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Abstract

Real-world objects and environments are predominantly
composed of edge features, including straight lines and
curves. Such edges are crucial elements for various appli-
cations, such as CAD modeling, surface meshing, lane map-
ping, etc. However, existing traditional methods only prior-
itize lines over curves for simplicity in geometric modeling.
To this end, we introduce EMAP, a new method for learn-
ing 3D edge representations with a focus on both lines and
curves. Our method implicitly encodes 3D edge distance
and direction in Unsigned Distance Functions (UDF) from
multi-view edge maps. On top of this neural representation,
we propose an edge extraction algorithm that robustly ab-
stracts parametric 3D edges from the inferred edge points
and their directions. Comprehensive evaluations demon-
strate that our method achieves better 3D edge reconstruc-
tion on multiple challenging datasets. We further show that
our learned UDF field enhances neural surface reconstruc-
tion by capturing more details.

1. Introduction
The straight line belongs to men, the curved one to God.

— Antonio Gaudı́

This sentiment is evident in the visual composition of our
environments. While straight lines are common in man-
made scenes such as walls, windows, and doors [25], curves
are more general and ubiquitous from cups, bridges, archi-
tectures, to Gothic arts. Edges, which are composed of both
lines and curves, are the fundamental elements of visual per-
ception. Therefore, accurate edge modeling is crucial for
understanding the geometry and structure of our 3D world.

Conventional approaches on 3D reconstruction typically
involve inferring dense geometry and abstracting meshes
from 2D images [15, 34, 48, 50, 67, 69]. However, the
presence of 3D edges offers substantial advantages. First,
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(a) An Indoor Scene (b) LIMAP [25]

(c) NEAT [64] (d) EMAP (Ours)

Figure 1. Example 3D edge reconstruction on Replica [53].
While prior methods such as LIMAP [25] and NEAT [64] only re-
construct distinctive line segments, our method generates a more
complete 3D edge map combining both line and curve features.

edges are naturally compact representations that capture the
salient features oftentimes around geometric boundaries,
which are good indicators for more lightweight and adap-
tive meshing and 3D modeling with comparably less re-
dundancy. Secondly, in contrast to dense surface model-
ing from images, 3D edges are unaffected to illumination
changes, thus exhibiting better reliability on multi-view re-
construction. Last but not least, 3D edges serve as a univer-
sal representation in real-world scenarios, and can be poten-
tially integrated into many applications such as lane map-
ping [10, 22, 42, 43, 56], motion forecasting [12, 13, 51],
medical imaging [45], etc.

The reconstruction of 3D edges is conventionally ap-
proached by matching their 2D observations across views.
While Bignoli et al. [5] proposed edge point matching us-
ing the sparse map from Structure-from-Motion (SfM), it
is inherently ill-posed due to its heavy reliance on cross-
view edge correspondences, which are generally sparse and
prone to ambiguity. Recent works have also improved the
quality of 3D line reconstruction [18, 25, 61, 64], but pri-
marily excel in specific scenes where straight lines domi-
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nate. While general real-world environments with curved
structures pose more challenges, recent progress on 2D de-
tection and matching is mostly limited to point and line fea-
tures and thus inapplicable to such scenarios.

A recent work NEF [70] made a significant step forward
in learning 3D curves from multi-view 2D edge observa-
tions. Inspired by the recent success of neural radiance field
(NeRF) [32], they introduce a neural edge density field and
show decent results in reconstructing edges for simple ob-
jects. Nevertheless, their proposed edge density field has
an inherent bias in edge rendering, leading to less accurate
reconstruction. Moreover, its fitting-based edge parame-
terization process not only requires tedious tuning to spe-
cific data, but also struggles with its scalability to larger and
more complex scenes. This motivates us to develop a more
robust system for 3D edge mapping from 2D observations,
which would benefit a wide range of downstream tasks.

Towards this goal, we introduce EMAP, a novel approach
for accurate 3D edge reconstruction from only 2D edge
maps. EMAP comprises the following steps. Firstly, we
learn the neural unsigned distance function (UDF) to im-
plicitly model 3D edges, utilizing an unbiased rendering
equation to mitigate the inaccuracies observed in NEF. Sec-
ondly, once learned, we can obtain the unsigned distance
and normal for each point in the space, so a set of precise
edge points with directions can be extracted. Finally, based
on the guidance of every edge point’s location and direc-
tion, we design a simple yet robust algorithm for parametric
line and curve extraction, that can be applied across vari-
ous challenging scenarios. Our comprehensive evaluations
of EMAP, from synthetic CAD models to real-world indoor
and outdoor scenes, show its superior performance in 3D
edge reconstruction. In addition, we also observe that ini-
tializing the optimization process of the recent neural im-
plicit surface reconstruction method with our trained UDF
field enables the reconstructing of better details.

Overall, the contributions of this paper are as follows:
• We propose EMAP, a 3D neural edge reconstruction

pipeline that can learn accurate 3D edge locations and di-
rections implicitly from multi-view edge maps.

• We develop a 3D edge extraction algorithm to robustly
connect edge points with edge direction guidance.

• We show that our model can generate complete 3D edge
maps and help optimize dense surfaces.

