPE, the Polling-based Object Probing Evaluation [38],

presents a streamlined approach to assess object hallucina-
tion. Within this benchmark, LVLMs are queried to answer if
a specific object exists in the given image. The ratio between
queries probing existent objects and non-existent objects is
balanced (i.e.,50% vs. 50%). It encompasses three sampling
settings: random, popular, and adversarial, each distinct in
constructing negative samples. In the random setting, objects
absent from the image are chosen randomly. The popular
setting selects missing objects from a high-frequency pool,
while in the adversarial setting, co-occurring objects not
present in the image are prioritized. The POPE benchmark
aggregates data from three distinct sources: MSCOCO [40],
A-OKVQA [55], and GQA [27]. It involves 500 images from
each dataset under each sampling setting and formulates 6
questions per image, culminating in a total of 27, 000 query-
answer pairs from the development sets of these datasets.
The evaluation pivots on four key metrics: Accuracy, Preci-
sion, Recall, and the F1 score.

MME [16] serves as an extensive benchmark tailored to
assess LVLMs across multiple dimensions. It comprises ten
perception-related subtasks and four cognition-focused ones.
Following Shukang et al. [58], except for adapting the whole
dataset, we additionally leverage the existence and count
subsets for object-level hallucination evaluation, and the
position and color subsets for attribute-level hallucination as-
sessment. Performance is quantified via the combined metric
of accuracy and accuracy+ as the official implementation.

LLaVA-Bench2 features a collection of 24 images, ac-
companying 60 questions that span a range of contexts in-
cluding indoor and outdoor scenes, memes, paintings, and
sketches. This dataset is crafted to assess the capability of
LVLMs in tackling more challenging tasks and their adapt-
ability to new domains. We conduct case studies on this
dataset to qualitatively demonstrate the effectiveness of our
proposed VCD.

2https://huggingface.co/datasets/liuhaotian/llava-
bench-in-the-wild

LVLM Baselines We evaluate the effectiveness of our VCD
on three state-of-the-art LVLMs. Concretely, we apply our
VCD to LLaVA-1.5 and InstructBLIP, which employ Vicuna
7B as language decoder [12, 44], and Qwen-VL, built on top
of Qwen 7B backbone [5]. For a more convincing compari-
son, we report the averaged results as well as the standard
deviation over 5 runs on POPE and MME benchmarks.

Implementation Details Throughout our experiments, we
set α = 1, β = 0.1, and γ = 0.1 unless explicitly stated oth-
erwise. For a consistent comparative analysis, our baseline
decoding strategy employs direct sampling (i.e., denoted as
“Regular” in all experimental tables), where the next token is
directly sampled from the post-softmax distribution3. Con-
versely, instances labeled as“VCD” in the decoding column
of all experimental tables refer to our proposed Visual Con-
trastive Decoding strategy, which also directly samples from
the modified post-softmax distribution after applying VCD.
Comprehensive parameter configurations can be found in
Supplementary Materials.

4.2. Experimental Results

Results on POPE Experimental results on POPE under the
random, popular, and adversarial settings are summarized
in Table 1. A notable observation is the robust effect of our
proposed VCD. Specifically, under different sampling set-
tings, the performances of our VCD consistently surpass
the baseline results by large margins (up to +5.8 accuracy
and +7.4 F1) on all of the LVLMs. This suggests its pivotal
role in counteracting statistical biases and language priors in
LVLMs, thereby reducing instances of object hallucination.
In addition, all LVLMs display a clear performance degra-
dation as we move from the random setting to popular and
experience a further decline while moving to the adversarial
setting. This trend verifies our hypothesis that statistical bi-
ases inherent in LVLMs substantially contribute to the object
hallucination problem. In a more detailed model-specific
analysis, VCD demonstrates varied effects across different
LVLMs. For LLaVA-1.5 and Qwen-VL, the F1 score eleva-
tion is predominantly driven by a recall boost (e.g., up to 10
points), showcasing its enhanced ability to accurately detect
object presences. Conversely, InstructBLIP’s F1 score im-
provement is largely due to improved precision, signifying
its enhanced capability to accurately filter out false positives.
This highlights VCD’s ability to accentuate distinct attributes
of various model architectures in binary decision scenarios
of POPE.

