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Abstract

In the evolving landscape of computer vision, founda-
tion models have emerged as pivotal tools, exhibiting ex-
ceptional adaptability to a myriad of tasks. Among these,
the Segment Anything Model (SAM) by Meta AI has distin-
guished itself in image segmentation. However, SAM, like
its counterparts, encounters limitations in specific niche ap-
plications, prompting a quest for enhancement strategies
that do not compromise its inherent capabilities. This pa-
per introduces ASAM, a novel methodology that amplifies
SAM’s performance through adversarial tuning. We har-
ness the potential of natural adversarial examples, inspired
by their successful implementation in natural language pro-
cessing. By utilizing a stable diffusion model, we augment
a subset (1%) of the SA-1B dataset, generating adversar-
ial instances that are more representative of natural varia-
tions rather than conventional imperceptible perturbations.
Our approach maintains the photorealism of adversarial ex-
amples and ensures alignment with original mask annota-
tions, thereby preserving the integrity of the segmentation
task. The fine-tuned ASAM demonstrates significant im-
provements across a diverse range of segmentation tasks
without necessitating additional data or architectural mod-
ifications. The results of our extensive evaluations confirm
that ASAM establishes new benchmarks in segmentation
tasks, thereby contributing to the advancement of founda-
tional models in computer vision. Our project page is in
https://asam2024.github.io/.

1. Introduction

The concept of foundation models has been pivotal in ad-
vancing the fields of natural language processing (NLP)
and, more recently, computer vision. Originating in NLP
with influential models such as BERT [13], the GPT se-
ries [44], LLaMA [62] and PaLM [10], these models have
showcased remarkable zero-shot generalization capabilities
to unseen tasks. This success has spurred the development
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Figure 1. Performance comparison between ASAM and SAM on
diverse segmentation datasets across different downstream tasks.

of similar paradigm-shifting models in computer vision.
These visual foundation models, such as DINOv2 [45],
CLIP [51], BLIP [34], SAM [31] and Stable Diffusion [54],
demonstrate remarkable zero-shot capabilities and broad
generalization across various tasks.

Among them, Segment Anything Model (SAM) stands
out as a pioneering visual foundation model specializing in
image segmentation. Trained on over 1 billion masks from
a massive visual corpus, SAM has revolutionized the field
with its ability to segment a diverse range of objects and
structures across various scenarios. Despite its impressive
performance, SAM, like any foundational model, has areas
where it can be further enhanced [25, 26, 61].

An important research direction is identifying SAM’s
limitations on certain downstream tasks and developing
techniques to boost its performance. Many techniques have
explored like fine-tuning [3, 37, 47, 82] and adapter mod-
ules [6, 48, 69] to specialize the SAM for specific down-
stream tasks. While fine-tuning unlocks the potential of
SAM for a specific task, it compromises the model’s inher-
ent generalization capabilities [30]. Alternative approaches
preserve SAM’s original parameters, adding adaptation lay-
ers or post-processing modules [30, 33]. Those methods,
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though effective, require additional parameters and anno-
tated training data, limiting its scalability and efficiency.

The above challenges bring us to the core motivation of
this work: How can we further boost the generalization abil-
ity of SAM as a foundational vision model without relying
on substantial extra data, altering its base architecture, or
compromising its zero-shot capabilities? So that we can un-
lock SAM’s potential while keeping its broad applicability
across vision tasks. Existing solutions, while effective in
specific contexts, do not address the fundamental challenge
of enhancing SAM’s inherent performance across a diverse
range of scenarios.

In response to this challenge, we turn to the realm of
NLP for inspiration, particularly its pioneering advance-
ments in foundational model research. The unique suc-
cesses [88] observed in adversarial training (AT) within
NLP offer a new vantage point. In contrast to the visual
domain, where standard adversarial training often necessi-
tates a compromise between robustness and model perfor-
mance [66], AT in NLP not only strengthens model robust-
ness but also concurrently bolsters generalization and accu-
racy [88]. This divergence is believed to be attributed to
the closer resemblance of adversarial examples in natural
language to real-world textual scenarios, such as common
human spelling errors. We surmise that the triumph of ad-
versarial training in NLP is derived from the “realness” and
“naturalness” of its generated adversarial examples. This
insight leads us to explore the possibility of adapting ad-
versarial training techniques, which have been successful in
NLP, to visual foundation models like SAM. This approach
aims to apply cross-disciplinary insights innovatively to im-
prove specific tasks in computer vision.

