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Figure 1. We introduce the Accelerated Auto-regressive Motion Diffusion Model (AAMDM), a novel framework designed to synthesize
diverse and high-quality character motions at interactive rates.

Abstract
Interactive motion synthesis is essential in creating im-

mersive experiences in entertainment applications, such as
video games and virtual reality. However, generating an-
imations that are both high-quality and contextually re-
sponsive remains a challenge. Traditional techniques in
the game industry can produce high-fidelity animations but
suffer from high computational costs and poor scalabil-
ity. Trained neural network models alleviate the mem-
ory and speed issues, yet fall short on generating diverse
motions. Diffusion models offer diverse motion synthe-
sis with low memory usage, but require expensive reverse
diffusion processes. This paper introduces the Acceler-
ated Auto-regressive Motion Diffusion Model (AAMDM),
a novel motion synthesis framework designed to achieve
quality, diversity, and efficiency all together. AAMDM
integrates Denoising Diffusion GANs as a fast Genera-
tion Module, and an Auto-regressive Diffusion Model as
a Polishing Module. Furthermore, AAMDM operates in
a lower-dimensional embedded space rather than the full-
dimensional pose space, which reduces the training com-
plexity as well as further improves the performance. We
show that AAMDM outperforms existing methods in motion
quality, diversity, and runtime efficiency, through compre-
hensive quantitative analyses and visual comparisons. We
also demonstrate the effectiveness of each algorithmic com-
ponent through ablation studies.

1. Introduction
The landscape of interactive motion synthesis, particularly
in the realm of video games, has seen a notable expan-
sion. Today’s AAA titles boast tens of thousands of unique
characters in real-time, all needing to be contextually an-
imated [18]. Therefore, the efficiency of motion synthe-
sis has emerged as a critical focus of research in the field
of computer animation. Motion Matching [25], a prevalent
technique for industry-grade animation, was first developed
by UbiSoft for the game “For Honor” [1]. The main ob-
jective of Motion Matching (MM) is to identify the most
contextually suitable animation in a large dataset based on
manually defined motion features. This approach, while
capable of yielding responsive high-quality animations, is
computationally intensive and scales poorly with respect to
the size of the dataset.

Alternatively, trained neural networks have emerged to
reduce the memory footprints and enhance runtime perfor-
mance. However, these models possess their own chal-
lenges, such as unstable convergence at training time and
compromised motion quality at testing time. Recently,
diffusion-based generative models have revolutionized con-
tent creation, thanks to their power to create diverse high-
quality content with lean memory demands. However, stan-
dard diffusion models are often impractical for time-critical
applications, due to their poor run-time performance caused
by expensive reverse diffusion processes.

We introduce the Accelerated Auto-regressive Motion
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Diffusion Model (AAMDM), a novel framework crafted to
generate diverse high-fidelity motion sequences without the
need for prolonged reverse diffusion. Diffusion-based tran-
sition models naturally produce diverse multi-modal motion
would be too slow for interactive applications. To overcome
this challenge, our AAMDM framework mainly adopts two
synergistic modules: a Generation Module, for rapid ini-
tial motion drafting using Denoising Diffusion GANs; and a
Polishing Module, for quality improvements using an Auto-
regressive Diffusion Model with just two additional denois-
ing steps. Another distinctive feature of AAMDM is its op-
eration in a learned lower-dimensional latent space rather
than the traditional full pose space, further accelerating the
training process.

We evaluate our algorithm on the LaFAN1 [13] dataset
and demonstrate its capability of synthesizing diverse high-
quality motions at interactive rates. Our method outper-
forms a number of baseline algorithms, such as LMM [25],
MotionVAE [31], and AMDM [50], using various quan-
titative evaluation metrics. Furthermore, we conduct an
analysis on an artificial multimodal dataset. This analysis
confirms that our model can successfully capture the multi-
modal transition model and is better suited for diverse and
intricate motion synthesis tasks. Finally, we perform ab-
lation studies to justify various design choices within our
framework.

In summary, our primary contributions are as follows:
• We introduce AAMDM, a novel diffusion-based frame-

work capable of generating extended motion sequences at
interactive rates. The key idea is to combine the strengths
of Denoising Diffusion GANs and Auto-regressive Diffu-
sion Models in a compact embedded space.