Results on MME Hallucination Subset The MME sub-
set evaluations extend beyond POPE’s scope, encompassing

3Optimization of α, β, T , and applying other sampling strategies as detailed
in the ablation studies in Supplementary Materials may yield better results.
The current settings serve as a constant baseline to demonstrate the efficacy
of our approach.
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Dataset Setting Model Decoding Accuracy↑ Precision Recall F1 Score↑

MSCOCO

Random

LLaVA1.5 Regular 83.29(±0.35) 92.13(±0.54) 72.80(±0.57) 81.33(±0.41)

VCD 87.73(±0.40) 91.42(±0.55) 83.28(±0.42) 87.16(±0.41)

Qwen-VL Regular 84.73(±0.36) 95.61(±0.45) 72.81(±0.38) 82.67(±0.41)

VCD 88.63(±0.10) 94.64(±0.25) 81.91(±0.19) 87.81(±0.11)

InstructBLIP Regular 80.71(±0.73) 81.67(±0.67) 79.19(±1.14) 80.41(±0.80)

VCD 84.53(±0.38) 88.55(±0.54) 79.32(±0.44) 83.68(±0.40)

Popular

LLaVA1.5 Regular 81.88(±0.48) 88.93(±0.60) 72.80(±0.57) 80.06(±0.05)

VCD 85.38(±0.38) 86.92(±0.53) 83.28(±0.42) 85.06(±0.37)

Qwen-VL Regular 84.13(±0.18) 94.31(±0.43) 72.64(±0.45) 82.06(±0.23)

VCD 87.12(±0.07) 91.49(±0.10) 81.85(±0.19) 86.40(±0.09)

InstructBLIP Regular 78.22(±0.84) 77.87(±1.03) 78.85(±0.52) 78.36(±0.76)

VCD 81.47(±0.42) 82.89(±0.64) 79.32(±0.44) 81.07(±0.39)

Adversarial

LLaVA1.5 Regular 78.96(±0.52) 83.06(±0.58) 72.75(±0.59) 77.57(±0.57)

VCD 80.88(±0.33) 79.45(±0.29) 83.29(±0.43) 81.33(±0.34)

Qwen-VL Regular 82.26(±0.30) 89.97(±0.33) 72.61(±0.50) 80.37(±0.37)

VCD 84.26(±0.39) 85.84(±0.45) 82.05(±0.39) 83.90(±0.39)

InstructBLIP Regular 75.84(±0.45) 74.30(±0.63) 79.03(±0.68) 76.59(±0.40)

VCD 79.56(±0.41) 79.67(±0.59) 79.39(±0.50) 79.52(±0.38)

A-OKVQA

Random

LLaVA1.5 Regular 83.45(±0.48) 87.24(±0.68) 78.36(±0.54) 82.56(±0.50)

VCD 86.15(±0.23) 85.18(±0.34) 87.53(±0.14) 86.34(±0.21)

Qwen-VL Regular 86.67(±0.48) 93.16(±0.55) 79.16(±0.59) 85.59(±0.53)

VCD 89.22(±0.14) 90.77(±0.04) 87.32(±0.34) 89.01(±0.16)

InstructBLIP Regular 80.91(±0.34) 77.97(±0.59) 86.16(±0.88) 81.86(±0.32)

VCD 84.11(±0.27) 82.21(±0.35) 87.05(±0.53) 84.56(±0.28)

Popular

LLaVA1.5 Regular 79.90(±0.33) 80.85(±0.31) 78.36(±0.54) 79.59(±0.37)

