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Figure 1. We present the first high-speed 3D feature tracking method via stereo event cameras and the corresponding high-speed 3D feature
tracking dataset. Our proposed method takes high temporal resolution event streams captured from stereo event cameras as input, and could
predict the long-term feature motion trajectories of multiple high-speed moving objects within the scene at a rate of 250 FPS.

Abstract
This paper presents the first 3D feature tracking method

with the corresponding dataset. Our proposed method takes
event streams from stereo event cameras as input to pre-
dict 3D trajectories of the target features with high-speed
motion. To achieve this, our method leverages a joint
framework to predict the 2D feature motion offsets and
the 3D feature spatial position simultaneously. A motion
compensation module is leveraged to overcome the fea-
ture deformation. A patch matching module based on bi-
polarity hypergraph modeling is proposed to robustly es-
timate the feature spatial position. Meanwhile, we collect
the first 3D feature tracking dataset with high-speed mov-
ing objects and ground truth 3D feature trajectories at 250
FPS, named E-3DTrack, which can be used as the first
high-speed 3D feature tracking benchmark. Our code and
dataset could be found at: https://github.com/
lisiqi19971013/E-3DTrack.

1. Introduction

Feature tracking aims to predict the long-term trajectories
of target features, which is fundamental in many computer

vision tasks, e.g., object tracking [36, 37], 3D reconstruc-
tion [8, 17], and SLAM [20, 41]. Frame-based feature track-
ing methods [5, 24, 25, 33, 35] have been extensively inves-
tigated in the past decades. However, all existing methods
focus on tracking 2D feature trajectories in the image plane.

In real-world scenarios, objects are moving in 3D space,
e.g., cars are racing on the road from near to far. The track-
ing of features with high-speed 3D motion becomes essen-
tial. Consequently, there is an imperative need to investigate
3D feature tracking methods capable of predicting feature
trajectories for objects undergoing high-speed 3D motion.
Such methods hold significant promise for various down-
stream applications, e.g., VR, AR, and autonomous driving.
To the best of our knowledge, existing literature lacks es-
tablished high-speed 3D feature tracking methodologies.

For the 3D feature tracking of high-speed moving ob-
jects, the main challenges lie in three folds. (1) With the
limited frame rate of traditional frame-based cameras, the
motion of high-speed moving objects may not be consis-
tently captured due to the blind time between consecutive
frames. Therefore, how to continually record valid motion
information of high-speed moving objects is the first chal-
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lenge. (2) The second challenge lies in establishing the cor-
relation between the 3D position of the feature and the 2D
visual data acquired by cameras to generate a continuous
and smooth 3D feature trajectory. (3) To the best of our
knowledge, there are currently no existing high-speed 3D
feature tracking datasets. This is primarily due to the dif-
ficulty in capturing ground truth 3D feature trajectories of
high-speed moving objects, which is constrained by the in-
sufficient capture frequency of existing 3D vision sensors.
Thus, the lack of high-speed 3D feature tracking dataset is
the third challenge, which is also a principal impediment to
the advancement of research within this domain.

To overcome the motion capture challenge, we use event
cameras to record motion dynamics of high-speed mov-
ing objects. Event cameras [7, 32] are bio-inspired vision
sensors that asynchronously respond to pixel-wise bright-
ness changes. Specifically, when the logarithmic change of
the brightness at a pixel exceeds a certain threshold, i.e.,
|∆t log I (x, y, t)| > C, where I (x, y, t) is the brightness
at pixel (x, y) and timestamp t, an event will be triggered,
denoted as e = (t, x, y, p), where p ∈ {1,−1} is the polar-
ity. The output event stream of event cameras, formed by
events triggered by all pixels, showcases their remarkably
high temporal resolution (in the order of microseconds) and
broad dynamic range (up to 140 dB) [13]. These unique
features of event cameras render them promising tools for
achieving 3D feature tracking in the context of high-speed
moving objects.

To address the aforementioned technical challenge, we
propose a high-speed 3D feature tracking method based on
stereo event cameras, predicting the long-term 3D trajecto-
ries of target features from stereo event streams and tem-
plate patches. To achieve 3D feature tracking, our proposed
method leverages a joint framework to predict the 2D fea-
ture motion offsets and the feature spatial position at each
timestamp simultaneously. A motion compensation module
is leveraged to adapt to the feature deformation, and a patch
matching module based on bi-polarity hypergraph model-
ing is proposed to accurately estimate the feature spatial
position. In addition, we introduce a stereo motion con-
sistency mechanism that establishes the constraint between
the feature motion offsets and the spatial position to achieve
smooth 3D trajectory estimation.