• We conduct thorough comparative analyses between
AAMDM and various established benchmarks using mul-
tiple metrics for measuring motion quality, diversity, and
runtime efficiency. Together with our ablation studies, we
provide a deep understanding of our algorithm with re-
spect to alternative prior arts.

• We showcase novel high-quality multi-modal motions
synthesized from our model, some impossible to achieve
by previous methods, such as following a user-controlled
root trajectory with diverse arm movements.

2. Related Work

2.1. Data-Driven Kinematic Motion Synthesis

The quest to create virtual characters that move naturally
stands as a fundamental challenge in computer animation.
Graph-based approach structures motion data into a graph
and employs search algorithms to retrieve contextually ap-
propriate animations [4, 22, 26, 27, 35, 46]. It offers high-
fidelity motion, but its scalability is curtailed by substantial
memory demands and search times.

Statistical methods have been devised to encapsulate mo-
tions within numerical models, such as linear, kernel-based,
and neural network categories. Linear models represent
poses with low-dimensional vectors, but they often fail to
encompass the full spectrum of human movement [5, 21,
47]. Kernel-based models, including Radial Basis Func-
tions (RBF) and Gaussian Processes (GP), embrace the non-
linearity in motion data [11, 28, 36, 37, 40, 45, 59]. How-
ever, these methods are memory-intensive, especially when
managing large covariance matrices.

The neural network paradigm has gained prominence for
its scalability and efficiency at runtime [8, 12, 14, 31, 39,
41, 42, 54, 55, 60]. Innovative neural architectures have
been proposed to better capture motion sequences within
datasets, such as those adjusting weights according to a
phase variable [19], employing gating mechanisms [64],
and extracting periodic latent features [55]. Nevertheless,
these models predominantly focus on locomotion and char-
acter’s leg movement, leaving room for broader exploration.

2.2. Generative Diffusion Model

Generative diffusion models are a groundbreaking class of
algorithms that learn to replicate data distributions through
the reverse of diffusion processes [16, 51, 52]. In condi-
tional generation scenarios, innovations such as classifier-
guided diffusion [7] and classifier-free guidance [15] have
been introduced, offering fine-tuned control over the bal-
ance between diversity and fidelity. Applications of dif-
fusion models span across image and video synthesis to
robotics [2, 15–17, 20, 23, 38, 53, 58].

Recent adaptations of diffusion models for motion syn-
thesis have been particularly promising, with efforts aimed
at generating 3D human motion from textual descrip-
tions [24, 56, 65]. Enhancements to these models have
come through novel architectural designs [56], the integra-
tion of geometric losses [56], and the incorporation of phys-
ical guidance mechanisms [63]. Additionally, the synthesis
of human dance motions from audio signals has been ex-
plored, with models using auditory cues to direct the gener-
ative process [3, 6, 34, 57]. However, the latency inherent in
diffusion models, often taking considerable time to generate
brief motion clips, precludes their application in real-time
settings. The work of Shi et al. [50] represents a significant
stride towards curtailing inference times through a reduced
number of denoising steps.

2.3. Accelerating Diffusion Model

The typically slow sampling speeds of diffusion models
are primarily attributed to the extensive series of denois-
ing steps required. A range of strategies has been suggested
to expedite this process, such as the application of knowl-
edge distillation techniques [33], the employment of adap-
tive noise scheduling [48], and the design of single-step
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Figure 2. Overview of AAMDM. AAMDM incorporates three pivotal components for better motion quality and faster inference. Firstly,
it models transitions within a low-dimensional embedded space xz ∈ XZ. Secondly, the framework features a Generation module,
which employs Denoising Diffusion GANs. This module is responsible for efficiently generating initial drafts of motion sequences.
Lastly, a Polishing module, which utilizes an Auto-regressive Diffusion Model, refines these initial drafts. A full-pose vector yn is then
reconstructed from the corresponding embedded vector xzn using the learned decoder DAE .

denoising distributions as conditional energy-based mod-
els [9]. Integrating reinforcement learning with diffusion
models has also been proposed to decrease the number of
reverse diffusion steps needed [50]. Nevertheless, such
methods have often had to contend with either diminished
sample quality or expensive multiple generation steps. The
introduction of Denoising Diffusion GANs [62] is a no-
table innovation, integrating the strengths of diffusion mod-
els with Generative Adversarial Networks to concurrently
address sample quality, generation speed, and mode cover-
age [10]. In this work, we have employed this technique to
enhance the diffusion process for fast motion synthesis.