2. Related Work

Geometry-based 3D Line Reconstruction. As a pioneer-
ing work, Bartoli and Sturm [4] introduces a full SfM sys-
tem using line segments, which is later improved under
manhattan assumption [47] and in stereo systems [8]. Re-
cently, with the developments of line detections [36, 37, 65]
and matching [2, 36, 38] thanks to the advent to deep learn-

ing, several works have attempted to revisit the line map-
ping problem through graph clustering [19], leveraging pla-
nar information [61] and incorporating into SLAM systems
[17, 23, 29, 52, 77]. In particular, recent work LIMAP [25]
introduces a robust 3D line mapping system with structural
priors which can adapt to different existing line detectors
and matchers. Despite these advances, all the works are
limited to straight lines and often produce segmented small
lines when it comes to curves. In contrast, edges are gen-
erally easier to detect and are redundantly present in most
scenes. In this project, rather than relying on lines, we build
our 3D mapping system using robust 2D edge maps.

Learning-based 3D Line/Curve Reconstruction. In con-
trast to geometry-based methods, some approaches [26, 59,
74] shifted their focus to directly extract parametric curves
from given edge point clouds. Typically, they require key-
point detection, clustering, and linkage. Even under the re-
laxed setting, it is still challenging to generate clean para-
metric curves due to the complex connectivity of curves
and imperfect point clouds [70]. To address this limita-
tion, NEF [70] integrates NeRF [32] for edge mapping
from multi-view images, extracting 3D curves from the
learned neural edge field through a carefully designed post-
processing. While NEF achieves decent performance on
CAD models, it is constrained to simple and low-precision
object-level edge mapping. A concurrent work, NEAT [64],
utilizes VolSDF [69] to build dense surfaces and incorpo-
rates a global junction perceiving module to optimize 3D
line junctions with 2D wireframe supervision. Although
NEAT can produce 3D wireframes, it is restricted to mod-
eling line segments only. Additionally, their need for tex-
tured objects is a limitation. By contrast, we use the unis-
gned distance function (UDF) to represent edges, enabling
the construction of both line segments and curves without
the necessity for target textures. We further show that our
method can faithfully reconstruct edges for complex scenes.

Neural Implicit Representations. Neural implicit repre-
sentations have emerged as a powerful tool for a spectrum
of computer vision tasks, including object geometry repre-
sentation [9, 24, 30, 34, 35, 40, 46, 57, 62, 66, 68], scene
reconstruction [6, 20, 39, 71, 72, 75, 76], novel view syn-
thesis [28, 32, 44, 73] and generative modelling [7, 33, 49].
Recent works [27, 58, 60, 69, 72] show impressive high-
fidelity reconstruction by learning the implicit signed dis-
tance function (SDF). However, the SDF representation
constrains to modeling closed, watertight surfaces. In con-
trast, NeuralUDF [3] exploits UDF to represent surfaces,
offering a higher degree of freedom to represent both closed
and open surfaces. We find UDF as a suitable representa-
tion to model edges implicitly, in comparison to SDF used
in NEAT [64] and edge volume density from NEF [70].
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Fi g ur e 2. U D F l e a r ni n g o v e r vi e w. We utili z e a v a nill a N e R F [ 3 2 ]
M L P t h at o ut p uts a bs ol ut e v al u es t o m o d el t h e 3 D U D F fi el d.
E d g e m a ps ar e r e n d er e d usi n g a d e nsit y- b as e d e d g e n e ur al r e n-
d eri n g t e c h ni q u e, c o m bi n e d wit h a n u n bi as e d U D F r e n d eri n g a p-
pr o a c h t o eli mi n at e bi as. O ur pri m ar y s u p er visi o n c o m es fr o m 2 D
e d g e m a ps pr e di ct e d b y a pr e-tr ai n e d e d g e d et e ct or.

3. M et h o d

O ur g o al is t o b uil d a 3 D e d g e m a p fr o m m ulti- vi e w p os e d
2 D e d g e m a ps. T o t his e n d, w e first i ntr o d u c e o ur e d g e
r e pr es e nt ati o n a n d e d g e fi el d l e ar ni n g i n S e c. 3. 1 . N e xt, w e
pr es e nt o ur 3 D p ar a m etri c e d g e e xtr a cti o n fr o m t h e l e ar n e d
e d g e r e pr es e nt ati o ns i n S e c. 3. 2 .

3. 1. E d g e Fi el d wit h U nsi g n e d Dist a n c e F u n cti o ns

M ulti- vi e w E d g e M a ps. Si n c e e d g e m a ps ar e g e n er all y
i n v ari a nt t o ill u mi n ati o n c h a n g es a n d ar e m or e r o b ustl y d e-
t e ct e d a cr oss v ari o us s c e n es t h a n li n es, o ur m et h o d utili z es
m ulti pl e p os e d 2 D e d g e m a ps as i n p uts. We a p pl y pr e-
tr ai n e d e d g e d et e ct ors t o pr e di ct a n e d g e m a p E f or e a c h
i n p ut R G B i m a g e. E a c h pi x el of E h as a v al u e wit hi n [ 0, 1] ,
i n di c ati n g its pr o b a bilit y of b ei n g a n e d g e.

