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Abstract

Convolutional neural networks benefit from translation

equivariance, achieving tremendous success. Equivariant

networks further extend this property to other transforma-

tion groups. However, most existing methods require dis-

cretization or sampling of groups, leading to increased

model sizes for larger groups, such as the affine group.

In this paper, we build affine equivariant networks based

on differential invariants from the viewpoint of symmetric

PDEs, without discretizing or sampling the group. To ad-

dress the division-by-zero issue arising from fractional dif-

ferential invariants of the affine group, we construct a new

kind of affine invariants by normalizing polynomial rela-

tive differential invariants to replace classical differential

invariants. For further flexibility, we design an equivariant

layer, which can be directly integrated into convolutional

networks of various architectures. Moreover, our frame-

work for the affine group is also applicable to its continu-

ous subgroups. We implement equivariant networks for the

scale group, the rotation-scale group, and the affine group.

Numerical experiments demonstrate the outstanding perfor-

mance of our framework across classification tasks involv-

ing transformations of these groups. Remarkably, under the

out-of-distribution setting, our model achieves a 3.37% im-

provement in accuracy over the main counterpart affConv

on the affNIST dataset.

1. Introduction
The success of convolutional neural networks (CNNs)

can be attributed to their utilization of translation symme-
try. This profound insight emphasizes the significance of
incorporating symmetry priors into the design of models.
With this insight, equivariant networks extend the exploita-
tion of more symmetries, leading to great improvement

*Corresponding author.

on performance and efficiency. Development of equivari-
ant networks begins with the approach of group convolu-
tions, which views feature maps as functions defined on a
group and conducts convolution operation over the group
[3, 64]. Further advancements in equivariant networks ef-
fectively achieve equivariance on the Euclidean group and
its subgroups [4, 11, 12, 62, 63, 68, 69]. However, ex-
isting methods have certain limitations when dealing with
more complicated groups. One representative group is the
affine group. While group convolutions typically require
discretization of continuous groups, it becomes impracti-
cal for the affine group due to its high dimension. Finzi
et al. [16] conduct group convolutions by sampling from
Haar measure on the group. But it relies on easy access
to Haar measure, which is unsuitable for the affine group.
MacDonald et al. [37] overcome the limitation by comput-
ing the integral on the Lie algebra, thereby obtaining the
affine equivariant model, affConv. Nevertheless, this ap-
proach still requires sampling from the group and encoun-
ters an exponential growth in memory requirements as the
number of convolutional layers increases. A recent work
[39] addresses the issue of exponential memory growth, but
it also relies on sampling based on specific measures. In
particular, sampling from the GL(n,R)-invariant measure
of positive definite matrices is infeasible, and the authors
adopt the log-normal distribution as a substitute, leading to
imperfect equivariance theoretically.

In another branch, some works adopt partial differential
operators (PDOs) to design equivariant networks [25, 27,
50]. They achieve equivariance on Euclidean groups by im-
posing constraints on the weights of PDOs. In fact, spe-
cific functional combinations of partial derivatives remain
constant under group actions — a concept known as “dif-
ferential invariants.” Under the guidance of the differential
invariant theory, Liu et al. [33, 34] design a shift and rota-
tionally equivariant system of learnable partial differential
equations (PDEs) with linear combinations of differential
invariants. The evolution process of PDEs can be used to
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Figure 1. InvarPDEs-Net consists of iterative processes of multiple symmetric PDEs constructed with invariants. We link them by linearly
combining the output of one PDE to match the dimension of the subsequent one, which can be implemented with 1⇥ 1 convolutions.

solve multiple vision problems. Subsequent works extend
the approach to more tasks and further develop the models
[14, 47, 49, 78]. However, these efforts also concentrate on
equivariance of Euclidean groups, and the full potential of
differential invariants in handling more general groups has
yet to be explored.