VCD 81.85(±0.44) 78.60(±0.58) 87.53(±0.14) 82.82(±0.36)

Qwen-VL Regular 85.56(±0.35) 90.44(±0.56) 79.53(±0.84) 84.63(±0.42)

VCD 87.85(±0.30) 88.10(±0.36) 87.53(±0.47) 87.81(±0.31)

InstructBLIP Regular 76.19(±0.80) 72.16(±0.69) 85.28(±0.79) 78.17(±0.73)

VCD 79.78(±0.47) 76.00(±0.52) 87.05(±0.53) 81.15(±0.42)

Adversarial

LLaVA1.5 Regular 74.04(±0.34) 72.08(±0.53) 78.49(±0.38) 75.15(±0.23)

VCD 74.97(±0.39) 70.01(±0.40) 87.36(±0.15) 77.73(±0.29)

Qwen-VL Regular 79.57(±0.31) 79.77(±0.34) 79.23(±0.73) 79.50(±0.38)

VCD 81.27(±0.09) 77.79(±0.20) 87.53(±0.34) 82.38(±0.10)

InstructBLIP Regular 70.71(±0.76) 65.91(±0.74) 85.83(±0.80) 75.56(±0.57)

VCD 74.33(±0.67) 69.46(±0.73) 86.87(±0.27) 77.19(±0.47)

GQA

Random

LLaVA1.5 Regular 83.73(±0.27) 87.16(±0.39) 79.12(±0.35) 82.95(±0.28)

VCD 86.65(±0.45) 84.85(±0.59) 89.24(±0.34) 86.99(±0.41)

Qwen-VL Regular 80.97(±0.32) 88.07(±0.34) 71.64(±0.57) 79.01(±0.40)

VCD 85.59(±0.38) 86.88(±0.44) 83.84(±0.36) 85.33(±0.38)

InstructBLIP Regular 79.65(±0.24) 77.14(±0.43) 84.29(±0.36) 80.56(±0.18)

VCD 83.69(±0.11) 81.84(±0.42) 86.61(±0.48) 84.16(±0.01)

Popular

LLaVA1.5 Regular 78.17(±0.17) 77.64(±0.26) 79.12(±0.35) 78.37(±0.18)

VCD 80.73(±0.47) 76.26(±0.68) 89.24(±0.34) 82.24(±0.35)

Qwen-VL Regular 75.99(±0.33) 78.62(±0.41) 71.40(±0.38) 74.84(±0.34)

VCD 81.83(±0.27) 80.45(±0.47) 84.09(±0.32) 82.23(±0.22)

InstructBLIP Regular 73.87(±0.58) 69.63(±0.54) 84.69(±0.68) 76.42(±0.52)

VCD 78.57(±0.14) 74.62(±0.22) 86.61(±0.48) 80.17(±0.16)

Adversarial

LLaVA1.5 Regular 75.08(±0.33) 73.19(±0.49) 79.16(±0.35) 76.06(±0.24)

VCD 76.09(±0.43) 70.83(±0.45) 88.75(±0.56) 78.78(±0.36)

Qwen-VL Regular 75.46(±0.63) 77.92(±0.73) 71.07(±0.97) 74.33(±0.71)

VCD 80.01(±0.27) 77.86(±0.24) 83.85(±0.35) 80.75(±0.27)

InstructBLIP Regular 70.56(±0.53) 66.12(±0.32) 84.33(±1.05) 74.12(±0.58)

VCD 75.08(±0.13) 70.59(±0.16) 85.99(±0.10) 77.53(±0.08)

Table 1. Results on POPE. Regular decoding denotes direct sampling, whereas VCD refers to sampling from our proposed contrastive
distribution pvcd. The best performances within each setting are bolded.
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Model Decoding Object-level Attribute-level Total Scores↑
Existence↑ Count↑ Position↑ Color↑

LLaVA1.5 Regular 175.67(±7.51) 124.67(±19.59) 114.00(±9.32) 151.00(±10.45) 565.33(±32.92)