3. Method

The architecture of our Accelerated Auto-regressive Mo-
tion Diffusion Model (AAMDM) is illustrated in Figure 2.
AAMDM incorporates three key components: transition in
a low-dimensional embedded space, a Generation module
with Denoising Diffusion GANs for efficient draft genera-
tion, and a Polishing module with Auto-regressive Diffusion
Mode for refining the draft.

In the following subsections, we will first explain the
construction of the low-dimensional embedded space (Sec-
tion 3.1). Then, we will describe the foundation of the Pol-
ishing (Section 3.2) and Generation modules (Section 3.3),
namely the auto-regressive diffusion model and denoising
diffusion GANs. Next, we will provide the design of the
Generation and Polishing modules (Section 3.4), followed
by an explanation of how the sampling procedure is guided
to follow user’s commands (Section 3.5). Finally, we will
provide a model representation (Section 3.6).

3.1. Constructing Embedded Space

Current learning-based methods for motion synthesis typ-
ically target to capture pose transitions in the full-body
space, which often complicates learning and violates kine-
matic constraints intrinsic to the character’s morphology.

We introduce a compact embedded vector xz ∈ XZ to
replace a full-body pose y ∈ Y, where x denotes an en-
gineered feature and z a learned latent vector.

An autoencoder is employed to learn the optimal em-
bedded space, where an Encoder network EAE(y) → z
maps pose vectors to latent vectors, and a Decoder network
DAE(xz) → ŷ reconstructs poses from the encoded vec-
tors. On top of learned features z, we extract manual feature
x as well. The networks are trained jointly to minimize both
the perceptual discrepancy losses, LD,E

val and LD,E
vel , and a

regularization loss LD,E
reg :

LD,E
val = ||ŷ ⊖ y||+ ||F (ŷ)⊖ F (y)|| (1)

LD,E
vel = ||F (ŷ0)⊖ F (ŷ1)

δn
− F (y0)⊖ F (y1)

δn
|| (2)

LD,E
reg = ||z||22 (3)

LD,E = wD,E
val LD,E

val + wD,E
vel LD,E

vel + wD,E
reg LD,E

reg (4)

Here, F indicates the forward kinematics function that con-
verts joint rotations into joint positions, and the operator ⊖
calculates the difference between two poses. y0 and y1 rep-
resent two consecutive frames of a motion sequence. δn de-
notes the time interval between frames. wD,E

val , wD,E
vel , wD,E

reg

are weights for balancing different loss terms. Once we con-
struct the embedded vector space, we can learn an embed-
ded state transition model S(xzn−1) → x̂zn instead of the
full pose transition model S(yn−1) → ŷn.

3.2. Auto-regressive Diffusion Model (ADM)

Character animations are intrinsically multi-modal. For a
given pose, there may be multiple follow-up poses at the
next moment. The transition from S(xzn−1) → x̂zn is es-
sentially a many-to-many mapping. Neural network mod-
els that use a Mean Square Error (MSE) based loss to
train, such as Learned Motion Matching [25], are unable to
capture these many-to-many transitions, since MSE losses
work on one-to-one mappings. Therefore we employ a dif-
fusion model as our backbone model. Our diffusion model
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follows the structure of DDPM [16]. For each forward dif-
fusion step, a small noise vector is added on top of the future
embedded vector xzn :

q(xztn|xzt−1
n ) = N(

√
αtxzt−1

n , (1− αt)I) (5)

The reverse diffusion phase p(xzt−1
n |xztn) generates em-

bedded vector x̂zn by gradually removing the noise on top
of xzn. In our setting, the reverse diffusion model GADM

follows the formulation of [43, 56] and directly predicts the
embedded vector rather than the added noise as in [16, 50].
The previous vector xzn−1 is used as a condition term:

x̂z0n = GADM (xztn,xzn−1, t) (6)

The predicted x̂z0n is then used as a condition xzn′−1 =
x̂z0n for generating the next xzn′ , where n′ = n+ 1.