In this paper, we construct affine equivariant networks
based on differential invariants from the viewpoint of sym-
metric PDEs, without discretizing or sampling the group.
Inspired by learnable PDEs [33, 34], we regard image data
as smooth functions on the 2D plane and model the equiv-
ariant inference process of feature extraction as an evolving
system governed by symmetric PDEs. The differential in-
variant theory reveals that, given a group G, a PDE admits
G as a symmetry group if and only if the PDE consists of
fundamental differential invariants of the group G [42]. To
construct learnable symmetric PDEs, we can precompute
a complete set of fundamental differential invariants of the
group, and then employ multilayer perceptrons (MLPs) to
combine them into equations, leveraging the universal ap-
proximation capability of neural networks. However, dif-
ferential invariants of the affine group may take the form of
fractional polynomials, potentially leading to the division-
by-zero issue in practice. Nonetheless, we notice that affine
differential invariants can be represented by polynomial rel-
ative differential invariants. Building on this observation,
we propose a technique to construct a new kind of affine in-
variants by normalizing polynomial relative differential in-
variants with a special norm, thus replacing the fundamental
differential invariants. These new invariants not only avoid
the division-by-zero issue but also retain more information.
To discretize the symmetric PDE (not the affine group), we
approximate the temporal derivatives by forward difference
and approximate the spatial derivatives by Gaussian deriva-
tives, resulting in an iterative process that can be viewed as
a feed-forward deep equivariant network.

To equip our network with adaptability to varying chan-
nel numbers, similar to other modern networks, we sequen-
tially stack iterative processes of multiple learnable sym-

metric PDEs with different dimensions. We connect them
by linearly combining the output channels of one PDE to
match channel numbers of the subsequent PDE. Thus, the
output of one PDE can serve as the input of the subse-
quent one. This approach allows us to create an equivariant
network with varying channel numbers, which consists of
multiple symmetric PDEs constructed with invariants. We
name it InvarPDEs-Net (see Figure 1). For further flexibil-
ity, we extract a block from the iterative process and modify
it into an equivariant layer, offering the freedom to specify
input and output channel numbers. The layer can serve as
a drop-in replacement for convolutional networks of vari-
ous architectures. We name it InvarLayer. Our framework
for constructing equivariant networks of the affine group is
also applicable to its continuous subgroups. We implement
equivariant networks for the scale group, the rotation-scale
group and the affine group. Empirical experiments on clas-
sification tasks involving transformations of these groups
demonstrate the outstanding performance of our method.

We summarize our main contributions as follows:
• From the viewpoint of symmetric PDEs, we construct

affine equivariant networks based on differential invari-
ants. It is the first time that affine equivariance for net-
works is achieved without discretizing or sampling the
group. Consequently, we overcome the limitation on net-
work depth encountered by affConv [37].

• We propose a technique to construct a new kind of affine
invariants by normalizing polynomial relative differential
invariants with a special norm, which can be incorporated
into our networks and enhance numerical stability.

• For further flexibility, we also design an equivariant layer,
InvarLayer, which serves as a drop-in replacement for
convolutional networks of various architectures.

• Our framework for constructing affine equivariant net-
works is also applicable to its continuous subgroups. We
implement equivariant networks for three non-Euclidean
groups: the scale group, the rotation-scale group and the
affine group. Extensive experiments demonstrate the out-
standing performance of our framework. Particularly, we
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achieve a 3.37% improvement in accuracy compared with
affConv [37] on the public affNIST1 dataset under the
out-of-distribution setting.2

2. Related works
Currently there are two mainstream methods for con-

structing group equivariant networks. One approach stems
from Cohen and Welling [3], which treats feature maps as
functions defined on a group. Some works extend this ap-
proach to subgroups of Euclidean groups on various do-
mains, such as rotation on the 2D plane [1, 24, 31, 32],
rotation over the 3D space [11, 12, 68, 69], symmetries
on spheres [5, 9, 10] and surfaces [6, 7]. Besides, with
some proper approximations, some works utilize this ap-
proach to handle non-compact groups, such as the scale
group [48, 54, 67, 70, 79] and Lie groups [16, 37, 39].
The other approach follows the steerable CNNs framework
[4, 62–64], which views feature maps as vector fields. This
approach has also been further applied to subgroups of Eu-
clidean groups on the 2D plane [20, 58, 59, 71, 76], the 3D
space [17, 63], and spheres [13, 65]. In addition, similar
to the first approach, this approach has also been extended
to the scale group [19, 41, 53] and the rotation-scale group
[18, 56, 75].