VCD 184.66(±6.81) 138.33(±15.68) 128.67(±7.21) 153.00(±7.58) 604.66(±18.76)

Qwen-VL Regular 155.00(±3.54) 127.67(±13.36) 131.67(±7.73) 173.00(±9.75) 587.33(±31.06)

VCD 156.00(±6.52) 131.00(±6.19) 128.00(±3.61) 181.67(±5.14) 596.67(±11.61)

InstructBLIP Regular 141.00(±13.97) 75.33(±14.16) 66.67(±3.91) 97.33(±16.94) 380.33(±40.20)

VCD 168.33(±11.55) 92.33(±8.47) 64.00(±6.73) 123.00(±11.27) 447.67(±13.36)

Table 2. Results on the hallucination subset of MME. Regular decoding denotes direct sampling, whereas VCD refers to sampling from our
proposed contrastive distribution pvcd. The best performances within each setting are bolded.
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Figure 4. MME full set results on LLaVA-1.5. VCD leads to consistent enhancement in LVLMs’ perception capacities while preserving their
recognition competencies.

both object-level and attribute-level hallucinations. Results
in Table 2 show that implementing VCD leads to a uniform
enhancement in addressing object-level hallucinations for
all models. Additionally, VCD demonstrates an overall posi-
tive impact on attribute-level Color scores, contributing to
substantial overall performance gains. These improvements
emphasize VCD’s strength in addressing the embedded sta-
tistical bias and language priors of LVLMs, thus bringing
a positive impact on a broader range of hallucination chal-
lenges. In contrast, the Position score is relatively low across
four metrics, with minimal uplift from VCD, suggesting the
relatively weak ability of LVLMs in position reasoning.

Results on MME Full Set As shown in Figure 4, we also
include the evaluation of VCD on MME Full Set to assess
its impact on the general capability of LVLMs. With all
models exhibiting comparable performance trajectories, we
present the results of LLaVA-1.5 as a representative4. The
implementation of VCD leads to a consistent enhancement in
perception-based tasks, while the original recognition compe-
tencies of the LVLMs are preserved. This may be attributed
to VCD’s reduction of statistical bias and language priors,
which improves LVLMs’ general perception capacities by
ensuring a visually grounded analysis.

4Comprehensive results for all three LVLMs on the MME full set are
provided in Supplementary Materials.

4.3. Further Discussions

Effect of Visual Uncertainty on Hallucinations We further
study how the object hallucination of LLaVA-1.5 changes
along with visual uncertainty. Figure 6 depicts a clear per-
formance drop on the POPE benchmark with the increase
of noise steps, suggesting that the object hallucination will
become more severe as visual uncertainty goes larger. This
observation aligns with our previous findings in Section 3.2
that visual uncertainty will exacerbate object hallucination
issues in LVLMs’ generative process. Our proposed VCD
emerges as a correction mechanism by contrasting model
outputs with original and distorted visual inputs.

GPT-4V Aided Evaluation of Open-Ended Generation
Beyond the “Yes-or-No” question format employed in our
POPE and MME evaluations, we extend our analysis to
open-ended captioning tasks in the LLaVA-Bench using the
recently released LVLM, GPT-4V5, following Shukang et al.
[58]6. Results in Table 3 show consistent improvements in
VCD over regular decoding. The observed enhancement in
accuracy points to VCD’s ability to mitigate hallucinations
effectively. Simultaneously, VCD’s counteraction of statisti-
cal biases and language priors enhances the perceptual capa-

5https://openai.com/research/gpt-4v-system-card
6The prompt used for evaluation and an evaluation case is provided in
Supplementary Materials.
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Prompt: Describe this photo in detail.

