
3D Building Reconstruction from Monocular Remote Sensing Images
with Multi-level Supervisions

Weijia Li1*, Haote Yang2*, Zhenghao Hu1, Juepeng Zheng1, Gui-Song Xia3, Conghui He2,4†

1Sun Yat-Sen University, 2Shanghai AI Laboratory, 3Wuhan University, 4SenseTime Research
{liweij29, zhengjp8}@mail.sysu.edu.cn, {yanghaote, heconghui}@pjlab.org.cn,

huzhh9@mail2.sysu.edu.cn, guisong.xia@whu.edu.cn

Abstract

3D building reconstruction from monocular remote sens-
ing images is an important and challenging research prob-
lem that has received increasing attention in recent years,
owing to its low cost of data acquisition and availability for
large-scale applications. However, existing methods rely on
expensive 3D-annotated samples for fully-supervised train-
ing, restricting their application to large-scale cross-city
scenarios. In this work, we propose MLS-BRN, a multi-level
supervised building reconstruction network that can flexi-
bly utilize training samples with different annotation lev-
els to achieve better reconstruction results in an end-to-end
manner. To alleviate the demand on full 3D supervision,
we design two new modules, Pseudo Building Bbox Calcu-
lator and Roof-Offset guided Footprint Extractor, as well
as new tasks and training strategies for different types of
samples. Experimental results on several public and new
datasets demonstrate that our proposed MLS-BRN achieves
competitive performance using much fewer 3D-annotated
samples, and significantly improves the footprint extraction
and 3D reconstruction performance compared with current
state-of-the-art. The code and datasets of this work will be
released at https://github.com/opendatalab/MLS-BRN.git.

1. Introduction
3D building reconstruction is a fundamental task for large-
scale city modeling and has received increasing attention in
recent studies. Among these studies, monocular 3D build-
ing reconstruction has become a promising and economic
solution for large-scale real-world applications, owing to its
lower data acquisition cost and larger data coverage com-
pared to multi-view stereo imagery and LiDAR data [6, 31].
Meanwhile, the limited information of monocular images
as well as the diversity of building structures also result in
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Figure 1. Our proposed method achieves 3D building reconstruc-
tion by training samples of different annotation levels. Large
quantity of samples only include building footprint annotations,
whereas a small quantity of samples contain extra roof-to-footprint
offset and building height annotations.

great challenges for large-scale 3D building reconstruction.

Inspired by the progress of supervised monocular depth
estimation methods, deep neural networks have been
broadly applied to monocular 3D building reconstruction
studies. Most studies utilize building footprints or other
types of semantic labels as prior information to facilitate
building height estimation from near-nadir images [15, 24,
25, 29, 37]. Off-nadir images, by contrast, constitute a
larger proportion of the remote sensing images and pro-
vide additional useful information for building height es-
timation, which have demonstrated significant potential in
several recent studies [4, 5, 19, 32, 33]. Some studies de-
signed geocentric pose estimation task considering the par-
allax effect of building roof and footprint [4, 5], aiming
at estimating the height values instead of reconstruct a 3D
model. Other studies leveraged the relation between differ-
ent components of a building instance (e.g. roof, footprint,
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and facade) as well as the offset between roof and footprint,
which has proven to be an effective solution for 3D building
reconstruction and accurate extraction of building footprints
[19, 32].

In general, existing monocular building reconstruction
methods are designed for fully-supervised learning, requir-
ing a large number of fully-annotated 3D labels for network
training. However, due to the expensive annotation cost,
the available datasets for 3D building reconstruction are
still very insufficient, restricting existing 3D reconstruction
methods to single city or single dataset scenarios. By con-
trast, owing to the low annotation cost and the increase of
open map data, public building footprints have an extremely
large coverage and quantity. Additionally, existing build-
ing datasets provide different levels of annotations, such as
footprint only, footprint and pixel-wise height [4], footprint
and offset vector [19, 32], etc. The large-scale 2D footprints
and different levels of annotated datasets can provide new
opportunities for enlarging 3D building reconstruction ap-
plication scenarios and reducing the annotation cost if they
are effectively utilized.

In this work, we propose MLS-BRN, a Multi-Level
Supervised Building Reconstruction Network based on
monocular remote sensing images, which is a unified and
flexible framework that is capable of utilizing the training
samples with different annotation levels. To alleviate the
demand on 3D annotations and enhance the building recon-
struction performance, we design new tasks regarding the
meta information of off-nadir images and two new mod-
ules, i.e., Pseudo Building Bbox Calculator and Roof-Offset
guided Footprint Extractor, as well as a new training strat-
egy based on different types of samples. Experimental re-
sults on several public and new datasets demonstrate that
our method achieves competitive performance when only
using a small proportion of 3D-annotated samples, and sig-
nificantly improves the building segmentation and height
estimation performance compared with current state-of-the-
art. Our main contributions are summarized as follows:

• We design MLS-BRN, a multi-level supervised building
reconstruction network, which consists of new tasks and
modules to enhance the relation between different com-
ponents of a building instance and alleviate the demand
on 3D annotations.