Besides the above approaches, some works utilize PDOs
with learnable coefficients to design equivariant neural net-
works on 2D plane [25, 27, 50]. Besides, PDOs can also
be applied to spheres [28, 51], volumetric data [52] and sur-
faces [66]. Differential invariants, as a specialized form of
partial differential operators, hold a distinctive role in the
field of image processing [22, 40, 45, 57, 60]. The equiv-
ariant method of moving frames offers an elegant tool to
derive differential invariants of a given group [15, 43, 44].
Wang et al. [60] provide a practical and simplified approach
for deriving relative affine differential invariants. Theoret-
ical links reveal that differential invariants are closely in-
tertwined with symmetric PDEs [42]. Building upon this
connection, Liu et al. [33, 34] design a shift and rotationally
equivariant system comprised of learnable PDEs with linear
combinations of fundamental differential invariants. Subse-
quently, some works apply learnable PDEs to feature learn-
ing and extensive vision tasks [14, 78]. Some works further
develop the approach and create equivariant networks on
Euclidean groups [47, 49]. Additionally, some researchers
draw inspiration from PDEs to design deep convolutional
networks [35, 36].

3. Theoretical framework
In this section, we propose a new framework based on

differential invariants to achieve equivariance of the affine
1https://www.cs.toronto.edu/ tijmen/affNIST/
2Our code: https://github.com/Liyk127/Affine-Equivariant-Networks

group. We also describe some extensions of the framework
and how they can be implemented.

3.1. Basic concepts and notations
To explicitly present the proposed method and theoreti-

cal derivation in the following, we first give a preliminary
introduction to concepts involved and notations used.

Inputs and intermediate feature maps of neural networks
can be modeled as vector functions defined on a continuous
domain, e.g. the 2D plane for image data. Each layer of
the network thereby can be regarded as an operator. In this
paper, we study F = {u

��u : X ! Rn} as the set of smooth
functions defined on X = R2, which are constant outside
a compact set. Given a group G acting on X , it naturally
induces a group action on F , i.e. (g · u)(x) = u(g�1 · x),
where g 2 G,x 2 X,u 2 F .

Equivariance indicates that the output of a mapping
transforms in accordance with transformation of the input.

Definition 1 Let G be a group acting on function sets F
and F 0

. An operator  : F ! F 0
is said to be equivariant

with respect to G, if  [g · u] = g · [u], 8g 2 G,u 2 F .

Transitivity is an important property of equivariance. As a
result, when equivariant operators are composed together,
they still possess equivariance.

The concept of invariants is crucial and widely applied
in various fields. Invariants extract some symmetric infor-
mation and remain constant on the orbits of group actions.
Here we give the definition of invariants below.

Definition 2 Let G be a group acting on X , and F =
{u

��u : X ! Rn} be a function set defined on X . An

invariant of G is a map I : X ⇥ F ! R such that

8u 2 F ,x 2 X, g 2 G,

I(g · x, g · u) = I(x,u). (1)

We call I , (I1, ..., Ik)> a k-dimensional invariant of G,

if I1, ..., Ik are invariants of G.

Invariants under operation of postcomposition maintain the
property of invariance, which can be formulated as follows:

Proposition 3 Let I : X ⇥ F ! Rk
be a k-dimensional

invariant, and h : Rk ! Rk0
be a k0-dimensional vector

function. Then h � I is a k0-dimensional invariant.

Intuitively, invariants and equivariant operators some-
how both imply symmetry of group G. In fact, we can con-
struct an equivariant operator with an invariant.

Proposition 4 Let I : X ⇥ F ! Rk
be a k-dimensional

invariant of G, where F = {u
��u : X ! Rn}. View I(·,u)

as a k-dimensional function in F 0 = {v
��v : X ! Rk},

and define an operator Î : F ! F 0
such that

Î[u] , I(·,u). (2)
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Then Î is equivariant.