To ensure high-quality generation over a long horizon,
the loss for training GADM measures the difference be-
tween the auto-regressively generated h-length embedded
vector and the ground truth value. Specifically, to gener-
ate an embedded vector sequence, we start with the tra-
jectory xz0:h and add forward diffusion noise. This can
be done in an auto-regressive manner using Equation 6
starting from the initial condition of (xz0,xz

t1
1 , t1) until

(x̂z0h−1,xz
th
h , th). The loss is designed as:

LADM
val = ||x̂z01:h − xz1:h|| (7)

LADM
vel = ||

(x̂0
1:h − x̂0

0:h−1)

h ∗ δn
− (x1:h − x0:h−1)

h ∗ δn
|| (8)

LGADM = wADM
val LADM

val + wADM
vel LADM

vel (9)

Here LADM
val encourages the reconstruction of the trajectory,

and LADM
vel aims to imitate the velocities.

Although this basic diffusion model can produce high-
quality samples and achieve improved mode coverage, the
sampling process is time consuming primarily due to the
iterative nature of diffusion and denoising.

3.3. Fast Generation via Denoising Diffusion GANs

The Diffusion Model typically involves multiple steps to
generate solid predictions. This is based on the assump-
tion that the denoising follows a Gaussian distribution [61].
However, this assumption is only valid when a small
amount of noise is eliminated at each denoising step. As
a result, it takes numerous steps to generate a high-quality
prediction from pure noise. To minimize the number of
steps in the reverse process and therefore accelerating the
generating process, an alternative approach is to utilize a
non-Gaussian multimodal distribution.

Our AAMDM utilizes Denoising Diffusion-GANs (DD-
GANs) as proposed by Xiao et al. [61]. This method formu-
lates the reverse diffusion process using a multimodal dis-
tribution. It achieves this by parameterizing the reverse dif-
fusion process as conditional GANs. The reverse diffusion

generator, denoted as GGAN , takes an additional latent vari-
able rt as a conditional term, in addition to (xztn,xzn−1, t):

x̂z0n = GGAN (xztn,xzn−1, r
t, t). (10)

We use GGAN (∼) as an abbreviation of
GGAN (xztn,xzn−1, r

t, t), which can be trained by
minimizing the KL divergence between two distributions:
DKL(p(xz

t−1
n |xztn,xzn−1)||q(xzt−1

n |xztn,xzn−1)) :

LGGAN = −Ep(xzt−1
n |xzt

n,xzn−1)
[log(DGAN (∼))]. (11)

This objective can then be converted to train-
ing a diffusion-step-dependent discriminator network
DGAN (xzt−1

n ,xztn,xzn−1, t) to distinguish if xzt−1
n is

diffused from the original data xzn or generated fake
data x̂z0n, and the generator is trained to disguise the
discriminator. We use DGAN (∼) as an abbreviation of
DGAN (xzt−1

n ,xztn,xzn−1, t).

LDGAN = −Eq(xzt−1
n |xzt

n,xzn−1)
[log(DGAN (∼)]

− Ep(xzt−1
n |xzt

n,xzn−1)
[log(1−DGAN (∼))] (12)

DD-GANs offer high sampling speed while maintaining
excellent mode coverage and output quality in a single mo-
tion step. However, when used in an autoregressive gener-
ation setting, we have observed that DD-GANs often lead
to unstable training, resulting in deteriorated motion qual-
ity. To address this issue, we propose combining ADM and
DD-GANs to achieve fast and high-quality sampling.

3.4. Combining ADM and DD-GANs

The combination of ADM and DD-GANs is based on the
insight that the diffusion process transitions from generat-
ing samples from noise at early stages to making small ad-
justments in the prediction at late stages. To achieve higher
quality output, the generation of single motion steps is di-
vided into two sub-steps: Generation and Polishing. The
Generation module utilizes DD-GANs to generate a draft
prediction in a few steps, while the Polishing module re-
fines the output from the Generation module using ADM.