• We propose a multi-level training strategy that enables the
training of MLS-BRN with different supervision levels to
further improve the 3D reconstruction performance.

• We extend the monocular building reconstruction datasets
to more cities. Comprehensive experiments under dif-
ferent settings demonstrate the potential of MLS-BRN in
large-scale cross-city scenarios.

2. Related work

2.1. Building footprint extraction

Building footprint extraction is an important prerequisite
for monocular 3D building reconstruction. Various instance
and semantic segmentation networks have been broadly ap-
plied to building extraction tasks. Many studies utilize
multi-task segmentation network to improve the building
segmentation performance. For instance, Yuan [35] pro-
posed the signed distance representation for building foot-
print extraction, achieving better performance compared
with the single-task fully-connected network. Similarly, in
[24], a modified signed distance function was introduced
and jointly learned with other tasks for predicting building
footprint outlines and heights. To improve the geometry
shapes of building extraction results, several methods di-
rectly predicted the vertices of a building polygon based
on Recurrent Neural Network or Graph Neural Network
[22, 36, 39], or combined the pixel-based multi-task seg-
mentation network with a graph-based polygon refinement
network using a rule-based module [20]. In addition, some
recent studies converted building footprint extraction into
roof segmentation and roof-to-footprint offset estimation
tasks, which achieved promising performance for building
footprint extraction, especially for high-rise buildings in
off-nadir images [19, 32].

In summary, most existing methods directly extract the
building footprints and perform worse for high-rise build-
ings in off-nadir images. Offset-based methods can effec-
tively alleviate this problem, but the expensive offset anno-
tation efforts and the post-processing process are still in-
evitable. On the contrary, our work proposes a multi-level
supervised solution that is capable of leveraging different
types of samples to reduce the demand for offset annota-
tion, achieving promising footprint extraction results in an
end-to-end manner.

2.2. Monocular 3D building reconstruction

Inspired by the progress of monocular depth estimation,
deep neural networks have been widely used for monocu-
lar building height estimation in recent studies [8, 18, 33].
Most of these studies are designed for height estimation
from near-nadir images, in which the building roof and
footprint are almost overlapped. Some methods used an
encoder-decoder network to regress the height values [25],
or used a generative adversarial network to simulate a height
map [9]. Moreover, the semantic labels have been utilized
as effective priors in many existing methods considering
the limited information provided from the near-nadir im-
ages for height estimation. Some studies designed a multi-
task network for joint footprint extraction and height esti-
mation [8, 29, 37], while others exploit the semantic labels
as prior information for height estimation [15]. In actual
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Figure 2. An overview of our proposed method. Taking a monocular remote sensing image as input, our MLS-BRN generates a set of
building bboxes, roof-to-footprint offsets, building heights, and pixel-wise roof masks. The predicted roof masks and their corresponding
offsets are further integrated to predict pixel-wise footprint masks. The predicted footprint mask and building height are used to produce the
final vectorized 3D model. Two novel modules are introduced: (1) the ROFE predicts footprint masks guided by the predicted roof masks
and offsets; (2) the PBC predicts off-nadir and offset angles to calculate pseudo building bboxes for building bbox-unknown samples.

scenarios, off-nadir images constitute a large proportion of
the remote sensing images, in which the parallax effect of
roof and footprint results in more challenges for extracting
footprints but provides additional information for height es-
timation as well. Some recent studies [4, 5] design methods
to learn the geocentric pose of buildings in off-nadir images
for monocular height estimation [28], while others lever-
age the offset between building roof and footprint and the
relation between different components to reconstruct a 3D
building model [19, 32].

In summary, the monocular building reconstruction
methods in existing studies require expensive and fully-
annotated 3D labels for supervised learning. Our proposed
method, by contrast, is a unified and flexible framework for
3D building reconstruction with different supervision lev-
els, which effectively reduces the demand for the large-scale
3D annotations.