D e nsit y- b as e d E d g e N e u r al R e n d e ri n g. We us e a n u n-
si g n e d dist a n c e f u n cti o n ( U D F) t o r e pr es e nt e d g es, d e n ot e d
as f u . T his f u n cti o n c o m p ut es t h e u nsi g n e d dist a n c e fr o m a
gi v e n 3 D p oi nt t o t h e n e ar est e d g e. T h e U D F is d e fi n e d as:

f u : R 3 → R x → u = U D F( x ) , ( 1)

w h er e x is a 3 D p oi nt a n d u is t h e c orr es p o n di n g U D F v al u e.
T o r e n d er a n e d g e pi x el i n a c ert ai n vi e w, w e tr a c e a c a m-

er a r a y r (t) = o + td . T his r a y ori gi n at es fr o m t h e c a m er a’s
c e nt er o a n d e xt e n ds i n dir e cti o n d [3 2 ]. T o a p pl y v ol u m e
r e n d eri n g f or e d g e m o d eli n g, it is n e c ess ar y t o est a blis h a
m a p pi n g Ω u [2 7 , 5 8 ] t h at tr a nsf or ms t h e dist a n c e f u n cti o n
f u (r (t)) i nt o v ol u m e d e nsit y σ u (t) as

σ u (t) = Ω u (f u (r (t))) . ( 2)

I n t h e r e n d eri n g e q u ati o n, t h e tr a ns mitt a n c e T (t) a n d
w ei g ht ω (t) al o n g t h e c a m er a r a y r ar e a c c u m ul at e d as

T (t) = e x p −
t

0

σ u (v )d v ,  w(t) = T (t) · σ u (t) .

( 3)

T o eff e cti v el y h a n dl e a p p e ar a n c e c h a n g es u n d er diff er e nt
vi e wi n g a n gl es, m ost n e ur al fi el d- b as e d s urf a c e r e c o nstr u c-
ti o n [3 4 , 5 8 , 6 7 , 7 1 ] dis e nt a n gl es g e o m etr y a n d a p p e ar a n c e.
I n c o ntr ast, e d g e m a ps ar e g e n er all y u n aff e ct e d b y li g hti n g,
m a ki n g t h e m vi e w-i n d e p e n d e nt. T h er ef or e, t his si m pli fi es
t h e r e n d eri n g pr o c ess f or e d g e m a ps. as it o nl y r e q uir es t h e
a c c u m ul ati o n of vi e w-i n d e p e n d e nt, d e nsit y- b as e d w ei g hts
w al o n g a r a y r . N o w, t h e r e n d er e d e d g e v al u e Ê al o n g r a y
r is f or m ul at e d as:

Ê ( r ) =
+ ∞

0

w (t)dt = 1 − T ( + ∞ ) , ( 4)

E q. ( 4 ) est a blis h es t h e c o n n e cti o n b et w e e n r e n d er e d e d g e
v al u es a n d t h e tr a ns mitt a n c e at t h e e n d of t h e c a m er a r a ys.
I nt uiti v el y, t his m e a ns t h at t h e r e n d er e d e d g e v al u e is 1
w h e n t h e c a m er a r a y hits a n e d g e i n 3 D s p a c e, a n d 0 ot h er-
wis e. Pl e as e r ef er t o t h e s u p pl e m e nts f or m or e d et ails.

U n bi as e d D e nsit y F u n cti o ns f o r U D F R e n d e ri n g.
N E F [ 7 0 ] als o us es v ol u m e r e n d eri n g f or r e n d eri n g e d g es.
U nli k e o urs, t h e y utili z e e d g e d e nsit y t o r e pr es e nt e d g es
a n d a n a d diti o n al n et w or k t o pr e di ct e d g e v al u es. H o w e v er,
t his a p pr o a c h i ntr o d u c es a n i n h er e nt bi as i n e d g e r e n d eri n g.
Si mil ar t o t h e n ai v e s ol uti o n pr es e nt e d i n N e u S [ 5 8 ], t h e is-
s u e c o m es fr o m t h e w ei g ht f u n cti o n w i n E q. (3 ), w h er e its
l o c al m a xi m u m d o es n ot c oi n ci d e wit h t h e a ct u al i nt ers e c-
ti o n p oi nt of t h e c a m er a r a y a n d t h e e d g es.

T o a d dr ess t his iss u e, w e i n c or p or at e u n bi as e d U D F r e n-
d eri n g [ 2 7 ] i nt o o ur d e nsit y- b as e d e d g e r e n d eri n g fr a m e-
w or k. As pr o v e d i n N e u S, d e nsit y f u n cti o n σ u s h o ul d i n-
cr e as e m o n ot o ni c all y t o m a k e t h e w ei g ht f u n cti o n u n bi as e d.
H o w e v er, U D F v al u es ar e n ot m o n ot o n o us al o n g a r a y [ 2 7 ].
T o a d a pt t h e u n bi as e d d e nsit y f u n cti o n Ω s , w hi c h is ori gi-
n all y i n d u c e d i n N e u S [ 5 8 ], f or U D F us e, t h e m o n ot o ni c all y
i n cr e as e d d e nsit y f u n cti o n σ u [2 7 ] is f or m ul at e d as

σ u (t) = Ψ( t) ·Ω s (f u (r (t))) + ( 1 − Ψ( t)) ·Ω s (− f u (r (t))) ,
( 5)

w h er e Ψ( t) is a diff er e nti a bl e visi bilit y f u n cti o n d esi g n e d
i n [2 7 ] t o c a pt ur e t h e m o n ot o ni cit y c h a n g e i n U D F. Ψ is 0
b e hi n d t h e i nt ers e cti o n p oi nt b et w e e n t h e c a m er a r a y a n d
t h e hit e d g e, a n d is 1 b ef or e t h e i nt ers e cti o n p oi nt. B esi d es,
Ψ( t) is diff er e nti a bl e ar o u n d t h e i nt ers e cti o n p oi nt t o m a k e
t h e U D F o pti mi z ati o n m or e st a bl e.