To address the data challenge, we establish a hybrid vi-
sion system and curate the first real-world event-based 3D
feature tracking dataset, named E-3DTrack. Our dataset
includes multiple objects demonstrating high-speed motion
in the scene, with stereo event cameras capturing high tem-
poral resolution event streams, as shown in Fig. 1. To ob-
tain the ground truth of the 3D feature trajectories, we uti-
lize the Optitrack motion capture system to record the mo-
tion trajectory of each moving object. This information is
then integrated with the high-precision object point cloud

scanned by FARO Quantum ScanArm, resulting in the gen-
eration of the ground truth 3D trajectories of each feature at
a rate of 250 FPS. To the best of our knowledge, our dataset
is the first event-based feature tracking dataset containing
high-speed moving objects and providing 3D ground truth
feature trajectories.

Our contributions could be summarized as follows:
• We propose the first high-speed 3D feature tracking

method based on stereo event cameras, which could track
the 3D trajectories of features with high-speed motion.

• We achieve satisfactory 3D feature tracking performance
through a motion compensation module for addressing
feature deformation, a patch matching module based on
bi-polarity hypergraph modeling for accurate estimation
of 3D feature positions, and a stereo motion consistency
mechanism to establish constraints between feature mo-
tion offsets and 3D position.

• We collect the first real-world 3D feature tracking dataset
containing multiple high-speed moving objects, named
E-3DTrack. Our dataset contains stereo event streams
and 250 FPS ground truth 3D feature trajectories, which
could be used as the 3D feature tracking benchmark.

2. Related Work
Trajectory Prediction via Event Camera. Event-based
feature tracking methods have been developed rapidly
within the last decade. Earlier works [18, 38] treat the
events as a point set and used ICP [6] to estimate feature
motion trajectories. Then, EKLT [10] is proposed to obtain
feature patch from the reference frame as template, and use
the event stream to track the template and predict the tra-
jectory. Meanwhile, some event-by-event trackers [2, 3] are
proposed to exploit the asynchronicity of event camera, e.g.,
eCDT [16] employs a clustering method to cluster adjacent
events, and uses cluster descriptors to find continual feature
tracks. Recently, DeepEvT [26] is proposed as the first data-
driven event-based feature tracking method, which achieves
state-of-the-art 2D feature tracking performance.

An alternative approach for trajectory prediction is opti-
cal flow estimation, wherein the pixel-level motion field is
predicted using the input event stream. Compared with fea-
ture tracking, these methods [1, 4, 12, 29, 30] focus more
on estimating the motion field between adjacent moments
and lack modeling of long-term trajectory consistency.

However, all these existing trajectory prediction methods
could only predict 2D feature trajectories in the image plane
while the real objects are moving in 3D space, i.e., the pre-
dicted feature motion trajectories are information-deficient.

Event-based 3D Position Estimation. As the 2D fea-
ture trajectories can be predicted, a simple and straightfor-
ward solution is to use a monocular or stereo depth estima-
tion method to predict the depth of the feature and calcu-
late the 3D position. In recent years, several event-based
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Figure 2. Our proposed method takes stereo event streams as input to predict the 3D trajectory of the target feature provided in the initial
template patch It0 . For a subsequent timestamp ti, the deformed template patch Iti is predicted using the motion compensation module.
Then, Iti , It0 , and the events Pti triggered within the spatiotemporal neighboring patch of the predicted feature position uti are forwarded
into the offset estimation module to estimate the feature motion offsets ∆uti . Meanwhile, a patch matching module based on bi-polarity
hypergraph modeling is leveraged to predict the disparity. Finally, a projection operation is performed to update the 3D trajectory.

monocular [11, 14, 40] or stereo [28, 39] depth estimation
methods are proposed, which could estimate the depth map
from the input single-view or multi-view event streams.

However, we will show that the simple combination of
these two types of methods could not achieve satisfying
long-term 3D feature trajectories prediction performance in
Sec. 5.2. Therefore, high-speed 3D feature tracking is still
a challenging open problem.

3. Method

In this section, we commence with an overview of the
pipeline in Sec. 3.1, subsequently delving into the detailed
architecture in Sec. 3.2, and conclude by outlining the su-
pervision of our method in Sec. 3.3.