Regular Decoding: The image features a painting of a brown dog
sitting in a chair, with a turkey feather in its mouth, giving it a unique,
conspicuous appearance. The dog's expression is one of mischief as it
looks directly into the camera. The scene is set in a room with a dining
table and a fork next to the table. A rock, likely from the surrounding
landscape, can be seen beside the table. A person's face is visible near
the bottom left corner of the painting, partially covered by the dog's
furry coat.

Visual Contrastive Decoding: The image features a unique and amusing painting of a dog with a large
brush mustache, giving it an artistic human-like appearance. The dog is sitting on a couch, with a red
background behind it, adding to the artistic flair of the painting. The couch has an orange and green tint to
it. In addition to the dog's human-like mustache, the painting also includes a monochromatic style with
the background, giving the painting a striking visual appeal. The dog appears to be wearing a hat, further
emphasizing the artistic interpretation of the scene. Overall, the painting captures the dog's whimsical and
charming personality.

Prompt: Describe this photo in detail.

Regular Decoding: In the image, a man is standing on the back of a
Subaru in a city with the color of a Ford SUV parked in the background.
He appears to be ironing clothes while standing on a wine rack located
under the vehicle. He is wearing a yellow shirt. There is a white and
blue taxi parked nearby the yellow Subaru. Additionally, there are
several buildings located in the cityscape, perhaps in the background of
the Subaru and the taxi, and possibly overlapping with the yellow Subaru.

Visual Contrastive Decoding: In the photo, a man is ironing clothes on a table placed on the back of a taxi
in a busy city street. The man is wearing a yellow shirt, suggesting he is a taxi driver or a part of the yellow
cabs' team. The yellow vehicle in the background is an SUV-like vehicle, which is not a typical yellow cab.
The table on the back of the car is set up with a pile of clothes, which the man is ironing. The man is
working hard to get the clothes as wrinkle-free as possible.

Figure 5. Illustration of hallucination correction by our proposed VCD with two samples from LLaVA-Bench. Hallucinated objects from
LVLM’s regular decoding are highlighted in red.
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Figure 6. Performance of LLaVA-1.5 on the POPE benchmark
across varying noise levels with regular decoding. We visualize
the distorted visual inputs subjected to different levels of Gaussian
noise at the bottom.

bilities of LVLMs, as evidenced by the marked improvement
in the detailedness of the responses.

Case Study on LLaVA-Bench Figure 5 demonstrates two
case studies on how, given identical prompts and images,
regular decoding can yield object hallucinations influenced
by the statistical bias and language priors inherent during
pretraining. For instance, in the displayed examples, objects
such as “dining table” and “fork”, which often co-occur
with the likely ground-truth object “chair”, are hallucinated.
In contrast, the implementation of VCD notably mitigates
these hallucination issues and simultaneously preserves the
coherence and informativeness of the output text. Due to the
page limit, please refer to Supplementary Materials for more
cases and ablation studies7.

5. Conclusion and Limitation
In this paper, we tackle the object hallucination issue in
LVLMs. We conducted an in-depth analysis of how visual
uncertainty influences hallucinations, particularly from the
aspect of statistical biases and language priors. Our find-

7Ablation studies in Supplementary Materials include effects of total noise
steps T , hyper-parameters α, β, and effect of VCD on larger LVLM
variants and with other sampling strategies.

Model Decoding Accuracy↑ Detailedness↑

LLaVA-1.5 Regular 3.23 3.54
VCD 4.15 3.85

InstructBLIP Regular 3.84 4.07
VCD 4.23 4.69

Qwen-VL Regular 4.76 3.46
VCD 6.69 4.46

Table 3. Results of GPT-4V-aided evaluation on open-ended gener-
ation. Accuracy measures the response’s alignment with the image
content, and Detailedness gauges the richness of details in the re-
sponse. Both metrics are on a scale of 10.