R a y S a m pli n g St r at e g y. A k e y c h ar a ct eristi c of 2 D e d g e
m a ps is t h eir si g ni fi c a nt s p arsit y, wit h e d g es o c c u p yi n g a
m u c h s m all er ar e a c o m p ar e d t o n o n- e d g e r e gi o ns. T o e n-
h a n c e tr ai ni n g ef fi ci e n c y a n d st a bilit y, w e a p pl y a n i m p or-
t a n c e s a m pli n g str at e g y f or c a m er a r a ys, wit h 5 0 % of r a ys
u nif or ml y s a m pl e d fr o m e d g e ar e as i n t h e e d g e m a ps a n d
t h e r e m ai ni n g 5 0 % fr o m n o n- e d g e ar e as. S u c h a s a m pli n g
str at e g y e ns ur es t h at o ur U D F fi el d tr ai ni n g is c o n c e ntr at e d
o n e d g e ar e as, t h er e b y s u bst a nti all y s p e e di n g u p t h e tr ai n-
i n g pr o c ess. A d diti o n all y, o ur s a m pli n g str at e g y off ers a n
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li n e c ur v ep ol yli n e

v o x el gri d q u er y p oi nt i n v er s e n or m al v e ct or

e d g e dir e cti o n

(a) (b)

(c) (d)

(e) (f)

Fi g ur e 3. Ill ust r ati o n of o u r 3 D p a r a m et ri c e d g e e xt r a cti o n
st e ps. F or si m plif y, o ur s c h e m ati c is d e pi ct e d i n t h e 2 D pl a n e. O ur
3 D e d g e e xtr a cti o n al g orit h m c o m pris es fi v e m ai n st a g es: p oi nt
i niti ali z ati o n ( a), p oi nt s hifti n g ( b t o c), e d g e dir e cti o n e xtr a cti o n
( c t o d), p oi nt c o n n e cti o n ( d t o e), a n d e d g e fitti n g ( e t o f).

el e g a nt s ol uti o n t o t h e iss u e of o c cl usi o n, a c h all e n g e n ot e d
i n [7 0 ]. T h e r e n d er e d e d g e m a ps mi g ht c o nt ai n e d g es n ot
pr es e nt i n t h e i n p ut e d g e i m a g es d u e t o o c cl usi o n. I n c o n-
tr ast t o t h e c o m pli c at e d o c cl usi o n h a n dli n g str at e g y i ntr o-
d u c e d i n [ 7 0 ], o ur a p pr o a c h i n h er e ntl y all e vi at es t his c h al-
l e n g e b y f o c usi n g t h e tr ai ni n g o n p oi nts fr o m t h e visi bl e
e d g es pr es e nt e d i n t h e i n p ut e d g e m a ps.

L oss F u n cti o ns. T h e t ot al l oss f u n cti o n c a n b e writt e n as:

L t ot al = L e d g e + λ L ei k , ( 6)

w h er e L e d g e r e pr es e nts t h e M e a n S q u ar e Err or ( M S E) b e-
t w e e n t h e r e n d er e d a n d i n p ut e d g e i m a g es. L ei k d e n ot es t h e
Ei k o n al l oss [ 1 6 ], w hi c h pr o m ot es t h e l e ar n e d U D F t o b e
p h ysi c al dist a n c e. λ is us e d t o b al a n c e t h es e l oss es.

3. 2. 3 D P a r a m et ri c E d g e E xt r a cti o n

Wit h U D F l e ar ni n g, e d g e l o c ati o ns ar e i m pli citl y e n c o d e d
wit hi n t h e U D F fi el d. H o w e v er, a c c ur at el y e xtr a cti n g e d g e
p oi nts fr o m t h e U D F fi el d is n o n-tri vi al d u e t o t h e a bs e n c e
of a r e al z er o-l e v el s et i n t h e U D F fi el d. A d diti o n all y,
f or m ul ati n g t h es e e d g e p oi nts i nt o p ar a m etri c e d g es p os es
si g ni fi c a nt c h all e n g es d u e t o t h e c o m pl e x c o n n e cti o ns of
e d g es. T o e xtr a ct p oi nts fr o m t h e l e ar n e d d e nsit y fi el d,
N E F [ 7 0 ] s el e cts p oi nts wit h e d g e d e nsit y v al u es gr e at er
t h a n a s p e ci fi e d t hr es h ol d, ϵ . T his a p pr o a c h l e a ds t o a n a p-
pr o xi m at e d e d g e p oi nt s et t h at is ϵ - b o u n d e d [2 7 ]. W hil e t his
m et h o d eff e cti v el y g e n er at es c o m pr e h e nsi v e p oi nt cl o u ds,
t h e ϵ - b o u n d e d p oi nt s et d o es n ot ali g n a c c ur at el y wit h t h e
a ct u al e d g e l o c ati o ns.