3.1. Overview

As shown in Fig. 2, our proposed method takes stereo event
streams as input to predict 3D feature trajectories in camera
1 coordinate system. The target features are contained in
gray-scale template patches at the initial moment. This is
the common setting for event-based feature tracking, e.g.,
EKLT [10] and DeepEvT [26]. Our method leverages a joint
framework to predict features’ 2D motion offsets and the
3D spatial positions simultaneously at each timestamp, and
further obtain the 3D trajectories through projection.

Specifically, let Ej =
{
ejk = (tjk, u

j
k, v

j
k, p

j
k)
}

denote
the event stream captured by an event camera, where j =
1, 2 denotes camera 1 and camera 2, respectively, ejk is the
k-th event captured by camera j. The feature to be tracked

is provided in a d × d template patch I0 captured by cam-
era 1 at initial moment t0. Then, the feature trajectory is
predicted step-by-step. For a subsequent timestamp ti, we
calculate the 2D feature coordinates u1

ti = (uti , vti) pro-
jected in camera 1 based on the predicted 3D feature posi-
tion Xti = (xti , yti , zti) at the previous step. To calculate
the feature trajectory, the events E1

i triggered in the d × d
patch around u1

ti and within the time bin [ti, ti+1] are lever-
aged to provide feature motion information. Then, E1

i is
converted into grid-based event patch P 1

ti using the event
representation method proposed in [26].

As shown in Fig. 2, the 3D movement of the object may
cause deformation of the feature template patch. To tackle
this challenge, we leverage a motion compensation module
to predict the deformed template patch Ĩti at timestamp ti.
Then, Ĩti and It0 are concatenated and forwarded into the
offset estimation module together with P 1

ti to predict the
2D feature motion offset ∆u1

ti . To further estimate the 3D
position of the target feature, we use the events triggered
within the same d rows as P 1

ti from E2, i.e., E2
i = {e2k|uti −

d−1
2 ≤ u2

k ≤ uti +
d−1
2 , ti ≤ t2k ≤ ti+1}, to generate event

row patch R2
ti using the same event representation method.

Then, the disparity dti+1
could be predicted from P 1

ti and
R2

ti using our proposed patch matching module based on bi-
polarity hypergraph modeling. In addition, inspired by the
fact that the 2D motion offsets in both camera planes have a
constraint with the disparity change, we use the event patch
P 2
ti of camera 2 to compute the offset ∆u2

ti in the training
stage, and propose a stereo motion consistency mechanism
to enhance the trajectory prediction. Finally, the 3D feature
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position Xti+1 at ti+1 is obtained by projection according
to ∆u1

ti and dti+1 . In practice, the patch size is d = 31, and
the length of the time bin is set to 4 ms, i.e., ti+1−ti = 4 ms.
Thus, our proposed method could track the long-term 3D
feature trajectories at 250 FPS.

3.2. Model Architecture

Offset Estimation Module. As mentioned above, at times-
tamp ti, we use an offset estimation module to predict the
feature motion offsets projected in the camera plane, which
takes Ĩti , It0 , and Pti as input. Inspired by the great suc-
cess of DeepEvT [26], we use a similar two-branch Feature
Pyramid Network (FPN) [19] to extract multi-modal fea-
tures from event patch Pti and the template patches Iti and
It0 , respectively. The FPN contains 4 down-sample lay-
ers and 4 up-sample layers. Then, the bottleneck feature of
FPN is leveraged to calculate the correlation map between
the event patch and the feature template patch. The correla-
tion map is further concatenated with the multi-modal fea-
ture and forwarded into a joint encoder with 4 down-sample
layers and a ConvLSTM [34] layer to obtain fused feature
Fti . Then, we use a linear layer to compute the weights of
Fti−1 and Fti and explicitly fuse the temporal information.
Finally, a linear layer is leveraged to generate predicted fea-
ture motion offsets. Detailed network architecture is pro-
vided in the supplementary material. Using the offset esti-
mation module, the feature motion offset ∆uti projected in
the camera plane could be estimated.