2.3. Monocular 3D reconstruction with fewer labels

In monocular 3D reconstruction in the general computer vi-
sion domain, several methods have been proposed for re-
ducing the 3D annotation demand via weakly-supervised
or semi-supervised learning [3, 11, 14, 16, 26]. In Yang
et al. [34], a unified framework combining two types of
supervisions was proposed, i.e., a small number of cam-
era pose annotations and a large number of unlabeled im-
ages. In Neverova et al. [27], an intermediate representation
containing important topological and structural information
of hand was introduced to enable the weakly-supervised
training for hand pose estimation. Concurrently, Gwak et
al. [10] effectually leveraged a weak supervision type, i.e.,
foreground mask, as a substitute for costly 3D CAD annota-

tions, which incorporates a raytrace pooling layer to enable
perspective projection and backpropagation.

In contrast to the aforementioned studies, our proposed
method leverages prior knowledge about the 3D structure of
a building instance and the monocular remote sensing im-
age, including the relation between roof, footprint, height,
offset angle, and off-nadir angle, enabling multi-level su-
pervised 3D reconstruction with fewer annotation efforts.

3. Methods

3.1. Problem statement

Given an off-nadir remote sensing image I that includes
buildings B = {b1, b2, ..., bN}, the objective of monocular
3D building reconstruction is to identify all the footprints
F = {f1, f2, ..., fN} and roofs R = {r1, r2, ..., rN} cor-
responding to B. The difficulty is that the footprints of
buildings may be partially visible from an off-nadir view-
ing angle. Thus, previous studies, including [19] and [32],
typically solve this issue by training a deep neural network
with samples annotated with both F and roof-to-footprint
offsets V⃗ = {v1, v2, ..., vN}.

However, the cost of annotating remote sensing images
is still high, particularly for offset annotations. Therefore,
we suggest addressing this issue by training a deep model
that effectively uses samples containing both F and V⃗ an-
notations, alongside samples only annotated with F .

To facilitate training with offset-unknown samples, two
tasks are included; one for predicting the off-nadir angle
θI and the other for the offset angle φI . Additionally, an
instance-wise footprint segmentation task is included to pre-
dict the footprint conditioned on the predicted roof and off-
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set. Finally, a task for predicting real-world height is in-
troduced to enhance the comprehension of the correlation
between footprint and roof placement. In summary, four ad-
ditional tasks are added to the original three tasks in LOFT-
FOA [32]: (1) off-nadir angle prediction task; (2) offset
angle prediction task; (3) footprint segmentation task; (4)
real-world height prediction task.

3.2. Network structure

Fig. 2 illustrates the proposed architecture of our MLS-
BRN. To facilitate multi-level supervised learning, two
novel modules are introduced, namely the Pseudo Build-
ing Bbox Calculator (PBC) and the Roof-Offset guided
Footprint Extractor (ROFE). The PBC module provides
pseudo building boxes to determine the positivity/negativity
of the region proposals from the RPN module when offset-
unknown (i.e. building bbox-unknown) samples are pro-
cessed in the MLS-BRN. The ROFE module has two signif-
icant functions. Firstly, it provides a more straightforward
method to supervise the building footprint segmentation
task. Secondly, it offers an indirect method of supervising
offset prediction and roof segmentation for offset-unknown
samples as they pass through the MLS-BRN. Additionally,
a building height prediction task has been included in order
to predict the real-world building height.

3.2.1 Pseudo Building Bbox Calculator (PBC)

Samples without the ground truth for building bounding box
b-bboxgt cannot be utilized by previous models, like LOFT-
FOA [32]. To address this issue, we propose a module that
predicts pseudo building bounding boxes to substitute b-
bboxgt. For a provided off-nadir remote sensing image I
and one building b contained by I , we can describe the con-
nection between the image-wise off-nadir angle θI , the off-
set angle φI , the factor for scaling real-world height to pixel
scale sI , and the building’s height hb and offset v⃗b using the
following equation:

v⃗b = ||v⃗b||2 × e⃗

= ||v⃗b||2 × [ex, ey]

= hb × sI × tan θI × [cosφI , sinφI ]

(1)

where ||v⃗b||2 is the L2 norm of the offset, e⃗ is the unit
normal vector of v⃗b. The PBC module uses an off-nadir
angle head to predict an image-wise off-nadir angle θpred
and an offset angle head to predict an image-wise offset
angle φpred. Then, following Eq. (1), they are combined
with the instance-wise building height ground truth hgt, and
scale factor sgt to compute the pseudo offset v⃗pred. Finally,
fgt is translated to get the pseudo building bbox b-bboxpred

guided by v⃗pred. b-bboxpred will play the role of b-bboxgt

during the training of the building bbox-unknown samples.

From the perspective of weak supervision, the PBC mod-
ule extracts the image-wise angle information, i.e. the off-
set angle and the off-nadir angle, and uses it to supervise the
instance-wise task. Note that for building height-unknown
samples, the pseudo bounding boxes are calculated by di-
rectly enlarge the footprint boxes.