The process begins with a random noise input, xzTn ∼
N(0, I), and the Generation module goes through TGAN =

3 reverse diffusion steps using GGAN for xzT
AA−TGAN

n .
The generated xzT

AA−TGAN

n is then passed to the Polishing
module, where GADM refines the result using TADM =
2 steps. The total number of generation steps, TAA =
TGAN + TADM = 5. Finally, the generated x̂z0n replaces
x̂z0n−1 for the next step prediction. The Generation Module
and Polishing Module are trained separately using Equa-
tion 7, 12, and 11. For a more detailed sampling and train-
ing procedure, refer to the supplementary materials.
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3.5. Motion Control with User Commands

To generate the motions that follow the user’s commands,
for single pose transition, AAMDM guides the motion gen-
eration process through a guided diffusion method proposed
by Rempe et al. [44]. Given the user’s query x̄n, at each dif-
fusion steps with noise vector xztn, we perturb the generated
vector x̂z0n to obtain the guided vector x̂z0,∗n :

x̂z0,∗n = x̂z0n − ϵαt∇xzt
n
J(x̂0

n, x̄n). (13)

Here, J is an objective function measuring distance be-
tween the generated feature vector and user’s query. ϵ is a
step parameter, αt is the noise parameter in diffusion model.

3.6. Model Representation

Character Representation The pose vector, denoted
as y, captures all the character’s pose information
in a single frame of the animation. It is defined as
y = {yt,yr, ẏt, ẏr, ṙt, ṙr}, where yt and yr represent
joint local translations and rotations, ẏt and ẏr represent
joint local translational and rotational velocities, and ṙt

and ṙr represent root translational and rotational velocities.
The total dimension of y is 338. Additionally, we define
x = {tt, td}, where tt ∈ R6 and td ∈ R6 represents
the 2D future trajectory positions and facing direction
projected on the ground, 20, 40, and 60 frames in the future
local to the character. The latent vector z has a dimension
of 52, and thus xz ∈ R64.

Neural Network Structure The encoder network
EAE , the decoder network DAE , ADM generator GGAN ,
DD-GANs generator GGAN and DD-GANs discriminator
DGAN are all fully connected neural network. The details
are presented in the supplementary materials.

4. Experiments
We conducted a series of experiments to evaluate the perfor-
mance of the proposed method, AAMDM. Firstly, AAMDM
is quantitatively compared against several baseline methods
using different evaluation metrics. Subsequently, we con-
ducted additional experiments on an artificial multi-modal
dataset for detailed discussion. Lastly, we performed
ablation studies to justify design choices. Overall, the
results demonstrate that AAMDM can efficiently generate
high-quality motions with long horizons auto-regressively.
The motions can be seen in the supplementary video.

Implementation Details We implemented our motion
generation framework in Pytorch and conducted experi-
ments on a PC equipped with an NVIDIA GeForce RTX
3080 Ti and AMD Ryzen 9 3900X 12-Core Processor.
For all networks, training was performed for 1M iterations
using the RAdam optimizer [32] with a batch size of 64

and a learning rate of 0.0001. We trained the Encoder
EAE and Decoder DAE first to construct the embedded
vector space XZ, then we trained the Polishing module
and the Generation module. Both Polishing and Generation
modules were trained with a window size of 10 frames.
The total training procedure took around 20 hours.

Dataset We utilized the Ubisoft LaForge Animation
Dataset(“LaFAN1”) [13] for evaluation. LaFAN1 is a
collection of high-quality human character animations,
encompassing a wide range of motions. Our dataset com-
prised 25 motion clips from LAFAN1, featuring 100,000
pose transitions, and had a total duration of 26.67 minutes.

4.1. Baseline Comparison

We compared AAMDM with the following baselines:
• Learned Motion Matching (LMM): LMM is an inter-

active motion synthesis method proposed by Kolsi et al.
[25]. Similar to our method, LMM uses an embedded
vector space. It comprises three networks: Projector that
maps the human input vector x̄ to the embedded vector
xz for addressing user’s command, Decompressor that
reproduces the pose vector y from xz, and Stepper that
maps xzn−1 to xzn for learning the pose transition. Both
Stepper and Projector are trained using MSE based loss.
Unlike LMM that treats user commands and pose tran-
sition separately, AAMDM fuses these two requirement
using the guided diffusion process.

• Motion VAE (MVAE): MVAE [31] is based on an au-
toregressive conditional variational autoencoder. Given
the current pose, MVAE predicts a distribution of possi-
ble next poses, as it is conditioned on a set of stochastic
latent variables. The key distinction between AAMDM
and MVAE is that the former models transitions using a
diffusion-based model, whereas the latter employs a VAE.