Motion Compensation Module. As shown in Fig. 2,
high-speed 3D moving objects may have depth change
and rotation, which may cause feature shape deformation.
Therefore, tracking with the initial template patch may lead
to fatal errors or even incorrectly tracking other features.
To tackle this problem, we leverage a motion compensa-
tion module to correct the template patch at each moment.
Specifically, the feature template patch may have scaling,
rotation, and shear changes. It should be noted that trans-
lation is not considered since the feature motion offset is
already predicted. At the timestamp ti, the fused tempo-
ral feature Fti−1 is leveraged as input to predict the scale
factors sx, sy , rotation angle θ, and shear factors tx, ty us-
ing 2 linear layers. Then, the affine transform is performed
according to the predicted transform factors:

Ĩti(u, v) =

[
βsx, αsy
−αsx, βsy

] [
1, a

−b, 1 + ab

]
It0(u, v), (1)

where α = sin θ, β = cos θ, a = tan tx, and b = tan ty .
Using the motion compensation module, the corrected tem-
plate patch Ĩti at each timestamp could be obtained.

Patch Matching Module. To further estimate the 3D
position of the target feature, we propose a patch matching
module based on bi-polarity hypergraph modeling to obtain
the spatial position of the feature by predicting the disparity.

Different from traditional stereo matching, for the 3D fea-
ture tracking task, the target feature is contained in the local
event patch P 1

ti . Therefore, the disparity could only be pre-
dicted from the local patch instead of global information.
Under such condition, mismatching will occur since the tar-
get scene may contain multiple similar features distributed
in space and P 1

ti only contains local information. There-
fore, we propose a bi-polarity hypergraph-based high-order
correlation modeling mechanism to eliminate mismatching.

As mentioned in Sec. 3.1, for each timestamp ti, we use
the event patch P 1

ti around u1
ti and the corresponding event

row patch R2
ti from camera 2 to achieve patch matching.

Specifically, we use 4 convolutional layers to extract fea-
tures M1

ti ∈ Rd×d×c and M2
ti ∈ Rd×W×c from P 1

ti and
R2

ti , respectively, where c is the feature channel and W is
the image width, i.e., the number of candidate matching po-
sition. We further calculate the cost volume Cti ∈ RW×c

composed of the feature similarity between M1
ti and M2

ti at
each matching position, which represents the pair-wise sim-
ilarity between P 1

ti and the sub-patch of R2
ti at each match-

ing position. Then, the W matching positions are used as
vertices to construct bi-polarity hypergraphs. Compared to
the pair-wise correlation contained in the cost volume, each
hyperedge of a hypergraph could connect multiple vertices,
i.e., high-order correlations among multiple vertices could
be constructed. In practice, we use the Euclidean distance
of the vertex feature as metric and calculate the k nearest
neighbors of each vertex. For each vertex, we use a hyper-
edge to connect the vertices in its k neighbor vertices with
spatial distance smaller than a certain threshold δ. There-
fore, a positive hypergraph G+ with the adjacency matrix
H+ could be constructed. Besides, for each vertex, ver-
tices with spatial distance larger than δ in its k neighbor
vertices are connected by another hyperedge. Thus, a neg-
ative hypergraph G− with the adjacency matrix H− could
be constructed. Each hyperedge of G+ connects matching
patches that are semantic similar and spatially close to P 1

ti .
These connections are expected to be enhanced. In con-
trast, each hyperedge of G− connects matching patches that
are semantic similar but spatially distant from P 1

ti , which
are interference and needs to be suppressed. Then, inspired
by [9], we propose a feature aggregation method based on
bi-polarity hypergraphs:

Ĉti = Cti + σ
((

D+
v

)−1 H+ (
D+

e

)−1 (H+)T CtiΘ
+
)

− σ
((

D−
v

)−1 H− (
D−

e

)−1 (H−)T CtiΘ
−
), (2)

where D∗
e and D∗

v are the diagonal matrices of hyperedge
degree and vertex degree, respectively. Θ∗ is the learnable
parameter, and σ(·) is the non-linear activation function.
Using Eq. (2), features are aggregated to enhance vertices
with similar features and spatial close and suppress vertices
with similar features but spatially distant. Finally, Ĉti is for-
warded into a 1D convolutional layer with the kernel size of
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3 to regress the matching result. Using the patch matching
module, the disparity dti of the feature is predicted.

Projection. After the feature motion offsets ∆uti and
the disparity dti are predicted, the 3D feature coordinates
Xti+1

at ti+1 could be computed using projection.