3.2.2 Roof-Offset guided Footprint Extractor (ROFE)

Previous works calculate the footprint mask in the inference
stage by translating the inferred roof guided by the inferred
offset. The ROFE module, however, predicts the footprint
mask directly. It trains a convolutional network to learn the
translation process, using the inferred roof mask and offset
as inputs. For offset-aware (i.e. roof-aware) samples, this
end-to-end training process adds more supervision on the
offset head and the roof head. And for offset-unknown sam-
ples, which cannot contribute to the training of the offset
head and the roof head due to lack of ground truth, ROFE
provides an indirect way to supervise these two heads.

3.3. Network training

In this section, we first introduce the loss functions in our
MLS-BRN. Then we introduce our three levels of training
samples graded by their level of supervision and their train-
ing strategies. The total hybrid loss is presented at the end
of this section.

3.3.1 Loss definition

The LOFT-FOA [32] is trained by minimising Eq. (2),
where Lrp, Lrc, Lmh are the same as those in Mask R-
CNN [13], i.e., the losses for the RPN, R-CNN, and mask
head, respectively; Lo is the loss for the offset head, which
is a standard smooth L1 Loss.

LLF = Lrp + β1Lrc + β2Lmh + β3Lo (2)

The MLS-BRN model keeps the four losses the same
as LOFT-FOA [32] and introduces new losses to train the
newly added modules. The footprint mask loss of the ROFE
module is the same as Lmh, which is a standard cross en-
tropy loss (Eq. (3)).

Lf =
1

N

N∑
i=1

C∑
c=1

yi,c × log (p(yi,c)) (3)

The loss of the offset angle head of the PBC module is
calculated according to Eq. (4), in which Lova denotes the
offset angle loss; v⃗pred denotes the predicted unit normal
vector of the offset.

Lova = Lang + λ1Lreg

= ||v⃗pred − v⃗gt||1 + λ1||||v⃗pred||2 − 1||1
(4)
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The nadir angle head of the PBC module is trained fol-
lowing Eq. (5), where Lona is the off-nadir angle loss; θpred
is the predicted tangent of the off-nadir angle.

Lona = || tan θpred − tan θgt||1 (5)

The height head loss of our MLS-BRN is calculated by
Eq. (6), in which Lh denotes the height loss; hpred denotes
the predicted building height.

Lh = ||hpred − hgt||1 (6)

3.3.2 Multi-level training strategy

In our proposed unified framework, all the training samples
can be graded into three levels according to their level of
supervision (Fig. 1):
• Level 1 samples: samples with only instance-wise

footprint annotation, which are denoted by XN =
{xN

1 , xN
2 , ..., xN

n3
}. N means no additional supervision.

• Level 2 samples: samples with instance-wise footprint
and building height annotation, which are denoted by
XH = {xH

1 , xH
2 , ..., xH

n2
}.

• Level 3 samples: samples with instance-wise footprint,
offset, and building height annotation, which are denoted
by XOH = {xOH

1 , xOH
2 , ..., xOH

n1
}.

Different levels of samples are supervised by different
training strategies. As defined in Eq. (7), the loss function
for XN is only based on Lf .

LXN = Lf (7)

The loss function for XH is defined in Eq. (8). In LXH ,
the Lrp is activated since the PBC module can predict a
high-quality pseudo building bbox, which is good enough
to supervise the RPN module.

LXH = LXN + α1Lrp + α2Lh

= Lf + α1Lrp + α2Lh

(8)

The loss function for XOH is defined in Eq. (9). Com-
pared with the original LLF , LXOH adds four more losses:
Lf , Lh, Lona, Lova. The Lona and Lova are used for train-
ing the two angle heads of the PBC module.

LXOH =LXH + α3Lrc + α4Lmh

+α5Lo + α6Lona + α7Lova

=LLF + Lf + α2Lh + α6Lona + α7Lova

(9)

The final hybrid loss is defined as the total loss of the
three levels of training samples according to Eq. (10).

L = LXN + LXH + LXOH (10)

3.4. Implementation details

As mentioned in Fig. 2, we use ResNet-50 [12] with FPN
[23] pre-trained on the ImageNet as the backbone. All the
models are trained with a batch size of 4 using NVIDIA
3090 GPUs. To align with LOFT-FOA [32], we train 24
epochs for all the models, with the learning rate starting
from 0.01 and decaying by a factor of 0.1 at the 16th and
22nd epochs. The SGD algorithm with a weight decay of
0.0001 and a momentum of 0.9 is used for all experiments.
LOFT-FOA [32] is used as the basic architecture of the
MLS-BRN model, and all the hyperparameters that occur
in both LOFT-FOA [32] and MLS-BRN are the same, ex-
cept for the learning rate mentioned above. All models are
built in PyTorch.