Applying the above concept to SAM, our approach aims
to utilize “natural” adversarial examples akin to those found
in NLP to elevate visual foundation models. Inspired by
the effective tuning methodologies in NLP [46, 64, 65],
we propose fine-tuning the SAM using these more “natu-
ral” adversarial examples, thereby circumventing the high
costs often associated with conventional adversarial train-
ing. Traditional methods for generating visual adversarial
examples typically adhere to lp norm constraints, resulting
in perturbations that are not entirely natural and exhibit a
domain shift from real-world noise. This leads to a disparity
between such adversarial examples and the genuinely chal-
lenging examples encountered in real-world scenarios [89].

To generate adversarial examples that are both natural
and photorealistic for tuning SAM, we are inspired by re-
cent adversarial attack [7] and hypothesize that natural im-
ages can be projected onto a low-dimensional manifold via
a generative model [54]. This manifold, trained on natural
images, ensures the photorealism and richness of content.
By mapping an image onto this manifold and then shift-
ing it along an adversarial direction within the manifold, we

can produce adversarial examples that are both natural and
photorealistic. To maintain the consistency of object shapes
with the original mask labels during the back-mapping pro-
cess, we incorporate an additional mask prompt branch in
the generative model. This integration ensures that the ad-
versarial examples are not only realistically aligned but also
accurately correspond to their original mask labels. Ulti-
mately, by fine-tuning a select subset of parameters in a
large vision model with these naturally realistic and accu-
rately aligned adversarial examples, we achieve significant
enhancements in performance. In conclusion, our work
makes several key contributions:

• Drawing inspiration from the successes in NLP, we in-
troduce a novel framework, termed adversarial tuning,
aimed at enhancing the generalization abilities of visual
foundation models like SAM. This approach represents
an innovative application of cross-disciplinary insights to
address specific challenges in computer vision tasks.

• By projecting natural images onto a low-dimensional
manifold using a generative model, we generate adver-
sarial examples that are both natural and photorealistic.
We further enhance this approach by integrating a mask
prompt branch into the generative model, ensuring that
the adversarial examples maintain consistency with the
original mask labels in terms of object shape.

• Leveraging our approach, we fine-tune SAM with “nat-
ural” adversarial examples, derived from just 1% of the
SA-1B dataset, resulting in an enhanced version termed
ASAM. To validate ASAM’s effectiveness, we conduct
extensive quantitative and qualitative analyses. As shown
in Fig. 1, ASAM has achieved significant improvements
in SAM’s performance across a wide range of segmenta-
tion datasets and various downstream tasks.

2. Related Works

2.1. Segment Anything Model (SAM)

Meta Research team has released the “Segment Anything”
project [31]. This project develops the SAM and an exten-
sive dataset, SA-1B, featuring over 1 billion masks on 11
million licensed and privacy-respecting images. Designed
for prompt-based segmentation, SAM is capable of zero-
shot adaptation to new image distributions and tasks. As a
pioneering visual foundation model, its zero-shot segmen-
tation abilities and prompt-based approach have facilitated
rapid application in diverse areas, going beyond image seg-
mentation to tasks like 3D understanding and video process-
ing [5, 22, 60, 71, 72, 75, 76, 86].

While SAM’s capability is impressive, its effectiveness
in real-world scenarios, such as medical images and other
challenging segmentation conditions, has been a topic of
investigation. Difficulties arise when segmenting minus-
cule and slender objects [30], objects with obscure bound-
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aries [25, 28], camouflaged objects [25, 26, 61], and trans-
parent objects [20]. Just like any foundational model, SAM
has areas where it can be further enhanced.