3.3. Supervision and Loss Functions

Stereo Motion Consistency. For objects moving in 3D
space captured by stereo cameras, the 2D motion offsets
are strongly constrained with the disparity. Meanwhile,
our offset estimation module is also deeply coupled with
the patch matching module. Therefore, inspired by [21],
we leverage a stereo motion consistency constraint to rein-
force this correlation. Consider a point X = (x, y, z), it’s
2D coordinates in the camera plane could be calculated by
u = (u, v) = f

s
(x,y)
z , where f is the camera focal length

and s the coordinate convert factor. For calibrated stereo
cameras with the baseline distance of b, the disparity of X
is d = f

s
b
z . By taking the time derivative, we could obtain

that ∆d
∆t = − f

s
b
z2

∆z
∆t . Therefore, we have:

dti − dti−1
= ∆d = −f

s

b

z2ti
(zti − zti−1

). (3)

For the 2D motion offsets, we could similarly obtain that
∆u
∆t = f

zs (
∆x
∆t ,

∆y
∆t ) −

f
z2s

∆z
∆t (x, y), i.e., we have ∆u =

(∆u,∆v) = f
zs (∆x,∆y)− f∆z

z2s (x, y). In practice, suppose
the coordinates of a feature in camera 1 at timestamp ti is
X1

ti = (xti , yti , zti), then the coordinates in camera 2 is
X2

ti = (xti − b, yti , zti). Therefore, we have:

∆u1
ti −∆u2

ti =
f

s

b

z2ti
∆zti = −f

s

b

z2ti
(zti − zti−1)

∆v1ti −∆v2ti = 0

. (4)

Therefore, we could obtain the stereo motion constraint
∆u1

ti −∆u2
ti = dti − dti−1 from Eq. (3) and Eq. (4).

According to the stereo motion constraint, we introduce
the stereo motion consistency loss:
Lsmc

i = L1(∆u1
ti −∆u2

ti , dti − dti−1) +L1(∆v1ti ,∆v2ti), (5)

where L1(·, ·) is the Manhattan Distance.
Loss Functions. Since our proposed method could pre-

dict the 3D feature coordinate Xti at each timestamp, we
use the Manhattan Distance between the predicted trajecto-
ries and ground truth trajectories as supervision:

Ltraj
i = L1(Xti ,X

gt
ti). (6)

Since both the offset estimation module and the patch
matching module severely affect the 3D trajectory predic-
tion accuracy, we compute the ground truth 2D feature
offsets u1gt

ti and disparity dgt
ti at each timestamp based on

ground truth 3D trajectory through projection and use them
as supervision. In practice, the offset estimation is super-
vised with the loss function:

Loff
i = L1(∆u1

ti ,∆u1gt

ti ). (7)

Table 1. Comparison of our E-3DTrack dataset with other existing
event-based feature tracking datasets.

Dataset Dim. Motion Scenario GT Freq.

EC [27] 2D Homo. Static 200
EDS [15] 2D Homo. Static 150

E-3DTrack 3D Non-homo. Dynamic 250

The disparity prediction is supervised with:

Ldisp
i = L1(dti , d

gt
ti). (8)

Finally, our model is trained end-to-end with the supervi-
sion of the following total loss function:

L =

N∑
i=1

(Ltraj
i + Loff

i + Ldisp
i + αLsmc

i ), (9)

where α is a hyper-parameter and N is the sequence length.

4. 3D Feature Tracking Dataset: E-3DTrack
In addressing the deficiency of high-speed 3D feature track-
ing datasets, we establish a hybrid vision system containing
stereo event cameras and Optitrack, as shown in Fig. 3 (a),
and curate the first event-based 3D feature tracking dataset,
named E-3DTrack. Compared to existing event-based fea-
ture tracking datasets that contain only static scenes and 2D
trajectories, our dataset is the first to contain high-speed
moving objects and ground truth 3D feature trajectories.

Limited by the capturing frequency of 3D vision sen-
sors (e.g., <30 FPS for LiDAR), it is difficult to accurately
record the 3D feature trajectories of high-speed moving ob-
jects at a high frame rate. To tackle this problem, we use the
motion capture system, i.e., Optitrack, to record the trajec-
tory of each object attached with fixed markers. To explic-
itly obtain feature-level 3D trajectories, we use a scanner,
i.e., FARO Quantum ScanArm, to capture the high precision
point cloud of each object. Then, the 3D affine transform,
incorporating a homogeneous scale, is calculated from the
object coordinate system to the Optitrack coordinate system
based on the markers’ coordinates. This leads to the acqui-
sition of the time-series point cloud sequence of the moving
objects under the Optitrack coordinate system. Finally, the
feature trajectories can be derived from the time-series point
cloud sequence based on the feature point index. Hence,
our dataset comprises ground truth 3D feature trajectories
of high-speed moving objects at 250 FPS, surpassing the
capturing frequency of most existing 3D vision sensors.