In Eq. (4), we set λ1 = 0.1 to balance the two loss items.
In Eq. (8), we set α1 = 1 to keep the loss weight of ROFE
the same as the roof mask head, and set α2 = 32 since
the absolute building height loss value is relatively small.
In Eq. (9), we set α3 = α4 = 1, α5 = 16 to keep them
the same as LOFT-FOA [32], and set α6 = 1, α7 = 8 to
balance the effects of the magnitude of these two losses.

4. Experiments
4.1. Datasets

In our experiments, we employ multi-supervised datasets
for training our methods: (1) BONAI [32] provides build-
ing footprint segmentation, offset, and height annotations,
which contains 3,000 and 300 images for train-val and test
respectively; (2) OmniCity-view3 [21] originally provides
satellite images with annotations for footprint segmenta-
tion and building height. We add additional offset anno-
tations for 17,092 and 4,929 images from train-val and test
sets respectively; (3) Additionally, we release a new dataset
named HK, which includes 500 and 119 satellite images
specifically captured from Hong Kong for train-val and test
sets, along with annotations for footprint segmentation, off-
set and height.

As detailed in Sec. 3, all our training samples are graded
into three levels: samples from XN , XH , and XOH . To
create different levels of training samples, we extract sam-
ples from the datasets mentioned above, reorganizing their
annotations as necessary. We randomly choose 30% of
the samples from the BONAI dataset [32] as a smaller
XOH dataset, which we call BN30. We randomly drop
the offset annotations of 70% of the samples in the BONAI
dataset [32], regard the entire BONAI [32] dataset as a
XOH+XH dataset, and name it BN30/70. Similarly, the
original BONAI dataset [32] is regarded as a large XOH and
is named BN100. We use OC to designate the OmniCity-
view3 dataset [21]. Naturally, the abbreviations OC30,
OC30/70, and OC100 have the similar meaning with BN30,
BN30/70, and BN100 respectively. Moreover, we use BH
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to refer to the combination of BONAI [32] and HK. It is
important to note that in BH30/70, 30% of BONAI’s [32]
samples are XOH type while the remaining 70% are XH

type. Additionally, 30% of HK’s samples belong to XOH

type and the remaining 70% belong to XN type.

4.2. Performance comparison

In this section, we evaluate our method’s performance in
footprint segmentation, offset prediction, and height predic-
tion against several competitive methods for the single-level
supervised learning scenario. In a Multi-level supervised
learning scenario, we mainly compare our method with
LOFT-FOA [32]. Additionally, we present our method’s
offset and off-nadir angles prediction performance. More
results will be provided in the supplementary materials.

Single-level supervised learning. The performance of
footprint segmentation and offset prediction for different
methods trained on BN100 and OC100 are listed in Tab. 1
and Tab. 2, respectively. Additionally, Fig. 3 provides a
qualitative comparison of footprint segmentation results on
the BONAI [32] test set. Note that all the experimen-
tal results in this section are obtained using XOH sam-
ples, and the results obtained using XH and XN sam-
ples will be analysed in the following paragraph. For
the footprint segmentation task, experimental results tested
on BN100 demonstrate that our method improves the F1-
score by 5.42% - 8.30% compared with the instance seg-
mentation methods that directly extract the building foot-
prints. Furthermore, our method enhances the F1-score by
2.05% - 2.76% relative to MTBR-Net [19] and LOFT-FOA
[32], which are specifically designed for extracting off-nadir
building footprints based on predicted roof and offset, tested
on BN100. Regarding the offset prediction task, our exper-
imental findings indicate that our approach betters the EPE
by 0.18 - 0.93 in comparison to MTBR-Net [19] and LOFT-
FOA [32] tested on BN100. The results show that the direct
supervision of the footprint segmentation, the constraint on
the building height, and the encouragement of the angular
feature extraction can help to achieve better performance in
the footprint segmentation and offset prediction tasks in the
single-level supervised learning scenario.

method F1 Precision Recall EPE

PANet [17] 58.06 59.26 56.91 -
HRNetv2 [30] 60.81 61.20 60.42 -
M R-CNN [13] 58.12 59.26 57.03 -
CM R-CNN [1] 60.94 67.09 55.83 -
MTBR-Net [19] 63.60 64.34 62.87 5.69
LOFT-FOA [32] 64.31 63.37 65.29 4.94
Ours 66.36 65.90 66.83 4.76

Table 1. Building footprint segmentation results of different meth-
ods in terms of F1-score, precision, recall (%) and offset prediction
results in terms of EPE trained on BN100.

method F1 Precision Recall EPE

M R-CNN [13] 69.75 69.74 69.76 -
LOFT-FOA [32] 70.46 68.77 72.23 6.08
Ours 72.25 69.57 75.14 5.38

Table 2. Building footprint segmentation results of different meth-
ods in terms of F1-score, precision, recall (%) and offset prediction
results in terms of EPE trained on OC100.