Proof. 8u 2 F , g 2 G, x 2 X , we have

Î[g · u](x) = I(x, g · u)
= I(g�1 · x,u)
= Î[u](g�1 · x)
= (g · Î[u])(x).

Therefore, Î[g · u] = g · Î[u]. ⇤
It is worth noting that the equivariant operator Î composed
with a function h remains equivariant. Specifically, the op-
erator u 7! h � Î[u] is actually equivalent to u 7! Îh[u],
where Ih , h � I is still an invariant according to Propo-
sition 3.

As a special type of invariants, a differential invariant is a
quantity involving the derivatives of functions that remains
unchanged under the prolongation of group actions.

Definition 5 Let f be a smooth function and I(x,u) ,
f(x,u(x),ru(x), ...,rd

u(x))). If I is an invariant, we

call I a d-th order differential invariant.

As we always require translation equivariance by default,
it is sufficient to consider differential invariants in the
form I(x,u) , f(u(x),ru(x), ...,rd

u(x))), omitting
the term x [34, 61]. According to the differential invariant
theory [42], there are finite independent differential invari-
ants up to the d-th order such that any d-th order differential
invariant can be expressed by these differential invariants.
We call them fundamental differential invariants.

In this paper, we focus on the affine group, which is
ubiquitous in computer vision. The affine group consists
of translation and invertible linear transformations. Denote
the affine group as G, and any element g 2 G can be rep-
resented as g = (A,b), where A 2 R2⇥2 is invertible and
b 2 R2. Then g 2 G acts on R2 via the following way:
g · x = Ax+ b, 8x 2 R2.

3.2. From symmetric PDE to equivariant network
Inspired by learnable PDEs, we model the process of fea-

ture extraction as the evolution process governed by PDEs
[14, 33–36, 78]. If the utilized PDE exhibits symmetry, the
resultant feature extraction process will inherently possess
equivariance [14, 33, 34, 78].

Let F̃ = {ũ
��ũ : [0, T ] ⇥ R2 ! Rn} be a set of smooth

functions involving a temporal variable t 2 [0, T ] and a
spatial variable x 2 R2. We focus on high-dimensional
evolutionary PDEs in the following form:

@ũ

@t
= F

�
t,x, ũ,rxũ, ...,rd

xũ
�
, (3)

where F is a smooth function. We can view u
(t) , ũ(t, ·)

as a function in F = {u
��u : R2 ! Rn}, and consider the

Compute 

Hidden Layer

Figure 2. Each iteration of the evolutionary PDE can be viewed as
a layer of the network.

group action of G on ũ 2 F̃ following the same way of the
group action on u

(t) 2 F , i.e. (g · ũ)(t,x) = ũ(t, g�1 · x).
For a given symmetry group G, a PDE in the form (3) is
called G-symmetric as long as if ũ is a solution, then g · ũ
is also a solution, for any g 2 G.

According to the differential invariant theory [42], the
PDE (3) is G-symmetric if and only if the right side of (3)
is a function of differential invariants. Additionally, any dif-
ferential invariant can be expressed as a function of funda-
mental differential invariants. Therefore, any G-symmetric
PDE in the form (3) can be written as:

@ũ

@t
(t,x) = H

⇣
t, I1(x,u(t)), ..., Ik(x,u(t))

⌘
, (4)

where H is a smooth function and Ii(i = 1, 2, ..., k) form a
complete set of fundamental differential invariants. Denote
IFDI as the concatenation of fundamental differential in-
variants, i.e. IFDI , (I1, ..., Ik)>. We can present (4) in
a more compact form:

@ũ

@t
= H

(t) � ÎFDI [u
(t)], (5)

where H
(t) , H(t, ·) is a smooth function indexed by t

with input dimension k and output dimension n, and the
definition of the operator ÎFDI is given in (2).

Consider a PDE system consisting of a G-symmetric
PDE in the form (5) with an initial condition,

⇢
@ũ
@t = H

(t) � ÎFDI [u(t)],
ũ(0,x) = u0(x).