Using our hybrid vision system, we captured 40 high-
speed motion scenarios containing a total of 1300 se-
quences. We randomly select 10 scenarios as the test set,
and the remaining 30 scenarios are selected as the training
set. Note that due to the cross-scene division, the scene in
the test set are unseen in the training set. More details of
our dataset are provided in the supplementary material.
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(a) Our hybrid vision system. (b) Samples of our dataset. From left to right: reference frame, feature patch, stereo event streams, and ground truth 3D feature trajectory.

Figure 3. (a) Our hybrid vision system. (b) Samples of our E-3DTrack dataset. The first column is the reference frame at the initial
moment, and the features to be tracked are marked in each frame. Some feature template patches are zoomed in for display in the second
column. The stereo event streams and the ground truth 3D feature trajectories are shown in the last three columns, respectively.

Table 1 shows the comparison of our E-3DTrack dataset
with other existing event-based feature tracking datasets, in-
cluding Event Camera dataset (EC) [27] and Event-aided
Direct Sparse Odometry (EDS) dataset [15]. The main ad-
vantages of our dataset are in the following three aspects.
• 3D trajectory. Our dataset is the first feature tracking

dataset containing ground truth 3D trajectories, enabling
the feature motion trajectory estimation in 3D space.

• Non-homogeneous motion. Our dataset is the first
event-based feature tracking dataset containing high-
speed moving objects. Existing EC and EDS datasets
mainly contain stationary scenarios. Thus, feature mo-
tions are caused by the camera movement. Since there are
no moving objects in the scene, the motions of all features
are almost homogeneous, as shown in Fig. 4. In contrast,
the feature motions in our dataset are non-homogeneous,
which is more conducive to applications.

• Accurate ground truth. Our dataset contains ground
truth 3D feature trajectories captured from Optitrack.
In contrast, since the DAVIS346 event camera could
record event streams and 25 FPS video simultaneously,
the ground truth 2D trajectories in EC and EDS datasets
are obtained using frame-based feature tracking method
KLT [25], or further triangulating KLT tracks using cam-
era poses and reprojecting them to the frames. Thus, our
dataset contains more accurate ground truth trajectories.
Figure 3 (b) shows some samples of our E-3DTrack

dataset. We visualize the reference frames, feature template
patches, stereo event streams, and the ground truth 3D fea-
ture trajectories of each sample.

5. Experiments
In this section, we first introduce the experimental settings.
Then, we analyze the quantitative and qualitative compar-

(b) Sample from EDS Dataset(a) Sample from EC Dataset

Figure 4. Examples from existing EC [27] and EDS [15] dataset.

isons, respectively. Finally, we conduct ablation studies to
demonstrate the effectiveness of each proposed module.

5.1. Experimental Settings

Comparison Methods. Since there are no existing high-
speed 3D feature tracking methods, we use existing event-
based trajectory prediction methods to obtain 2D fea-
ture trajectories, and use stereo depth estimation meth-
ods to further obtain the 3D feature trajectory. Specifi-
cally, we combine the event-based optical flow estimation
method E-RAFT [12], event-based feature tracking meth-
ods EKLT [10] and DeepEvT [26] with event-based stereo
depth estimation methods TSES [39] and SDE [28], respec-
tively, as our baseline comparison methods.

Metrics. To evaluate our proposed method and other
comparison methods, we use the Tracked Feature Ratio
(TFR, higher is better), Feature Age [26] (FR, higher is
better), and the Root Mean Squared Error (RMSE, lower
is better) as the metrics. TFR is calculated as the ratio of
the time that the spatial distance between the predicted 3D
trajectory and the ground truth 3D trajectory is less than a
certain threshold c to the total sequence time. See detailed
definition in the supplementary material.

Implementation Details. Our method is implemented
based on PyTorch [31]. Our model is trained end-to-end
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Table 2. Quantitative results on our E-3DTrack dataset. Feature age (FA), tracked feature ratio (TFR), and root mean square error (RMSE)
are selected as the metrics. Bold numbers represent the best scores, and underlined numbers represent the second-best scores.