To address these challenges, researchers have introduced
various methods. For instance, the work [37] proposes a
straightforward fine-tuning approach to tailor the SAM for
general medical image segmentation. Rigorous experimen-
tation on both 3D and 2D segmentation tasks illustrates that
MedSAM surpasses the default SAM. SAM-Adapter [6, 69]
leverages domain specific information or visual prompts
to enhance the segmentation network through the use of
simple yet effective adapters. By combining task-specific
knowledge with general knowledge learned by the large
model, SAM-Adapter can notably improve the performance
of SAM in challenging tasks. While fine-tuning unlocks
the potential of SAM for a specific task, it compromises
the model’s inherent generalization capabilities [30]. Al-
ternative approaches preserve SAM’s original parameters,
adding adaptation layers or post-processing modules like
in SAM-HQ [30] and Semantic-SAM [33]. Those meth-
ods, though effective, require additional parameters and
annotated training data, limiting its scalability and effi-
ciency. Additionally, instead of direct modifying SAM’s
parameters, refining the input prompt [85] or output of
SAM [16, 67] are also viable strategies.

Our approach diverges from these existing methods,
aiming to further enhance SAM’s generalization capabili-
ties as a foundational vision model. We seek to achieve this
without substantial reliance on extra data, alterations to its
architecture, or compromising its zero-shot capabilities.

2.2. Adversarial Examples & Adversarial Training

Adversarial examples, in computer vision, are deliberately
modified inputs designed to cause misclassification by a
model [18, 59]. These perturbations, initially defined as im-
perceptible variations in image pixels within small l1, l2,
and l∞ norms (uniformly referred as lp), form the basis for
understanding adversarial vulnerabilities in visual models.
AT, proposed as an effective defense mechanism, aims to
enhance robustness by training models with these adversar-
ial examples [38]. However, it has been observed that AT
often leads to a trade-off between adversarial robustness and
clean accuracy, presenting a challenge to model generaliza-
tion [63, 79]. Despite great efforts [24, 50, 52] have been
made for mitigating this trade-off, the bad generalization of
AT still cannot be fully remedied till now.

In contrast, the NLP realm exhibits a different trend: AT
has been found to enhance both the generalization and ro-
bustness of language models [9, 40, 41]. Recent studies like
the work [88] demonstrate that AT can even boost the per-
formance of transformer-based language foundational mod-
els. The work [39] wants to directly copy the success of
AT in NLP to enhance the visual features, suggesting dis-

crete representation as a key factor. Although they gener-
ate adversarial examples with more imperceptible perturba-
tions than traditional lp perturbations, the perturbations are
still not entirely natural and exhibit domain shift from real-
world noise. In this paper, we surmise that the triumph of
AT in NLP is derived from the “realness” and “naturalness”
of its adversarial examples.

Notably, there have been attempts to use AT for improv-
ing clean accuracy in vision tasks. The work [73] employs
split batch norms to separate clean and adversarial example
statistics, enhancing adversarial feature learning for gen-
eralization. However, this operation is not applicable to
transformer-based modern foundation models [13, 31, 44].
Another related work to ours is [24], which although sim-
ilar in name, focuses on using fine-tuning to replace ad-
versarial training to obtain adversarial robustness at low
cost. Inspired by works [7, 54] and NLP, we introduce a
novel framework ASAM, fine-tuning SAM with “natural”
adversarial examples. This approach paves a new path for
enhancing visual foundation models, leveraging the “real-
ness” and “naturalness” of adversarial examples to augment
SAM’s generalization capabilities without substantial addi-
tional data or major architectural changes.

3. Method

3.1. Overview

We aim to generate “natural” adversarial images from the
SA-1B [31] dataset, and subsequently, employ these gen-
erated images along with corresponding SA-1B masks to
fine-tune SAM. Note that, during fine-tuning the SAM, we
do not modify the SAM structure and incorporate any extra
annotated data. Therefore, our proposed ASAM framework
achieves the goal of enhancing the generalizability of SAM
solely based on its inherent data and structural characteris-
tics. Our proposed ASAM framework contains three steps
which are described in detail in the following.
Adversarial Latent Optimization. Existing methods [27,
53, 80, 81, 88] for generating adversarial images typically
adhere to lp norm constraints, resulting in perturbations that
are not entirely natural and exhibit a domain shift from real-
world noise. In this paper, to generate adversarial examples
that are both natural and photorealistic for tuning SAM,
we hypothesize that natural images can be first projected
onto a low-dimensional manifold via a generative model,
such as Stable Diffusion [54]. Subsequently, by optimizing
the low-dimensional manifold, we are able to search for a
suitable adversarial latent representation, allowing for a re-
projection into the natural image domain effectively. We
illustrate the process of optimizing adversarial latent repre-
sentation in Sec. 3.2.
Controllable Adversarial Samples Generation. The
above optimization process adds slight perturbations to the
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Figure 2. The architecture of our proposed ASAM framework. In the first step, we project the input image into the latent space and then
optimize the latent space with adversarial technologies. In the second step, we use the optimized latent to generate adversarial samples
controlled by masks. Finally, we fine-tune the SAM with the generated “natural” adversarial samples.