Figure 3. The results of the baselines and our method trained on
BN100 and tested on the BONAI test set in terms of the footprint
segmentation performance. The yellow, cyan, and red polygons
denote the TP, FP, and FN.

method dataset sample F1-score EPE

LOFT-FOA [32] BN30 XOH 61.35 5.70
Ours BN30/70 XOH+XH 65.49 5.39
LOFT-FOA [32] BN100 XOH 64.31 4.94
Ours BN100 XOH 66.36 4.76

LOFT-FOA [32] OC30 XOH 67.09 6.08
Ours OC30/70 XOH+XH 70.53 5.92
LOFT-FOA [32] OC100 XOH 70.46 5.38
Ours OC100 XOH 72.25 5.38

LOFT-FOA [32] BH30 XOH 54.96 5.78
Ours BH30/70 XOH+XH+XN 58.57 5.60
LOFT-FOA [32] BH100 XOH 60.85 4.74
Ours BH100 XOH 60.92 4.69

Table 3. Building footprint segmentation results of different meth-
ods in terms of F1-score (%) and offset prediction results in terms
of EPE trained on different datasets.
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Multi-level supervised learning. Tab. 3 displays the
footprint segmentation and offset prediction performance
of LOFT-FOA [32] and our method when trained and
tested on multi-level supervision datasets. Our approach’s
experiment outcomes, trained on BN30/70, OC30/70 and
BH30/70, demonstrate a 4.14%, 3.44% and 3.61% improve-
ment in F1-score compared to LOFT-FOA [32] trained on
BN30, OC30 and BH30. Additionally, our method’s exper-
imental results, trained on samples from BN30/70, OC30/70

and BH30/70 exhibit similar performance to LOFT-FOA
[32], which is trained on samples from BN100, OC100 and
BH100. These findings demonstrate the effectiveness of
MLS-BRN in combining samples from XOH , XH and XN

levels to address the building reconstruction task.
Building height and angles prediction. Tab. 4 displays

the results of building height prediction performance. The
experimental findings indicate that our method enhances
the height MAE by 0.22 - 4.33 and the height RMSE by
0.51 - 7.60 in comparison to SARPN [2], DORN [7], and
LOFT-FOA+H. It’s worth noting that SARPN [2], DORN
[7] predicts pixel-wise building height, and MSL-BRN pre-
dicts instance-wise building height. As far as we know,
MSL-BRN is the first-ever method to predict instance-wise
real-world building height. Thus, we add a building height
head directly to LOFT-FOA [32] (i.e. LOFT-FOA+H) and
compare its prediction results with our own method. Fig. 4
presents the qualitative building height prediction results
from our method and LOFT-FOA+H. Regarding the angle
prediction tasks, when trained on BN100, the PBC mod-
ule results in an MAE of 9.92 for offset angle predic-
tion and an MAE of 1.22 for off-nadir angle prediction.
The performance increase demonstrates the efficacy of the
PBC, ROFE, and the building height prediction module in a
single-level supervised learning scenario.

method height MAE height RMSE

SARPN [2] 15.23 28.69
DORN [7] 13.40 27.03
LOFT-FOA+H 11.12 21.60
Ours 10.90 21.09

Table 4. Building height prediction results of different methods
in terms of MAE and MSE trained on OC100 and tested on the
OmniCity-view3 test set.

method F1-score Precision Recall EPE

baseline 61.35 61.84 61.65 5.70
+PBC 62.32 62.28 62.35 5.53
+ROFE 62.87 63.89 62.15 5.63
+PBC+ROFE 65.40 66.74 64.12 5.49

Table 5. Footprint segmentation results of different modules in
terms of F1-score, precision, recall (%) and offset prediction re-
sults in terms of EPE.

Figure 4. The visualization results of building height prediction
from our method and LOFT-FOA+H on the OmniCity-view3 test
set.

4.3. Ablation study

In this section, we examine the impact of the principal new
components of our method: (1) the PBC module; (2) the
ROFE module; and (3) the building height head. Addition-
ally, we will analyze the outcome of the data ablation ex-
periment in the multi-level supervised learning setting.