T o eli mi n at e t h e err or i n e d g e p oi nt e xtr a cti o n, w e l e v er-
a g e t h e p h ysi c al pr o p ert y of U D F t h at r e fl e cts r e al- w orl d

(a)
𝑥 ( 𝑢 ) : i n v ers e n or m al v e ct or  
𝝎( 𝑑 ) : e d g e dir e cti o n

1

0

1

E d g e𝑡 𝝈 + 1

𝒖 ( 𝒕 )
𝝎( 𝒕 )

𝒇 𝒖
𝒕 ′ = 𝒕 𝒕 + 𝛿

𝑥 𝑡

(b)

Fi g ur e 4. Ill ust r ati o n of t h e o v e r vi e w ( a) a n d t h e c r oss-s e cti o n
( b) of U D F fi el d. ( a) I n U D F fi el d, e d g e p oi nts ar e i d e all y l o c at e d
at t h e z er o-l e v el s et, wit h U D F v al u es b ei n g l ar g er a w a y fr o m t h es e
p oi nts. A q u er y p oi nt x t c a n b e pr e cis el y s hift e d t o a m or e a c c u-
r at e p ositi o n x t + 1 b y f oll o wi n g t h e U D F v al u e a n d t h e i n v ers e n or-
m al v e ct or n ( x ) . T h e e d g e dir e cti o n l( x ) ali g ns wit h t h e t a n g e nt
dir e cti o n at t h e e d g e p oi nt x t + 1 . ( b) T h e i n v ers e n or m al v e ct ors
of all s urr o u n di n g p oi nts o n t h e cr oss s e cti o n ar e p oi nti n g t o w ar ds
t h e q u er y p oi nt.

dist a n c es t o t h e e d g es. S p e ci fi c all y, w e d e v el o p a 3 D e d g e
e xtr a cti o n al g orit h m c o m p os e d of fi v e m ai n st a g es: p oi nt
i niti ali z ati o n, p oi nt s hifti n g, e d g e dir e cti o n e xtr a cti o n, p oi nt
c o n n e cti o n, a n d e d g e fitti n g, as ill ustr at e d i n Fi g. 3 . T his al-
g orit h m t a k es t h e tr ai n e d U D F fi el d as i n p ut a n d o ut p uts
p ar a m etri c 3 D e d g es, i n cl u di n g li n e s e g m e nts a n d c ur v es.

P oi nt I niti ali z ati o n. U n d er ei k o n al l oss s u p er visi o n, t h e
o pti mi z e d U D F v al u es r e pr es e nt p h ysi c al dist a n c es t o t h e
n e ar est e d g es. T o i niti ali z e p ot e nti al e d g e p oi nts, w e b e-
gi n wit h t h e c e nt er p oi nts of all v o x el gri ds a n d o bt ai n t h eir
U D F v al u es fr o m t h e U D F fi el d. S u bs e q u e ntl y, w e eli m-
i n at e q u er y p oi nts w h os e U D F v al u es e x c e e d a s p e ci fi e d
t hr es h ol d ϵ ′ (r e d p oi nts i n Fi g. 3 ( a)).

P oi nt S hifti n g. As ill ustr at e d i n Fi g. 4 ( a), t h e n or m al-
i z e d i n v ers e gr a di e nt of t h e U D F fi el d i n di c at es t h e i n v ers e
n or m al v e ct or p oi nti n g t o w ar ds e d g es. Dr a wi n g i ns pir ati o n
fr o m O c c N et [3 1 ], w e r e fi n e t h e p oi nt x it er ati v el y t o w ar ds
t h e e d g e usi n g its dist a n c e a n d i n v ers e n or m al dir e cti o n:

x t + 1 ⇐ x t − f u (x t ) ·
∇ f u (x t )

∥ ∇ f u (x t )∥
, ( 7)

w h er e t d e n ot es t h e t-t h it er ati o n. As a r es ult of t his it er ati v e
pr o c ess, t h e i niti al p oi nts c o n v er g e t o t h e e d g e c e nt er (fr o m
Fi g. 3 ( b) t o Fi g. 3 ( c)).

E d g e Di r e cti o n. Est a blis hi n g c o n n e cti o ns b et w e e n e d g e
p oi nts is a cr u ci al st e p i n c o nstr u cti n g p ar a m etri c e d g es.
W hil e m ost m et h o ds [ 1 1 , 4 2 , 7 0 ] esti m at e p ar a m et ers
t hr o u g h l e ast-s q u ar es fitti n g of li n es/ c ur v es o n e xtr a ct e d
p oi nts, t his fitti n g- b as e d a p pr o a c h f or e d g e e xtr a cti o n is n ot
al w a ys r o b ust or a c c ur at e. I n c o ntr ast, i ns pir e d b y [ 3 7 , 6 3 ],
w e fi n d t h at c o m bi ni n g t h e e d g e dir e cti o n fi el d wit h t h e
e d g e dist a n c e fi el d c a n r o b ustl y pr o d u c e e d g e p ar a m et ers.
Gi v e n t h at i n v ers e n or m al v e ct ors i n v ari a bl y p oi nt t o w ar ds
e d g es (s e e Fi g. 4 ( b)), w e first d e vis e a n e d g e dir e cti o n e x-
tr a cti o n m et h o d b as e d o n t his s et of i n v ers e n or m al v e ct ors.
S p e ci fi c all y, f or a q u er y p oi nt x , w e i ntr o d u c e mi n or s hifts
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set {δ}N with size of N to generate an adjoining point set
{x′}N , where {x′}N = x+{δ}N . The inverse normal vec-
tors of these points, denoted as {n}N , are obtained from the
learned UDF field. The edge direction, denoted as l, is iden-
tified as the null space of {n′

i}, since the edge direction is
perpendicular to all inverse normal vectors in {n}N . There-
fore, l can be extracted with singular value decomposition
(SVD):