ings indicate that visual uncertainty amplifies these factors,
contributing to more hallucinations. In light of this, we intro-
duced Visual Contrastive Decoding (VCD), a novel, training-
free method that employs contrastive distributions to cali-
brate the model’s output without the usage of external tools.
Our extensive experiments across multiple benchmarks and
LVLM families confirm VCD’s efficacy in reducing hallu-
cinations and also demonstrate its potential to enhance the
overall perception capabilities of LVLMs.
Limitation While this study employs a basic Gaussian noise
approach to introduce visual uncertainty, more fine-grained
techniques, like object-level blurring, hold the potential for
improved outcomes. In addition, our focus was limited to
LVLMs processing images and text, not encompassing their
emerging applications in video understanding. Future re-
search directions include exploring diverse image distortion
methods and extending the Visual Contrastive Decoding
(VCD) framework to a broader range of LVLMs.
Acknowledgements We would like to thank the anonymous
reviewers and senior area chairs for their constructive com-
ments and support for our work. We would also like to
thank Jiaxi Li for helpful discussions and paper proofreading.
This work was substantially supported by DAMO Academy
through DAMO Academy Research Intern Program. This
work is also partially funded by the Ministry of Education
Singapore under the Tier-1 scheme with project number
RG18/22.

13879



References
[1] Vedika Agarwal, Rakshith Shetty, and Mario Fritz. Towards

causal vqa: Revealing and reducing spurious correlations by
invariant and covariant semantic editing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9690–9698, 2020. 1, 3

[2] Aishwarya Agrawal, Dhruv Batra, and Devi Parikh. Analyz-
ing the behavior of visual question answering models. arXiv
preprint arXiv:1606.07356, 2016. 1, 3

[3] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine
Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
Katherine Millican, Malcolm Reynolds, et al. Flamingo: a
visual language model for few-shot learning. Advances in
Neural Information Processing Systems, 35:23716–23736,
2022. 2

[4] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xi-
aodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, et al.
Qwen technical report. arXiv preprint arXiv:2309.16609,
2023. 2

[5] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan
Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren
Zhou. Qwen-vl: A frontier large vision-language model with
versatile abilities. arXiv preprint arXiv:2308.12966, 2023. 1,
2, 5

[6] Ali Furkan Biten, Lluı́s Gómez, and Dimosthenis Karatzas.
Let there be a clock on the beach: Reducing object hallucina-
tion in image captioning. In Proc. of WACV, 2022. 2

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information
processing systems, 33:1877–1901, 2020. 2

[8] Long Chen, Oleg Sinavski, Jan Hünermann, Alice Karnsund,
Andrew James Willmott, Danny Birch, Daniel Maund, and
Jamie Shotton. Driving with llms: Fusing object-level vector
modality for explainable autonomous driving. arXiv preprint
arXiv:2310.01957, 2023. 1

[9] Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni,
Piotr Padlewski, Daniel Salz, Sebastian Goodman, Adam
Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-
scaled multilingual language-image model. arXiv preprint
arXiv:2209.06794, 2022. 2

[10] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao
Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao
Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing.
Vicuna: An open-source chatbot impressing gpt-4 with 90%*
chatgpt quality, 2023. 2

[11] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham,
Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
et al. Palm: Scaling language modeling with pathways. arXiv
preprint arXiv:2204.02311, 2022. 2

[12] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat
Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung,
and Steven Hoi. Instructblip: Towards general-purpose vision-
language models with instruction tuning. arXiv preprint
arXiv:2306.04387, 2023. 1, 2, 5

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 2

[14] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch,
Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan
Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An
embodied multimodal language model. arXiv preprint
arXiv:2303.03378, 2023. 2

[15] Markus Freitag and Yaser Al-Onaizan. Beam search
strategies for neural machine translation. arXiv preprint
arXiv:1702.01806, 2017. 4

[16] Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Meng-
dan Zhang, Xu Lin, Zhenyu Qiu, Wei Lin, Jinrui Yang, Xi-
awu Zheng, et al. Mme: A comprehensive evaluation bench-
mark for multimodal large language models. arXiv preprint
arXiv:2306.13394, 2023. 2, 5

[17] Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt
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