latent representation. Therefore, the naive re-projection
may result in the generated adversarial images not aligning
properly with the corresponding SA-1B masks. To address
this issue, after the optimization is completed, we further
design the control branch, which leverages the ControlNet
[83] to guide the re-projection process. More details about
this process are described in Sec. 3.3.

3.2. Adversarial Latent Optimization

Herein, we demonstrate the methodology for searching the
adversarial latent representation of SA-1B images within
the low-dimensional manifold space of the generative
model. Taking into account the balance between compu-
tational expense and images quality, we opt for Stable Dif-
fusion as our generative model to produce low-dimensional
latent representations. Subsequently, we optimize the gen-
erated latent representation which enables the creation of
diverse adversarial images.

3.2.1 Projecting Image to Diffusion Latent

The diffusion inversion is commonly used for projecting the
image to low-dimensional latent space. In the case of the
diffusion model, we employ the DDIM inversion technique
[57] which utilizes the conditional embedding C = ψ(P )
derived from prompts P using CLIP text encoder, predi-
cated on the premise that the ordinary differential equation

procedure is reversible within a finite number of steps:

xt+1 =

√
αt+1

αt
xt + (

√
1

αt+1
− 1−

√
1

αt − 1
) · ϵθ(xt, t, C).

(1)

Given an image x0, we use a schedule {β1, . . . , βT } ∈
(0, 1), with αt =

∏t
i=1(1 − βi) following [57]. This

approach effectively operates in the opposite direction to
the denoising process (i.e., x0 → xT rather than xT →
x0), projecting the image x0 into the latent space at xT .
The text description of each image is generated through
BLIPv2 [35].

Text-to-image synthesis frequently emphasizes the role
of the prompt, culminating in the introduction of a
classifier-free guidance approach [23]. This method gen-
erates predictions with no condition and merges them with
predictions that are conditioned on specific inputs. Let ω
represents the guidance scale factor and ∅ = ψ(“”) denotes
the embedding for an empty text prompt, then the formula
for classifier-free guidance is articulated as follows:

ϵ̃θ(xt, t, C, ∅) = ω · ϵθ(xt, t, C) + (1− ω) · ϵθ(xt, t, ∅).
(2)

ω = 7.5 is adopted as the standard setting for Stable Dif-
fusion. During the reverse process of DDIM sampling, the
model ϵθ forecasts the noise, which might introduce minor
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inaccuracies at each step. Given its substantial guidance
scale parameter ω, the classifier-free guidance method is
prone to magnifying these small errors, resulting in a build-
up of inaccuracies. Thus, utilizing the reverse DDIM sam-
pling process alongside classifier-free guidance not only
disrupts the Gaussian noise distribution but also generates
visual anomalies that compromise realism [42].

To mitigate the accumulation of errors, our approach is
inspired by the strategy outlined in [42], where we opti-
mize a distinct null text embedding ∅t for each timestep
t. Initially, executing the DDIM inverse sampling process
with ω = 1 yields a series of successive latent representa-
tions {x∗0, ..., x∗T }, starting with x∗0 = x0. Subsequently,
we embark on an optimization process for the timesteps
t = {T, ..., 1}, employing ω = 7.5 and setting x̄T = x∗T :

min
∅t

||x∗t−1 − xt−1(x̄t, t, C, ∅t)||22. (3)

For ease of understanding, let xt−1(x̄t, t, C, ∅t) denote the
DDIM sampling step, where x̄t serves as the input latent, ∅t
as the null text embedding, and C is the text embedding.
Upon finishing each step, x̄t−1 is updated in accordance
with the equation:

x̄t−1 = xt−1(x̄t, t, C, ∅t). (4)

Finally, we can achieve the latent representation x̄T =
x∗T with the optimized null text embedding {∅t}T1 generated
by the diffusion model. We exploit this latent in the low-
dimensional manifold to generate adversarial images.