A = UΣV T , l = V [:, argmin(Σ)] , (8)

where A is the matrix representation of {n}N and l cor-
responds to the eigenvector associated with the smallest
eigenvalue. Note that N should be sufficiently large to en-
sure the stability of the extracted edge direction. Unlike
DeepLSD [37], we can obtain a precise edge direction field
without relying on any 2D direction supervision.
Point Connection. After accurately determining the edge
point locations and directions, we proceed to connect these
edge points guided by the edge direction to create polylines
(Fig. 3 (d) to (e)). Specifically, we begin by selecting candi-
date points and then compute directional errors for points
adjacent to these candidates. Based on these directional
errors, candidate points are connected to its best-matched
neighboring point that growing direction aligns best with
its extracted edge direction, i.e., with minimal directional
error. This process is repeated, extending the edge polylines
progressively until no further growth is possible. To ensure
efficiency and accuracy, a non-maximum suppression step
is employed to remove any redundant points that may exist
between the current candidate and the best-matched point.
Please refer to the supplements for more algorithm details.
Edge Fitting. To further parameterize edges, we catego-
rize the polylines into line segments and Bézier curves (Fig.
3 (f)). Initially, we utilize RANSAC [14] to fit lines from the
polylines, and select the line segment that encompasses the
highest number of inlier points. Following [25], we apply
Principal Component Analysis (PCA) to the inlier points,
re-estimate the line segment utilizing the principal eigen-
vector and the mean 3D point, and project all inlier points
onto the principal eigenvector to derive the 3D endpoints.
This fitting process is repeated for each polyline until the
number of inlier points falls below a minimum threshold.
For the remaining sub-polylines, we fit each of them with a
Bézier curve that is defined by four control points.

To minimize edge redundancy, we further merge line
segments and Bézier curves based on two criteria: the short-
est distance between candidate edges and the similarity of
curvature at their closest points. For line segments, the
shortest distance is the minimal point-to-line segment dis-
tance, and curvature similarity is their direction’s cosine
similarity. For Bézier curves, they are the minimal point-
to-point distance and the cosine similarity of the tangent
vectors at the nearest points, respectively. Candidate edges

are merged only if they meet both criteria. This dual-
criterion approach ensures that merging happens only when
two edges are both similar and close to each other.

To connect edges, all endpoints of line segments and
Bézier curves located within a specified distance threshold
are merged into shared endpoints. Furthermore, we imple-
ment an optimization step [5, 64] to refine the 3D parametric
edges by leveraging 2D edge maps, thereby enhancing edge
precision. Specifically, we project 3D parametric edges into
edge map frames using camera projection matrices and fil-
ter out 3D edges that are not visible in over 90% of views.

4. Experiments

4.1. Experiment Setting

Datasets. We consider four diverse datasets: CAD mod-
els (ABC-NEF [70]), real-world objects (DTU [1]), high-
quality indoor scenes (Replica [53]), and real-world out-
door scenes (Tanks & Temples [21]). ABC-NEF dataset
comprises 115 CAD models, each accompanied by 50 ob-
served images and ground truth parametric edges. We select
82 CAD models, excluding those containing inconsistent
edge observations (e.g., cylinders or balls). DTU dataset
provides dense ground-truth point clouds and we select 6
objects that meet the multi-view constraints among scans
processed by [72]. Following [5], we derive edge points
by projecting ground-truth dense points onto images and
then comparing them with the observations on 2D edge
maps to filter out non-edge points. Replica and Tanks &
Temples datasets contain larger scenes. Due to the lack
of ground-truth edges, we conduct qualitative comparisons
among baselines.

Baselines. We compare with three state-of-the-art baselines
for 3D line/curve mapping, including two learning-based
methods, NEF [70] and NEAT [64], and one geometry-
based method, LIMAP [25].

Metrics. Our evaluation involves first sampling points in
proportion to the edge’s length and subsequently downsam-
pling these points using a voxel grid with a resolution of
2563. Following the metrics used in [25, 70], we consider
Accuracy (Acc), Completeness (Comp) in millimeters, and
Recall (Rτ ), Precision (Pτ ), F-score (Fτ ) in percentage
with a threshold τ in millimeters. Moreover, we report Edge
Direction Consistency (Norm) in percentage to analyze the
precision of edge direction extraction.

Implementation Details. For fu, we utilize 8-layer Multi-
layer Perceptrons (MLPs). Each layer in the MLP contains
512 neurons for larger scenes, such as Tanks & Temples,
and 256 neurons for other datasets. We sample 1024 rays
per batch, among these rays, 512 rays are sampled from
edge areas. We train our model for 50k iterations on ABC-
NEF dataset, and 200k iterations on other datasets. We train
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CAD model LIMAP@S [25] NEF@P [70] Ours@P Ours@D GT Edge

Figure 5. Qualitative comparisons on ABC-NEF [70]. Lines are shown in black and curves in blue. Thanks to our precise edge extraction
capabilities for both lines and curves, we achieve complete and accurate modeling of these elements.

Method Detector Modal Acc↓ Comp↓ Norm↑ R5↑ R10↑ R20↑ P5↑ P10↑ P20↑ F5↑ F10↑ F20↑

LIMAP [25] LSD Line 9.9 18.7 94.4 36.2 82.3 87.9 43.0 87.6 93.9 39.0 84.3 90.4
SOLD2 Line 5.9 29.6 90.1 64.2 76.6 79.6 88.1 96.4 97.9 72.9 84.0 86.7

NEF [70]
PiDiNet† Curve 11.9 16.9 90.9 11.4 62.0 91.3 15.7 68.5 96.3 13.0 64.6 93.3
PiDiNet Curve 15.1 16.5 89.7 11.7 53.3 89.8 13.6 52.2 89.1 12.3 51.8 88.7
DexiNed Curve 21.9 15.7 85.9 11.3 48.3 87.7 11.5 39.8 71.7 10.8 42.1 76.8