Module ablation. The outcomes acquired by im-
plementing the aforementioned modules successively on
BN30/70 are detailed in Tab. 5. The table provides infor-
mation on F1-score for footprint segmentation and EPE for
offset prediction. LOFT-FOA [32] is trained on BN30 and
serves as the baseline. The second row (+PBC) illustrates
the results obtained by applying the PBC module to LOFT-
FOA [32]. The results indicate that incorporating the two-
angle prediction tasks enhances the F1-score of the foot-
print extraction by 0.97%. It should be noted that the added
offset-unknown 70% samples in BN30/70, which lacks an-
gle ground truth, does not contribute to PBC’s training.
The third row (+ROFE) displays the outcomes achieved by
applying the ROFE module to LOFT-FOA [32]. Results
demonstrate that, compared with the baseline, prediction of
the footprint segmentation guided by predicted offset and
roof, coupled with additional 70% offset-unknown samples
from BN30/70, leads to a 1.52% improvement in the F1-
score. The fourth row (+PBC+ROFE) indicates that the si-
multaneous inclusion of the PBC and ROFE modules can
improve the F1-score of the footprint extraction by 4.05%.
The aforementioned results show that PBC and ROFE mod-
ules can help to enhance the accuracy of footprint segmen-
tation and offset prediction.

Data ablation. The outcomes of our approach trained
on various dataset combinations concerning F1-score for
footprint segmentation, and EPE for offset prediction are
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Figure 5. 3D reconstruction results of Shanghai, Xi’an, Hong Kong, and New York obtained using our method. The remote sensing
images for Shanghai and Xi’an are chosen from the BONAI test set, whereas the remote sensing image for New York is chosen from the
OmniCity-view3 test set.

shown in Tab. 6. The first line (XOH ) displays the results
of training LOFT-FOA [32] on 30% of OmniCity-view3
[21] XOH samples (OC30). The second row (XOH+XH )
shows the results of our method trained on a mix of 30%
of OmniCity-view3 [21] XOH samples (OC30) and 30% of
the OmniCity-view3 XH samples. The results demonstrate
a 3.28% improvement in F1-score for footprint extraction
compared to LOFT-FOA [32] trained solely on OC30. The
third row (XOH+XH+XN ) presents the outcomes of our
methodology, trained on a mix of 30% of OmniCity-view3
[21] XOH samples, 30% of OmniCity-view3 [21] XH sam-
ples, and the rest 40% of OmniCity-view3 [21] XN sam-
ples. The results demonstrate a 0.44% increase in F1-score
compared to our method trained on XOH+XH , indicating
the effectiveness of including XN samples. The reason for
training LOFT-FOA [32] instead of our method on OC30

(first row) is to evaluate the gain in a scenario where XH

and XN samples are available by using our method.

data F1 Precision Recall EPE

XOH 67.09 63.23 71.47 6.08
XOH+XH 70.37 65.35 76.24 5.99
XOH+XH+XN 70.81 66.15 76.18 5.84

Table 6. Building footprint segmentation results of different meth-
ods in terms of F1-score, precision, recall (%) and offset prediction
results in terms of EPE trained on different dataset combinations.

4.4. 3D reconstruction results of different cities

Fig. 5 shows the 3D reconstruction results of four cities (i.e.
Shanghai, Xi’an, Hong Kong, and New York) obtained from

our method. The results demonstrate the effectiveness of
our method on 3D building reconstruction across different
cities. Note that we use the method in [38] to regularize the
predicted building footprint masks.

5. Conclusion
In this paper, we have presented a new method for multi-
level supervised building reconstruction from monocular re-
mote sensing images, which is capable of reconstructing
the accurate 3D building models using samples of differ-
ent annotation levels. Qualitative and quantitative evalua-
tions confirm that our method achieves competitive perfor-
mance and significantly enhances the 3D building recon-
struction capability in comparison to the current state-of-
the-art across diverse experimental settings. The effect of
the Pseudo Building Bbox Calculator and the Roof-Offset
guided Footprint Extractor, as well as the annotation levels
of the samples were also analyzed in the ablation study. Fur-
thermore, we expanded the monocular building reconstruc-
tion datasets to encompass additional cities. We believe that
our approach offers efficient and cost-effective solutions for
3D building reconstruction in complex real-world scenes.
In our future work, we would like to investigate more ef-
fective strategies to improve the 3D building reconstruction
performance whilst exploring more adaptable and practical
techniques for large-scale city modeling.
Acknowledgements. This project was funded in part by
National Natural Science Foundation of China (Grant No.
42201358 and No. 62325111) and Shanghai Artificial In-
telligence Laboratory.