• Autoregressive Motion Diffusion Model (AMDM):
AMDM [50] is an autoregressive diffusion model-based
framework for motion synthesis. There are three main
differences between AAMDM and AMDM. First, AMDM
accelerates the diffusion process by simply taking fewer
reverse diffusion steps, while AAMDM leverages DD-
GANs. Second, AMDM operates in the full pose space,
whereas AAMDM learns transitions in an embedded
space. Third, AMDM predicts noise at each reverse diffu-
sion step, while AAMDM directly predicts the target vec-
tor as Ramesh et al. [43]. We implemented two versions
of AMDM, named AMDM5 and AMDM200, to indicate
the use of 5 and 200 diffusion steps, respectively.

4.1.1 Evaluation of Random Motion Synthesis

We first evaluated the performance of these methods in ran-
dom motion generation over the following metrics:
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DIV → FID ↓ FFR ↓ FPS ↑ TE-UC ↓ FID-UC ↓ FFR-UC ↓
Dataset 14.533 0.000 0.113 N/A N/A 0.000 0.113

AAMDM(Ours) 11.574 14.051 0.131 173 0.034 15.367 0.143

LMM [25] 5.374 49.706 0.194 812 0.021 55.674 0.233
MVAE [31] 7.223 22.981 0.312 703 0.027 47.453 0.349
AMDM5 [50] 8.134 18.741 0.214 192 0.054 25.943 0.256
AMDM200 [50] 11.165 12.132 0.129 4.72 0.012 14.254 0.133

Table 1. In our quantitative analysis, we demonstrate that the AAMDM framework is capable of generating motions of a quality comparable
to that of AMDM200, while significantly outperforming other methods in both random sampling and user control scenarios. Meanwhile,
the result also indicates that AAMDM is approximately 40 times faster than AMDM200.

Figure 3. Comparison between motions generated by LMM (top)
and AAMDM (Bottom). Starting from a similar character pose,
LMM is unable to generate diverse motions while AAMDM can
reproduce diverse complex motions.

• Diversity (DIV): Diversity measures the distributional
spread of the generated motions in the character pose
space. This metric, adopted from several previous
works [29, 30, 56, 57], assesses how well the gener-
ated motion matches the distribution of the ground truth
dataset. We follow the implementation used in MDM
[56], computing Diversity using 1,000 frames from each
generated motion clip. A good Diversity score should be
close to that of the motion dataset.

• Frechet Inception Distance (FID): FID evaluates the
difference between the distributions of generated and
ground truth motions. FID serves as an indicator of
the overall quality of generated motions in many prior
works [56, 57].

• Footskating Frame Ratio (FFR): FFR quantifies the re-
alism of generated motion, particularly focusing on foot-
ground contact. We measured foot skating artifacts as de-
scribed in Zhang et al. [64]. A lower FFR score indicates
better physical plausibility of the generated motions.

• Frames Per Second (FPS): FPS is a measure of the ef-
ficiency of motion generation methods in creating new
frames. Higher FPS values indicate faster frame genera-
tion rates, essential for interactive applications.
The qualitative results are summarized in Table 1. No-

tably, AAMDM achieve similar performance as AMDM200

while surpasses the other baselines in all motion quality
metrics with more than 40 times faster than AMDM200.
This demonstrates AAMDM’s capability to efficiently gen-
erate high-quality character animations.

LMM’s motion quality was generally found to be infe-
rior to AAMDM, as reflected in the FID and DIV metrics.
This discrepancy is likely due to LMM’s training with MSE
loss, presupposing a one-to-one mapping. However, this as-
sumption may not be valid in datasets with multiple possible
transitions from a single pose. Figure 3 provides an exam-
ple. A more detailed discussion on this aspect will be pre-
sented in a subsequent section. However, LMM showed a
higher FPS score, attributed to its single feed-forward oper-
ation, compared to AAMDM’s five feed-forward operations.

In motion quality evaluation, MVAE slightly outper-
formed LMM with scores of 7.223 and 22.981 in DIV and
FID respectively. MVAE’s better quality can be linked to
its use of VAE for handling multiple mappings in pose tran-
sitions. Although MVAE offered improved training stabil-
ity and performance, AAMDM still outperformed in these
metrics. MVAE also exhibited faster performance than
AAMDM due to its single-step feedforward process.