(6)

We approximate the temporal derivative by forward differ-
ence to discretize the PDE and formally solve the PDE sys-
tem (6) by iteration. Let 0 = t0 < t1 < ... < tN = T be
a partition of the interval [0, T ], and the forward scheme is
shown as follows:

u
(t0) = u0, (7)

u
(ti+1) = u

(ti) +�ti ·H(ti) � ÎFDI [u
(ti)], (8)

where �ti , ti+1 � ti, u(ti) , ũ(ti, ·). As is well known,
neural networks have universal approximation capabilities.
Theoretically, if we choose H

(t) to be a neural network,
we can represent any differential invariant. In practice, we
introduce a series of parameterized multilayer perceptrons
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(MLPs), {h✓i , 0  i  N � 1}, whose input dimension
matches IFDI and output dimension matches u0. Conse-
quently, we have the iterative process:

u
(ti+1) = u

(ti) +�ti · h✓i � ÎFDI [u
(ti)]. (9)

We regard each iteration as an operator i : u(ti) 7! u
(ti+1)

(see Figure 2), which is equivariant. Note that equivariance
of  i does not rely on the existence and uniqueness of the
solution to the original PDE system (6). Furthermore, if
we replace IFDI with general invariants, the operator i is
still equivariant.

Utilizing transitivity of equivariance, we stack these
equivariant operators together to get a feed-forward deep
equivariant network, i.e.  ,  N�1 � · · · �  1 �  0. The
number of layers corresponds to the number N of iterations,
and the number of channels corresponds to the dimension of
ũ in the PDE. The network takes u(t0) = u0 as inputs, and
produces u(tN ) as the output features. Inference of the net-
work aligns with the evolution process of the PDE. Further-
more, the network naturally incorporates the skip connec-
tion structure [23], which is renowned for its advantageous
impact on network optimization. Inspired by PDEs based
on invariants, we call the network InvarPDE-Net.

3.3. SupNorm normalized differential invariants
The basic version of InvarPDE-Net provides an approach

to create equivariant networks without discretizing or sam-
pling groups. However, for the affine group, its fundamental
differential invariants are in the form of fractional polyno-
mials, such as uxxuyy�u2

xy

u2
yuxx�2uxuyuxy+u2

xuyy
, potentially leading

to the division-by-zero issue in practice. For instance, when
a region of an image has uniform color, the denominator
approaches or equals zero.

We notice that differential invariants of the affine group
can be expressed by polynomial relative differential invari-
ants. Building upon the observation, we propose a tech-
nique to construct a new type of affine invariants by nor-
malizing polynomial relative differential invariants with a
special norm, which not only avoid the division-by-zero is-
sue but also exhibit better expressive power than classical
differential invariants. To start with, we give a definition of
polynomial relative differential invariants.

Definition 6 Let G be the affine group acting on X = R2
,

F = {u
��u : X ! Rn} be the set of smooth functions,

w : G ! R+
be a positive multiplier, and P be a m-degree

homogeneous polynomial. Define J : X ⇥ F ! R as

follows J (x,u) , P (u(x),ru(x), ...,rd
u(x))). We call

J a d-th order (polynomial) relative differential invariant
of G with weight w and degree m, if 8u 2 F ,x 2 X, g 2
G, we have

J (g · x, g · u) = w(g)J (x,u). (10)

Relative Differential Invariants Weight Degree
u 1 1
uxxuyy � u2

xy 1/(detA)2 2
u2
yuxx � 2uxuyuxy + u2

xuyy 1/(detA)2 3

Table 1. We present relative differential invariants of the affine
group for scalar functions up to order 2. Note that any element g
in the affine group can be represented as g = (A,b).

Low-order relative differential invariants of the affine group
for scalar functions on R2 are shown in Table 1. Unless the
weight w ⌘ 1, a relative differential invariant is generally
not an invariant. Actually, the result of dividing two relative
differential invariants with the same weight is a differential
invariant. But fractional polynomials may suffer from the
division-by-zero issue as mentioned before.

Next, we present a technique to construct invariants
based on relative differential invariants via normalization.

Theorem 7 Let G be the affine group acting on X = R2
.