Method FA(0.1m) ↑ FA(0.15m) ↑ FA(0.2m) ↑ TFR(0.1m) ↑ TFR(0.15m) ↑ TFR(0.2m) ↑ RMSE ↓
E-RAFT [12] + TSES [39] 0.0409 0.0664 0.092 0.1701 0.2667 0.3439 0.4726
E-RAFT [12] + SDE [28] 0.1385 0.2399 0.3204 0.3121 0.4726 0.5806 0.3368
EKLT [10] + TSES [39] 0.0232 0.0429 0.0628 0.1180 0.1961 0.2685 0.4806
EKLT [10] + SDE [28] 0.1026 0.1856 0.2584 0.2421 0.3738 0.4700 0.4034
DeepEvT [26] + TSES [39] 0.0713 0.1117 0.1452 0.3786 0.4991 0.5818 0.3549
DeepEvT [26] + SDE [28] 0.2314 0.3462 0.4339 0.5782 0.7060 0.7765 0.1889

E-3DTrack (Ours) 0.2601 0.4179 0.5428 0.6928 0.8164 0.8772 0.1181

Table 3. Comparison of inference time on E-3DTrack dataset.

Method E-RAFT + SDE DeepEvT + SDE Ours

Time (ms/step) 154.83 93.22 40.30

for 100 epochs with a batch size of 16. The optimiza-
tion method is AdamW [23], and the cosine annealing
schedule [22] is leveraged. The learning rate decays from
2 × 10−4 to 1 × 10−6 within 100 epochs. The hyper-
parameters are selected as α = 0.25 in Eq. (9), k = 3 and
δ = 16 for bi-polarity hypergraph construction.

5.2. Quantitative Comparison

Table. 2 shows the quantitative comparison of our proposed
method with other comparison methods. From the table, we
could observe that our proposed method significantly out-
performs all comparison methods and achieve state-of-the-
art performance. Specifically, compared with the second-
best method, i.e., the combination of the state-of-the-art
2D event-based feature tracking method DeepEvT [26] and
stereo depth estimation method SDE [28], our proposed
method reduces the RMSE by 37.5% and improves the FA
by 12.4%, 20.7%, and 25.1% in terms of c = 0.1 m, 0.15
m, and 0.2 m, respectively.

Compared to comparison methods that achieve trajec-
tory prediction and depth estimation separately, our pro-
posed method leverages a joint framework to track the 3D
feature trajectories of high-speed moving objects. This in-
dicates that for 3D moving objects, the feature trajectory
in the camera plane is highly correlated with the 3D posi-
tion. The simple combination of 2D trajectory prediction
and 3D position estimation will lead to fatal errors. Instead,
our proposed method tracks 3D trajectories accurately us-
ing the stereo motion consistency constraint. Meanwhile,
compared to traditional stereo depth estimation methods,
our proposed patch matching module uses a high-order cor-
relation modeling mechanism based on bi-polarity hyper-
graph to eliminate mismatching of similar features, further
enhancing the 3D feature tracking robustness.

Table. 3 shows the inference time comparison of our
proposed method with other comparison methods. Specif-
ically, we test the inference time of each tracking update

(a)  Reference Feature Patch (b) DeepEvT + SDE (c) Ours

Stereo Event
 Cameras

Stereo Event
 Cameras

Figure 5. Qualitative comparison on our E-3DTrack dataset. From
left to right: the reference feature patch, the ground truth feature
trajectories (red), the feature trajectories (blue) predicted by Deep-
EvT [26] + SDE [28] and our proposed method, respectively.

step. From the table, we could observe that compared to
the second-best method, i.e., DeepEvT + SDE, our pro-
posed method reduces the inference time by 56.8% while
achieving better tracking performance. This demonstrates
the computational efficiency of our proposed method.

5.3. Qualitative Comparison

Figure 5 shows the qualitative 3D feature tracking results
of our proposed method and the second-best comparison
method, i.e., DeepEvT [26] + SDE [28]. The predicted 3D
trajectories and the ground truth trajectories are shown in
blue and red, respectively. From the figure, we could ob-
serve that our proposed method achieves more robust 3D
feature tracking. As shown in the first row, the compari-
son method achieves adequate feature tracking performance
when facing simple scenarios where the object motions do
not contain significant depth changes. Such scenarios are
similar to 2D feature tracking. Similar observations could
be found in the second row. For the white geometric model
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Figure 6. Results of the mean tracking error (left) and the feature
tracked ratio (right) over tracking time.

with slight depth variation, the comparison method achieves
3D feature tracking with slight oscillations. However, for
the red star with large depth variation and rotation, it could
not be tracked accurately by the comparison method. The
last two rows show two extreme scenarios, i.e., the 3D mo-
tions of the objects are with large depth variation and ro-
tation, which will cause significant feature shape deforma-
tion. Under such scenarios, our comparison method tracks
the features with fatal errors. In contrast, our proposed
method tracks the 3D trajectories of the high-speed mov-
ing features robustly and continuously due to our motion
compensation module and patch matching module.