3.2.2 Adversarial Optimization of Latent

In this section, we undertake an optimization of the latent
representation to enhance the generation of natural adver-
sarial images. Within the latent space established by Sec.
3.2.1, the null text embedding ∅t ensures the quality of the
reconstructed image, whereas the text embedding C retains
the semantic content of the image. Consequently, optimiz-
ing both embeddings simultaneously may not lead to opti-
mal outcomes. Considering that the noise x̄T significantly
encapsulates the image’s details in the latent space, we opt
to focus our optimization efforts on it.

Building upon the latent representation generated in Sec.
3.2.1, we characterize the denoising procedure of the diffu-
sion model as Ω(·), implemented via the DDIM sampling
step. This process encompasses T iterations:

Ω(xt, T, C, {∅t}T1 ) = (5)
x0(x1(..., (xT , T, C, ∅T ), ..., 1, C, ∅1), 0, C, ∅0).

Here, xt denotes the latent variable at iteration t, with T be-
ing the total number of iterations, C standing for the addi-
tional conditioning variables, and {∅t}T1 signifying the se-
quence of null text embeddings applied at each iteration.

The process concludes with the reconstructed image, repre-
sented by x̄0 = Ω(x̄T , T, C, {∅t}T1 ). The operations of the
Variational Autoencoder (VAE) are not elaborated upon in
this manuscript, given its differentiable nature. We frame
our adversarial objective optimization as follows:

max
δ

L(Sθ(x̄0), y), s.t. ||δ||∞ ≤ κ, (6)

In this equation, δ signifies the adversarial perturbation
within the latent space, y represents the mask label obtained
from the SA-1B dataset, and Sθ denotes the SAM with a
fixed parameter set θ. The loss function, L, is an amalga-
mation of mean square error, binary cross-entropy loss, and
dice loss, articulated as L = Lmse + Lbce + Ldice. To pre-
serve the consistency between the original image x0 and its
reconstructed counterpart x̄0, we posit that the perturbation
δ exerts a minimal impact on this consistency, provided its
magnitude is exceedingly slight, namely ||δ||∞ ≤ κ. The
principal challenge is to pinpoint the optimal δ that escalates
the segmentation loss. Echoing the approach of traditional
adversarial strategies, we utilize gradient-based methods to
approximate δ with the formula: δ ≈ η∇xT

L(Sθ(x̄0), y),
where η is the scale of perturbations aligned with the gra-
dient’s direction. By applying the chain rule to unfold
∇x̄T

L(Sθ(x̄0), y), we delineate each derivative component:

∇x̄T
L(Sθ(x̄T ), y) =

∂L
∂x̄0

· ∂x̄0
∂x̄1

· ∂x̄1
∂x̄2

· · · ∂x̄T−1

∂x̄T
. (7)

3.3. Controllable Adversarial Samples Generation

After obtaining an adversarial latent representation, a re-
verse diffusion process can be employed to generate the fi-
nal adversarial examples. However, the optimization pro-
cess in Stable Diffusion space would introduce minor dis-
turbances to the adversarial latent variables, which would
result in misalignment between the generated image’s shape
and its corresponding label. Intuitively, this issue could po-
tentially be addressed by using more precise prompts in the
diffusion model. Nonetheless, the capability of text prompts
to control the spatial shape of images is limited, as it’s chal-
lenging to describe the exact shape of objects through text
alone. To overcome this limitation, we additionally train a
mask-to-image ControlNet inserted into the reverse process,
which offers enhanced spatial shaping capabilities.