Ours PiDiNet Edge 9.2 15.6 93.7 30.2 75.7 89.8 35.6 79.1 95.4 32.4 77.0 92.2
DexiNed Edge 8.8 8.9 95.4 56.4 88.9 94.8 62.9 89.9 95.7 59.1 88.9 94.9

Table 1. Edge reconstruction results on ABC-NEF [70]. Results from NEF’s released pretrained models are indicated by †. Our method
surpasses all others in terms of completeness and achieves accuracy comparable to LIMAP [25].

our network with the Adam optimizer with a learning rate
of 5 × 10−4, while the UDF model fu is trained with a
learning rate of 1 × 10−4 and initialized with sphere ini-
tialization [66]. For edge detection for NEF and ours, we
consider PiDiNet [54] and DexiNed [41]. PiDiNet [54] is
employed for indoor scenes, such as DTU and Replica, due
to its superior performance in these settings. Conversely,
DexiNed [41] is applied to outdoor scenes, as it is primar-
ily trained on outdoor scenes. On the synthetic ABC-NEF
dataset, we show results with both detectors. For LIMAP,
we follow their paper and we use SOLD2 [36] for indoor
scenes and LSD [55] for outdoor scenes. NEAT is trained
with 2D wireframes from HAWPV3 [65].

4.2. Evaluation of 3D Edge Reconstruction

Evaluation on ABC-NEF Dataset. We show the quanti-
tative and qualitative comparisons on Table 1 and Fig. 5.
Note that NEAT fails on the ABC-NEF dataset because of
its heavy dependence on texture input. NEF demonstrates
decent performance at τ = 20. However, their perfor-
mance drops significantly when τ is set to 10 and 5. This
is attributed to its bias in edge rendering and its fitting-
based post-processing. LIMAP shows remarkable preci-
sion across various τ thresholds. Such consistency stems
from its non-linear refinement over multi-view 2D supports.
Nonetheless, LIMAP’s inability to reconstruct curves leads

Method Detector Curve Line
Acc↓ Comp↓ Norm↑ Acc↓ Comp↓ Norm↑

LIMAP [25] LSD 272.6 50.1 84.8 34.6 11.3 95.9
SOLD2 295.7 82.2 76.8 20.0 18.1 92.1

NEF [70]
PiDiNet† 265.0 27.1 77.9 40.4 13.7 92.6
PiDiNet 263.1 23.9 77.6 43.9 14.0 91.4
DexiNed 250.5 20.3 72.6 56.2 13.8 87.3

Ours PiDiNet 253.7 25.7 88.1 43.1 12.8 93.7
DexiNed 241.0 10.9 88.7 46.7 7.7 95.4

Table 2. Accuracy, completeness and normal consistency re-
sults with curves and lines on ABC-NEF [70]. Our method with
DexiNed edge detector yields overall the strongest performance on
curves among all baselines.

to lower scores in completeness and recall. Our method,
when combined with either of the 2D edge detectors, con-
sistently outperforms all baselines. Notably, as shown in Ta-
ble 1, combined with the DexiNed detector, our method
achieves superior results in completeness, edge direction
consistency, recall, and F-Score. We also show competitive
accuracy and precision when compared to LIMAP.

To further analyze the performance of different edge
types, we classify the ground truth edges into curves (in-
cluding BSplines, ellipses, and circles) and line segments,
based on the GT annotations. We provide accuracy, com-
pleteness, and edge direction consistency in Table 2 to an-
alyze the separate reconstruction abilities for curves and
lines. Note that these results are computed based on all pre-
dictions specific to either curves or lines, as other methods
do not differentiate between these two types of edges. We
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2D Image LIMAP [25] NEAT [64] Ours

Figure 6. Qualitative comparisons on the Replica [53] and Tanks & Temples [21] datasets. The first two scenes are from the Replica
dataset, while the last scene is from the Tanks & Temples dataset.

2D Image LIMAP [25] NEF [70]

NEAT [64] Ours GT Edge

Figure 7. Qualitative comparisons on DTU [1]. Our results
demonstrate complete edge structure, whereas other methods re-
sult in redundant line segments or imprecise curves.

Scan LIMAP [25] NEF [70] NEAT [64] Ours
R5↑ P5↑ R5↑ P5↑ R5↑ P5↑ R5↑ P5↑

37 75.8 74.3 39.5 51.0 63.9 85.1 62.7 83.9
83 75.7 50.7 32.0 21.8 72.3 52.4 72.3 61.5

105 79.1 64.9 30.3 32.0 68.9 73.3 78.5 78.0
110 79.7 65.3 31.2 40.2 64.3 79.6 90.9 68.3
118 59.4 62.0 15.3 25.2 59.0 71.1 75.3 78.1
122 79.9 79.2 15.1 29.1 70.0 82.0 85.3 82.9

Mean 74.9 66.1 27.2 33.2 66.4 73.9 77.5 75.4

Table 3. Edge reconstruction results on DTU [1].

can see that our method with DexiNed exhibits superior re-
sults in reconstructing curves. As for line segments, our
performance is marginally lower than the best-performing
method LIMAP which is specially optimized for lines.