Figure 6 further shows the tracking error (RMSE) and
the tracked feature ratio (TFR) over time on our E-3DTrack
dataset. The threshold is selected as c = 0.1 m to calculate
TFR. From the figure, we could observe that our proposed
method can continuously track 3D trajectories of target fea-
tures, i.e., our method maintains a high TFR consistently.
From the figure, we could also observe that the TFR of E-
RAFT + SDE is comparable with DeepEvT + SDE in initial
stage, but gradually decreases over time. This is because the
optical flow estimation method is lack of long-term consis-
tent modeling. In contrast, our proposed method maintains
a high TFR and a low tracking error over all time.

5.4. Ablation Experiments

To demonstrate the effectiveness of each proposed module,
we validate the performance of our model with and without
the motion compensation module (denoted as MC), stereo
motion consistency mechanism (denoted as Lsmc), and the
bi-polarity hypergraph-based high-order correlation model-
ing mechanism (denoted as BiHCM), respectively. The ab-
lation experimental results are shown in Tab. 4. See supple-
mentary material for detailed settings.

Bi-Polarity Hypergraph Modeling. From Tab. 4 we
could observe that compared with our base model (row (1)),
the addition of BiHCM will increase TFR from 0.5586 to
0.6082. Compared with our full model, the removal of the
BiHCM will lead to an RMSE increase of 20.8%. This is
due to the fact that our proposed BiHCM could enhance
the connection between patches with similar features that

Table 4. Ablation experiments on our E-3DTrack dataset.

BiHCM Lsmc MC TFR0.1 m ↑ RMSE↓
(1) ✗ ✗ ✗ 0.5586 0.1807

(2) ✓ ✗ ✗ 0.6082 0.1505
(3) ✗ ✓ ✗ 0.5942 0.1512
(4) ✗ ✗ ✓ 0.5660 0.1624

(5) ✓ ✓ ✗ 0.6705 0.1268
(6) ✓ ✗ ✓ 0.6599 0.1312
(7) ✗ ✓ ✓ 0.6441 0.1427

(8) ✓ ✓ ✓ 0.6928 0.1181

are spatially close, and suppress patches with similar fea-
tures but spatially distant, which could eliminate mismatch-
ing and further improve 3D feature tracking performance.

Stereo Motion Consistency. As shown in Tab. 4, com-
pared with the base model, the addition of stereo motion
consistency constraint will reduce RMSE from 0.1807 to
0.1512. Compared with the full model, the removal of the
stereo motion consistency constraint will increase RMSE by
11.1%. This is due to the fact that the stereo motion consis-
tency could effectively constrain the correlation between the
2D trajectory and 3D spatial position of the objects, making
our method predict more accurate and smooth 3D trajectory.

Motion Compensation. As shown in Tab. 4, compared
with the base model and the full model, the addition and
removal of the motion compensation module resulted in
10.1% and 7.4% decrease and increase in RMSE, respec-
tively. With the addition of the motion compensation mod-
ule, our proposed method could better deal with feature de-
formation caused by depth changes and rotations of moving
objects, and achieve more robust 3D feature tracking.

These ablation experiments demonstrate the effective-
ness of each proposed module.

6. Conclusion
In this paper, we propose the first high-speed 3D feature
tracking method that takes stereo event streams as input
to estimate 3D feature trajectories. Our proposed method
leverages a joint framework to obtain 3D feature trajecto-
ries by estimating the feature motion offsets and spatial po-
sition simultaneously. A motion compensation module and
a patch matching module based on bi-polarity hypergraphs
are proposed to achieve robust feature tracking. Meanwhile,
the first 3D feature tracking dataset containing high-speed
moving objects and ground truth 3D feature trajectories at
250 FPS is constructed, named E-3DTrack, which can be
use as the first 3D feature tracking benchmark.
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