ControlNet adjusts the task-specific conditions within
the denoising U-Net architecture, aiming to steer the overall
behavior of the diffusion model more precisely. The core ar-
chitecture of the Stable Diffusion model is a U-Net, consist-
ing of an encoder, a middle block, and a decoder that utilizes
skip connections. Both the encoder and decoder feature 12
blocks each, culminating in a total of 25 blocks when in-
cluding the middle block. ControlNet is employed to gen-
erate a trainable duplicate of the 12 encoder blocks and the
single middle block from the Stable Diffusion model. These
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Table 1. Zero-shot segmentation result mIOU comparison on 14 datasets using box prompt.

Methods DOORS[49] LVIS[19] ZeroWaste-f[1] NDISPark[11] Egohos[84] Plittersdorf[21] BBC038V1[2] Average

SAM 86.5 80.7 43.0 81.8 81.1 78.7 84.8 76.7
SAM + DAT Tuning 65.0 48.1 35.2 53.2 45.7 31.4 54.6 47.6
SAM + PGD Tuning 68.3 52.5 38.9 60.0 51.8 40.3 65.8 53.9
SAM + DatasetDM 86.0 62.2 29.2 69.5 53.5 70.3 84.2 65.0

ASAM 87.1 81.2 46.9 82.2 82.0 79.0 85.0 77.6

Methods Ade20k[87] VOC2012[15] Cityscapes[12] COCO2017[36] HRSOD-TE[78] CAMO[32] Big[8] Average

SAM 74.7 79.1 54.1 77.5 88.9 70.7 85.5 75.8
SAM + DAT Tuning 54.6 53.3 31.2 53.7 55.0 52.5 57.6 51.1
SAM + PGD Tuning 58.7 60.3 33.5 58.8 63.4 55.1 63.9 56.2
SAM + DatasetDM 57.4 43.7 44.9 54.1 45.4 26.0 36.4 44.0

ASAM 75.5 80.6 56.0 79.4 91.3 73.0 87.0 77.5

12 blocks are distributed across four different resolutions
(64 × 64, 32 × 32, 16 × 16, 8 × 8), with each resolution
comprising three blocks. The generated outputs from these
blocks are then integrated into the 12 skip connections and
the middle block of the Diffusion U-Net, enhancing its ca-
pability to manipulate image characteristics with greater fi-
nesse. The operation of ControlNet is denoted as Z(·; ·),
and it allows for a reconfiguration of the denoising U-Net:

n = Dec(Enc(xt, T, C, ∅t), Z(xt, T,M, C, ∅t)), (8)

where M is the mask prompt. Based on the denoising U-
Net, we represent the adversarial examples reconstruction:

Ω(x̄t, T,M, C, {∅t}T1 ) = (9)
x0(x1(..., (x̄T , T,M, C, ∅T ), ..., 1,M, C, ∅1), 0,M, C, ∅0).

3.4. Fine-tuning SAM with Adversarial Samples

Different from previous methods [6, 30, 33, 69] which alter
the structure of SAM, our aim is to enhance the overall ca-
pabilities of the SAM without any structural modifications.
The selection of appropriate parameters for fine-tuning ne-
cessitates careful consideration, taking into account factors
such as efficiency and the risk of over-fitting. In this re-
gard, we specifically choose to fine-tune the output tokens
and mask token of SAM, which accounts for only approx-
imately 0.001% of the total parameters in the SAM. Addi-
tionally, to ensure fast convergence on adversarial samples
while maintaining generalization, we adopt the learning rate
schedule strategy “slow start fast decay”, as described in
the work [24]. Furthermore, our proposed ASAM indicates
that employing only 1% samples from the SA-1B dataset
already yields significant performance improvements.

4. Experiment
4.1. Experimental Setting

Implementation Details. We use stable-diffusion-v1-5
[54] pre-trained on the LAION5B [55] dataset. The de-
scription of each training image is automatically generated

using BLIPv2 [35]. We use ControlNet v1.0 to control the
generation process. We use SAM with vit-base backbone.
The training dataset used in this paper is sa 000000 subset
from SA-1B dataset. For the adversarial example genera-
tion process, we set DDIM steps T to 50, the number of
optimization steps of null text embedding to 10, the num-
ber of attacks on adversarial samples to 10, and the attacks
size κ to 0.02. We fine-tune the SAM with 10 epochs using
Adam optimizer. The learning rate first increases linearly
from 0.01 to 0.05, then decay exponentially. We adopt 8
NVIDIA 48G A6000 GPUs for training.
Evaluation Datasets. Following SAM [31], we evaluate
ASAM on datasets and tasks that are not seen during train-
ing. The evaluation datasets may include novel image dis-
tributions, such as underwater or ego-centric images that, to
our knowledge, do not appear in SA-1B. We use a newly
compiled suite of 14 datasets with diverse image distribu-
tions under mIoU evaluation, as shown in Table. 1.