In comparison between AMDM5 and AAMDM, both
methods used 5 diffusion steps which led to similar FPS
scores (173 vs 192). However, the diffusion steps in
AMDM5 were modeled using a Gaussian distribution,
which is typically effective when the total number of de-
noising steps is in the order of hundreds. As AMDM5
utilized only five steps, this assumption did not hold and
it led to compromised motion quality. On the other hand,
AAMDM leveraged DD-GANs to model multimodal transi-
tions, which reduced the number of steps required for gen-
erating a new frame without sacrificing motion quality.

AMDM200 with more diffusion steps is better aligned
with the Gaussian distribution assumption, which is con-
nected to highly improved motion quality metrics. How-
ever, this increase in diffusion steps comes at the cost of ef-
ficiency. As the number of steps rises, the generation speed
decreases. This trade-off highlights the balance between
motion quality and generative efficiency, with AMDM200
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Figure 4. Visualization of the learned transition results of an artificial Squ-9-Gaussian experiment in 2D. We show that AAMDM outper-
forms baseline methods in learning the many-to-many distribution mapping in sequential scenarios.

favoring the former at the expense of the latter.

4.1.2 Evaluation of Interactive Synthesis

We evaluated the performance of these methods in an inter-
active motion synthesis scenario. The experiment involved
interactively controlling the character’s moving direction
while allowing the arms to move freely. Our evaluation em-
ployed the following metrics, with ’-UC’ denoting ’Under
Control’:
• Tracking Error (TE-UC): The TE-UC metric assesses

the method’s ability to follow user commands x̄. It is de-
fined as the discrepancy between the user’s command and
the generated motion |x̄− x̂|. A lower TE-UC value sig-
nifies better alignment with user input, reflecting superior
performance.

• Frechet Inception Distance (FID-UC): The FID-UC is
used to measure the similarity between the motion dataset
and the generated trajectories. A lower FID-UC indicates
a higher quality of the generated motion.

• Footskating Frame Ratio (FFR-UC): This metric eval-
uates the realism of the motion when the character is un-
der user control. It assesses aspects such as naturalness
and adherence to physical constraints. Lower FFR-UC
scores suggest more physically plausible and realistic mo-
tion generation.
In user control scenarios, our results demonstrate that

the AAMDM framework consistently outperformed base-
line methods across nearly all metrics evaluated. Com-
pared with Learned Motion Matching (LMM), AAMDM ad-
dresses several key issues inherent in the LMM’s approach.
LMM employs a projector network trained with an MSE
loss to interpret user commands, which leads to two pri-
mary issues. Firstly, multiple candidate poses could poten-
tially match the user command, but LMM’s projector net-
work struggles to handle multi-modal transitions. Secondly,
the projector network often ignores the character’s current

pose, necessitating blending techniques to ensure smooth
transitions. MVAE faces challenges in training to capture
all the possible transitions, resulting in a quality of motion
that does not match that of AAMDM. Similarly, AMDM5’s
reduces the number of diffusion steps, which breaks the
Gaussian distribution assumption and consequently down-
grades the motion quality. Although AMDM200 provides
higher-quality generation due to more diffusion steps, its
low speed (4.72 FPS) is not suitable for any interactive ap-
plications.

4.2. Additional Studies on Artificial Dataset

In addition to the previous experiment, we conducted an ad-
ditional study to analyze the effectiveness of various meth-
ods on a many-to-many transition dataset. For this purpose,
we created a 2D “Squ-9” dataset characterized by its multi-
modal dynamics where any given point in three by three
Gaussian distributions can transit to any other Gaussian dis-
tributions in the next time step. By learning this dataset, we
evaluated the effectiveness of each method to capture this
many-to-many dynamics. The comparative results are visu-
ally depicted in Figure 4.

In our results, our AAMDM captured all the possible
modes while preserving sample quality. In contrast, LMM
struggled to represent the dataset’s many-to-many vector
transitions, resulting in a singular vector cluster at each step.
MVAE showed an improvement in mode coverage, yet it
cannot illustrate all possible modes. Among other diffusion
model-based approaches, AMDM5 exhibited better transi-
tions but their qualities are still worse than AAMDM. Al-
though AMDM200 produced results of comparable quality
to AAMDM, it required 40 times more inference time.