27735



References
[1] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaox-

iao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping Shi,
Wanli Ouyang, et al. Hybrid task cascade for instance seg-
mentation. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4974–4983, 2019. 6

[2] Xiaotian Chen, Xuejin Chen, and Zheng-Jun Zha. Structure-
aware residual pyramid network for monocular depth esti-
mation. In Proceedings of the 28th International Joint Con-
ference on Artificial Intelligence, pages 694–700, 2019. 7

[3] Yujin Chen, Zhigang Tu, Liuhao Ge, Dejun Zhang, Ruizhi
Chen, and Junsong Yuan. So-handnet: Self-organizing
network for 3d hand pose estimation with semi-supervised
learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6961–6970, 2019. 3

[4] Gordon Christie, Rodrigo Rene Rai Munoz Abujder, Kevin
Foster, Shea Hagstrom, Gregory D Hager, and Myron Z
Brown. Learning geocentric object pose in oblique monoc-
ular images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
14512–14520, 2020. 1, 2, 3

[5] Gordon Christie, Kevin Foster, Shea Hagstrom, Gregory D
Hager, and Myron Z Brown. Single view geocentric pose
in the wild. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1162–
1171, 2021. 1, 3

[6] Liuyun Duan and Florent Lafarge. Towards large-scale city
reconstruction from satellites. In European Conference on
Computer Vision (ECCV), 2016. 1

[7] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-
manghelich, and Dacheng Tao. Deep ordinal regression net-
work for monocular depth estimation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2002–2011, 2018. 7

[8] Zhi Gao, Wenbo Sun, Yao Lu, Yichen Zhang, Weiwei Song,
Yongjun Zhang, and Ruifang Zhai. Joint learning of seman-
tic segmentation and height estimation for remote sensing
image leveraging contrastive learning. IEEE Transactions
on Geoscience and Remote Sensing, 2023. 2

[9] Pedram Ghamisi and Naoto Yokoya. Img2dsm: Height sim-
ulation from single imagery using conditional generative ad-
versarial net. IEEE Geoence Remote Sensing Letters, pages
1–5, 2018. 2

[10] JunYoung Gwak, Christopher B Choy, Manmohan Chan-
draker, Animesh Garg, and Silvio Savarese. Weakly super-
vised 3d reconstruction with adversarial constraint. In 2017
International Conference on 3D Vision (3DV), pages 263–
272. IEEE, 2017. 3

[11] Junwei Han, Yang Yang, Dingwen Zhang, Dong Huang,
Dong Xu, and Fernando De La Torre. Weakly-supervised
learning of category-specific 3d object shapes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 43(4):
1423–1437, 2021. 3

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5

[13] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision (CVPR), pages 2961–2969,
2017. 4, 6

[14] Rongrong Ji, Ke Li, Yan Wang, Xiaoshuai Sun, Feng Guo,
Xiaowei Guo, Yongjian Wu, Feiyue Huang, and Jiebo Luo.
Semi-supervised adversarial monocular depth estimation.
IEEE transactions on pattern analysis and machine intelli-
gence, 42(10):2410–2422, 2019. 3

[15] Saket Kunwar. U-net ensemble for semantic and height es-
timation using coarse-map initialization. In IGARSS 2019-
2019 IEEE International Geoscience and Remote Sensing
Symposium, pages 4959–4962. IEEE, 2019. 1, 2

[16] Chunlu Li, Andreas Morel-Forster, Thomas Vetter, Bernhard
Egger, and Adam Kortylewski. Robust model-based face
reconstruction through weakly-supervised outlier segmenta-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 372–381, 2023.
3

[17] Muxingzi Li, Florent Lafarge, and Renaud Marlet. Approx-
imating shapes in images with low-complexity polygons.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 6

[18] Qingyu Li, Lichao Mou, Yuansheng Hua, Yilei Shi, Sin-
ing Chen, Yao Sun, and Xiao Xiang Zhu. 3dcentripetalnet:
Building height retrieval from monocular remote sensing im-
agery. International Journal of Applied Earth Observation
and Geoinformation, 120:103311, 2023. 2

[19] Weijia Li, Lingxuan Meng, Jinwang Wang, Conghui He,
Gui-Song Xia, and Dahua Lin. 3d building reconstruction
from monocular remote sensing images. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 12548–12557, 2021. 1, 2, 3, 6

[20] Weijia Li, Wenqian Zhao, Huaping Zhong, Conghui He, and
Dahua Lin. Joint semantic–geometric learning for polygonal
building segmentation. In AAAI, 2021. 2

[21] Weijia Li, Yawen Lai, Linning Xu, Yuanbo Xiangli, Jinhua
Yu, Conghui He, Gui-Song Xia, and Dahua Lin. Omnicity:
Omnipotent city understanding with multi-level and multi-
view images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 17397–
17407, 2023. 5, 8

[22] Zuoyue Li, Jan Dirk Wegner, and Aurélien Lucchi. Topolog-
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