4.2. Quantitative and Qualitative Comparison

To thoroughly evaluate the effectiveness of our proposed
ASAM, we compare it with four different approaches: the
original SAM, SAM fine-tuned with PGD Tuning [53],
SAM fine-tuned with DAT Tuning [39], and SAM fine-
tuned with new data generated through DatasetDM [70].
As shown in Table. 1, ASAM clearly outperforms the
other tuning methods. ASAM, compared to the original
SAM, achieves performance improvements across all 14
test datasets, with an average performance increase of 1.3
mIoU. This consistent enhancement across a diverse range
of datasets underscores the robustness and effectiveness of
our approach, demonstrating its capacity to significantly
boost the model’s capabilities in various contexts. A key
reason for this superiority is that SAM has already been
trained on a large-scale dataset. Therefore, simply adding
noise perturbations to some samples or generating new sam-
ples for tuning SAM does not introduce a significantly dif-
ferent data distribution to SAM. In fact, re-tuning might dis-
rupt the originally well-trained parameters of SAM. Differ-
ent from existing methods like PGD and DAT, our adversar-
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Figure 3. Qualitative comparison of the proposed ASAM and other methods. Yellow boxes represent the box prompts.

Table 2. Ablation studies of main components in ASAM.

Latent
Projection

Latent
Optimization

Controllable
Generation mIoU

✓ 59.1
✓ ✓ 54.3
✓ ✓ 69.3
✓ ✓ ✓ 77.6

ial samples are reconstructed from a well-optimized, low-
dimensional manifold guided by the gradients of SAM. This
approach allows us to more effectively address the short-
comings in SAM’s original training. It provides a refined
input that is better aligned with SAM’s learning paradigm,
enabling it to generalize more effectively to new or chal-
lenging scenarios. From a visual comparison in Fig. 3, it is
evident that our proposed ASAM enhances the performance
on samples where the original SAM fell short.

4.3. Ablation Studies

Herein, we conduct ablation studies on the 14 datasets men-
tioned above to indicate the effectiveness of ASAM.
Main components. As shown in Table. 2, if we solely
rely on Latent Projection (Sec. 3.2.1) without employing
Latent Optimization (Sec. 3.2.2), performance diminishes
as it lacks the guidance from SAM’s gradient. This ap-
proach misses out on the crucial step of refining the latent
representation based on the model’s feedback, which is es-
sential for aligning the projection with the model’s learned
patterns and intricacies. Furthermore, if we use only La-
tent Projection followed by reconstruction with ControlNet
but still omit Latent Optimization, performance again falls
short. This combination, while slightly more sophisticated,
still fails to leverage the model-specific insights that Latent
Optimization provides, thus not fully capitalizing on the

Table 3. Image quality assessment.