4.3. Ablation Studies

We provided additional insights of AAMDM by conducting
three ablation studies summarized in Table 2.
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TADM TGAN DIV → FID ↓ FPS ↑
Dataset 14.533 0.000 N/A

0 3 N/A N/A 311
1 3 10.612 16.332 215
2∗ 3∗ 11.574 14.051 173
10 3 12.041 11.779 47
2 2 12.415 28.476 211
2∗ 3∗ 11.574 14.051 173
2 4 11.313 14.534 135
2 10 9.775 16.312 58
wo/ Emb 56.341 128.412 146

Table 2. Ablation study results. ∗The default parameters.

Polishing Steps In our study, we investigated the im-
pact of the number of polishing steps (TADM ) on the
generation process. Specifically, we denote TADM = 0 as
the scenario where no polishing module is used, meaning
the output from the generation module is directly utilized
for future frame generation. In our experiments, settings
with TADM > 0 exhibited significant performance en-
hancements compared to the TADM = 0 scenario as when
TADM = 0, the framework was unable to generate reliable
long-horizon trajectory due to the diverges of the charac-
ter’s pose. This suggests that relying solely on denoising
diffusion GANs may not yield high-quality outputs for
long-horizon generation. In contrast, additional polishing
steps markedly improved the output quality, making it
more suitable for long-horizon predictions. Furthermore,
results indicate a positive correlation between the number
of polishing steps TADM and the output quality. However,
it is important to note that increasing TADM also leads to
longer sampling times.

Generation Steps In our second study, we examined
the effects of the number of generation steps. Theoretically,
increasing TGAN should reduce the amount of noise that
needs to be removed at each denoising step, potentially
simplifying the training process. However, our results show
that a specific value of TGAN , TGAN = 3 and TGAN = 4,
yielded the highest overall motion quality, yet TGAN = 3
was more efficient. Although TGAN = 2 achieved the
best performance in the DIV metric, we observed a few
cases of divergence in the motion, which resulted in worse
performance in FID compared to TGAN = 3. When
TGAN = 10, the learning task should be easier since the
distance between each diffusion step is smaller. However,
our results show that the performance was the worst. We
hypothesize that this is because we utilized a simple MLP
network; thus, it may not be adequately equipped to handle

larger values of TGAN for effectively training the denoising
diffusion GANs.

Importance of Embedded Transition Space In this
analysis, we explored the advantages of learning transitions
in an embedded space XZ as opposed to the full pose
space Y. Our results suggest that utilizing the full pose
space yields inferior outcomes compared to an embedded
space. We attribute this finding to two primary factors.
Firstly, learning in a higher-dimensional space, like the
full pose space, is inherently more challenging than in a
lower-dimensional space, particularly under multimodal
distribution conditions. Secondly, as discussed in the
previous section, AAMDM does not employ a complex
neural network architecture or specialized techniques
for constructing the latent space in Denoising Diffusion
GANs. MLP networks used in our framework may not be
sufficiently robust to capture transitions in larger spaces
effectively. This limitation further supports the advantage
of using an embedded space for learning transitions.

5. Discussion and future work

We have introduced a novel framework for motion synthe-
sis: Accelerated Auto-regressive Motion Diffusion Model
(AAMDM). AAMDM is designed to efficiently generate
high-quality animation frames for interactive user engage-
ment. This is achieved by several technical components: the
use of a low-dimensional embedded space for compact rep-
resentation, Denoising Diffusion GANs for fast approxima-
tions, and the Diffusion Model for robust and accurate long-
horizon synthesis. Our benchmarking of AAMDM against
various baseline methods has demonstrated its superior ca-
pabilities in motion synthesis. We have also investigated the
nuances of different autoregressive motion synthesis meth-
ods, providing valuable insights into this domain. Addition-
ally, our ablation studies have validated the design choices
made for AAMDM and identified the influence of various
hyperparameters on the overall system performance.

In the future, we plan to explore several research direc-
tions. One notable challenge is the trade-off between the
motion quality and the computational cost. Future work
could explore advanced techniques such as parallel com-
puting and the use of temporal information to accelerate
the generation process. In addition, the model performance
can be further improved by introducing more sophisticated
methods to structure the latent space of the denoising dif-
fusion GANs, such as a structured matrix-Fisher distribu-
tion [49]. Finally, it will be interesting to improve the
controllability of the framework by introducing a learning-
based control mechanism rather than relying on gradient-
based sampling guidance.
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