Evaluation on DTU Dataset. Our assessment of the DTU
dataset, as outlined in Table 3 and Fig. 7, shows our pro-
ficiency in real-world scenarios. Notably, our approach
achieves the highest recall and precision among all base-
lines. The DTU dataset presents a challenging scenario for

(a) w/o point shifting (b) w/ point shifting (c) edge direction

Figure 8. Visualization of point shifting and edge direction.
Edge points are shown in point clouds and edge directions in color.
The point shifting step significantly refines the locations of edge
points. The edge extraction step yields accurate results, as seen
in parallel lines sharing the same direction and curves exhibiting
continuously changing directions.

edge extraction due to its varying lighting conditions. How-
ever, our edge refinement step proves effective in preserving
primary edges, a point we elaborate on in Sec. 4.3. Fig. 7
shows LIMAP tends to produce redundant line segments,
leading to high recall but reduced precision. NEF’s post-
processing is sensitive to different scenes, resulting in noisy
edge fitting. NEAT, despite producing clean outputs, its in-
ability to handle curves constrains its overall performance.

Qualitative Evaluation on Indoor & Outdoor Scenes.
To really showcase the power of our method in capturing
scene-level geometry, we further run our method on indoor
and outdoor scenes. Note that since NEF is not able to
produce meaningful reconstructions on larger scenes, we
only compare with LIMAP and NEAT. As shown in Fig. 1
and Fig. 6, NEAT, due to its reliance on high-quality sur-
face reconstruction, faces limitations in scene reconstruc-
tion, while LIMAP and our method both successfully cap-
ture good scene geometry.

4.3. Ablations and Analysis

Parametric Edge Extraction. To better understand our
parametric edge extraction process described in Sec. 3.2,
we visualize our point shifting and edge direction in Fig. 8.
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(a) Ours (b) w/o point shifting (c) w/o Bézier curve

(d) w/o edge merg. (e) w/o endpoints merg. (f) GT Edge

Figure 9. Qualitative ablation on different component of our
parametric edge extraction. The absence of any module in our
edge extraction process results in incomplete or noisy qualitative
outcomes.

We can clearly see that the extracted point clouds without
point shifting are appeared in redundant and inaccurate edge
points (Fig. 8 (a)). In contrast, the point shifting step yields
point clouds with sharply defined, precise edges (Fig. 8 (b)).
In addition, as shown in Fig. 8 (c), the extracted edge di-
rections along parallel lines are consistent, while those on
curves vary continuously. This aligns with our expectations.

Furthermore, we also conduct ablation studies in Table 4
and Fig. 9 to evaluate the impact of different components
in our edge extraction algorithm. These experiments were
performed on the ABC-NEF dataset using the DexiNed de-
tector. First, the removal of the query point shifting step
leads to a significant drop in both recall and precision. This
indicates that our point-shifting step significantly refines the
query points locations. Second, excluding Bézier curves re-
sults in a decline in completeness (Fig. 9 (c)), showing that
curves are necessary for edge reconstruction. Third, omit-
ting the edge merging step leads to redundant small line
segments, as evident in Fig. 9 (d). Finally, the removal of
endpoint merging impairs connectivity between edges, as
shown in Fig. 9 (e).

Method Acc↓ Comp↓ R5↑ P5↑ F5↑
a Ours 8.8 8.9 56.4 62.9 59.1
b w/o point shifting 15.3 9.9 29.2 18.7 22.2
c w/o B’ezier curve 9.4 12.1 54.2 65.8 59.0
d w/o edge merging 10.3 8.7 53.8 45.3 48.6
e w/o endpoints merging 9.3 9.0 51.5 57.7 54.0

Table 4. Ablation studies on different component of paramet-
ric edge extraction on ABC-NEF [70] with DexiNed [41]. Our
parametric edge extraction approach with all components achieves
the optimal balance between accuracy and completeness.

Edge Refinement. In Fig. 10, we study the effectiveness of
our edge refinement module. When input edge maps con-
tain some noises in dark scenes, our initial 3D edge map,
without the edge refinement, exhibits some artifacts. How-
ever, the edge refinement module markedly mitigates arti-
facts, achieving a balance between recall and precision.

w/o edge refinement w/ edge refinement

Figure 10. Ablation study on edge refinement. Our edge refine-
ment effectively eliminates the majority of noisy edges in back-
ground areas.

2D Image MonoSDF [72] MonoSDF w/ Ours GT Mesh

Figure 11. Dense surface reconstruction on Replica [53]. Uti-
lizing our trained UDF MLP for initialization enables MonoSDF
to capture more geometric details, such as the vase in the top row,
the shelf in the bottom row.

4.4. Application on Dense Surface Reconstruction

Our method has demonstrated its proficiency in reconstruct-
ing 3D edges across a diverse range of scenarios. Build-
ing on this success, we further explore the potential of our
learned representation to benefit other tasks. A particularly
relevant area is dense surface reconstruction.

As shown in Fig. 11, the recent neural-implicit surface
reconstruction approach MonoSDF [72] can show decent
reconstruction results from only posed multi-view images.
However, we notice that they still struggle to capture de-
tailed geometry. To address this, we integrate our method
into the MonoSDF pipeline. Specifically, we initialize the
geometry MLPs of MonoSDF with our pre-trained UDF
MLPs. We can clearly see that such a simple integration
can enhance the recovery of geometric details.

5. Conclusions

We introduced EMAP, a 3D neural edge reconstruction
pipeline that learns accurate 3D edge point locations and
directions implicitly from multi-view edge maps through
UDF and abstracts 3D parametric edges from the learned
UDF field. Through extensive evaluations, EMAP demon-
strates remarkable capabilities in CAD modeling and in
capturing detailed geometry of objects and scenes. Further-
more, we show that our learned UDF field enriches the ge-
ometric details for neural surface reconstruction.
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