Method NIMA-AVA↑ HyperIQA ↑ MUSIQ -AVA ↑ TReS ↑
SA-1B 5.18 0.72 4.07 78.46

Inversion 5.19 0.72 4.11 78.59

PGD 5.04 0.69 3.85 76.17
DAT 4.76 0.63 3.83 66.13
Ours 5.20 0.71 4.12 76.73

potential improvements in the projection process. Finally,
when Latent Optimization is combined with ControlNet, we
achieve the best segmentation result.
Adversarial Samples Visualization. To validate the util-
ity of the adversarial samples produced in this study for
the fine-tuning of SAM, we adopt a quantitative approach
to image quality assessment, in line with previous re-
search [56, 77]. Specifically, we employ non-reference per-
ceptual image quality metrics for this purpose. The met-
rics selected include NIMA [14], HyperIQA [58], MUSIQ
[29], and TReS [17]. Both NIMA-AVA and MUSIQ-AVA
have been trained on the AVA dataset [43], utilizing the Py-
IQA framework [4]. As depicted in Table. 3, the inversion
images produced in our work maintain comparable image
quality to their clean counterparts. Notably, ASAM out-
performs other methods in terms of image quality assess-
ment. We further illustrate this with adversarial samples
showcased in Fig. 4. It’s important to highlight that the per-
turbations introduced via ASAM are designed to be natural,
in contrast to the more artificial alterations typical of other
techniques, such as DAT or PGD tuning methods. This ap-
proach to generating natural perturbations aims to create au-
thentically challenging examples akin to those encountered
in real-world scenarios, thereby potentially improving the
model’s generalization capabilities.
Framework Transferability. To further assess the transfer-
ability of our ASAM framework, we conduct experiments
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Figure 4. Adversarial examples comparison of ASAM and other attack methods.

Table 4. ESAM vs AESAM on vit-tiny backbone.

Method Ade20k VOC2012 Cityscapes COCO2017 LVIS

ESAM 75.0 81.2 48.7 81.7 81.0
AESAM 75.6 81.5 49.8 82.0 81.4

on another large vision foundation model, EfficientSAM
(ESAM) [74], which is the novel large vision foundation
model proposed by Meta in CVPR2024. The results in
Table. 4 corroborate the framework’s capability to signif-
icantly boost ESAM’s performance as well. These find-
ings validate our framework’s efficacy across different large
models, paving the way for boosting the capabilities of large
vision foundation models.

5. Discussion & Future work

Although we have demonstrated the effectiveness of our
method through extensive empirical experiments, it seems
that in addition to the direct inspiration from NLP research,
the theoretical underpinnings specific to our method remain
an area for further exploration. Fortunately, we have found
some existing theoretical work that, although not directly
applicable to our task, can provide some theoretical evi-
dence. Specifically, we find that our approach in ASAM
aligns with the theoretical framework proposed by Wong
and Kolter [68], which emphasizes bridging the gap be-
tween real-world perturbations and adversarial defenses.
This paper underlines the value of learning perturbation sets
directly from data, mirroring our method of using the Sta-
ble diffusion model to generate natural adversarial exam-
ples. Furthermore, the use of Conditional Variational Au-
toencoders (CVAEs) for perturbation learning in the paper
supports our methodology of manipulating latent space rep-
resentations. These theoretical insights reinforce the ef-
fectiveness of using generative models to create adversar-
ial examples that are not just challenging for the model

but also reflect real-world complexities and variations. Al-
though this paper cannot serve as direct theoretical proof for
our work, this theoretical backing complements our empiri-
cal findings, highlighting the effectiveness of using realistic
adversarial examples for enhancing SAM’s performance in
different real-world scenarios.

This connection, however, is just the beginning of a
broader theoretical exploration. Our future work aims to
delve deeper into the theoretical aspects of adversarial fine-
tuning, specifically in the context of foundation models. We
plan to investigate and formalize the principles underlying
the efficacy of our method, which could potentially lead to a
more generalized theory for enhancing model performance
with adversarial examples in the field of computer vision.
By establishing a solid theoretical framework, we can fur-
ther legitimize the use of such techniques and possibly un-
cover new avenues for improving foundation models’ capa-
bilities in diverse real-world applications.

6. Conclusion

ASAM, introduced in this study, represents a significant ad-
vancement in the SAM through the innovative use of adver-
sarial tuning. Employing a stable diffusion model to aug-
ment a segment of the SA-1B dataset, we generated natu-
ral, photorealistic adversarial images, leading to substantial
improvements in SAM’s segmentation capabilities across
various tasks. This method, inspired by adversarial train-
ing techniques in NLP, maintains the original architecture
and zero-shot strengths of SAM while enhancing its perfor-
mance. Our findings demonstrate that ASAM not only sets
new benchmarks in segmentation tasks but also contributes
to the broader application and understanding of adversarial
examples in the field of computer vision, offering a novel
and effective approach to boosting the capabilities of large
vision foundation models.

3706



References
[1] Dina Bashkirova, Mohamed Abdelfattah, Ziliang Zhu, James

Akl, Fadi M. Alladkani, Ping Hu, Vitaly Ablavsky, Berk
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