Let F = {u
��u : X ! Rn} and F 0 = {v

��v : X ! Rk}
be sets of smooth functions on X , which are constant out-

side a compact set. Define a norm on F 0
called SupNorm,

kvksup , supx2X kv(x)k1. Given a collection of rela-

tive differential invariants of G with weight w, denoted as

Ji : X⇥F ! R(i = 1, 2, ..., k). Define J : X⇥F ! Rk

as J , (J1, ...,Jk)>, and J (·,u) can be viewed as an

element in F 0
. Define I : X ⇥ F ! Rk

as follows:

I(x,u) , 1

kJ (·,u)ksup
·J (x,u). (11)

Then I is a k-dimensional invariant of G.

The key to the proof of Theorem 7 is that for any g 2 G,
we have kJ (·, g · u)ksup = w(g)kJ (·,u)ksup. A detailed
proof is provided in Supplementary Material. We call the
invariant constructed in (11) a SupNorm normalized dif-
ferential invariant (SNDI). As the invariant involves global
spatial information of derivatives, it is no longer a classical
differential invariant. It may contain information beyond
fundamental differential invariants.

To construct SNDIs, we start from a collection of poly-
nomial relative differential invariants. Although the selec-
tion of relative differential invariants does not affect in-
variance, a recommended practice is to encompass those
that sufficiently represent fundamental differential invari-
ants, thus capturing adequate information. Next, we can
normalize each relative differential invariant individually, as
Theorem 7 also holds when k = 1. Alternatively, we can
normalize all relative differential invariants with the same
weight and the same degree together, which preserves more
information between relative differential invariants. An ad-
ditional benefit is that SNDIs derived in this way exhibit
illumination invariance, i.e. I(x, c · u) = I(x,u), 8c > 0.
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Here is an example to have a glimpse of the advantage in
expressive power of SNDIs compared with that of classical
differential invariants. Assuming u a smooth scalar func-
tion on R2, uxxuyy�u2

xy

u2
yuxx�2uxuyuxy+u2

xuyy
is the only fundamental

differential invariant of the affine group up to second order
apart from the trivial one u itself. Through the newly pro-
posed method of normalization, we can obtain two SNDIs

uxxuyy�u2
xy

kuxxuyy�u2
xyksup

and u2
yuxx�2uxuyuxy+u2

xuyy

ku2
yuxx�2uxuyuxy+u2

xuyyksup
. It is not

hard to find that we can express the fundamental differential
invariant as the quotient of two SNDIs up to a constant mul-
tiple, but not vice versa. From another perspective, we need
to discretize functions by sampling on grid points in imple-
mentation. Given k polynomial relative differential invari-
ants, each one can be viewed as an M ⇥M matrix. Obtain-
ing differential invariants through division would lead to the
loss of at least M2 degrees of freedom, while normalization
only sacrifices at most k degrees of freedom.

In summary, SNDIs not only avoid the division-by-zero
issue but also exhibit better expressive power than classi-
cal differential invariants. Given a collection of polyno-
mial relative differential invariants, we construct SNDIs via
normalization, and concatenate them together, resulting in
a higher dimensional invariant ISNDI . With theoretical
guarantee of invariance, we can directly employ ISNDI

to replace fundamental differential invariants IFDI in (9).
Thus, each layer of InvarPDE-Net is adjusted to:

u
(ti+1) = u

(ti) +�ti · h✓i � ÎSNDI [u
(ti)]. (12)

3.4. Extensions of network architecture
The equivariant network InvarPDE-net derived from a

symmetric PDE requires the dimension of features, namely
the number of channels, to be consistent across each layer.
This is not the case for the majority of conventional net-
works. Hence, we generalize the network to accommodate
varying channel numbers while maintaining equivariance.

Note that we can stack several PDEs of the same dimen-
sion sequentially, with the output of one PDE serving as
the input of the subsequent one. Furthermore, when dealing
with PDEs of different dimensions, we can linearly com-
bine the output channels of one PDE to match the number
of channels in the subsequent PDE. Since linear combina-
tions of invariants remain invariants, the process does not
affect equivariance. This extension allows us to create an
equivariant network composed of multiple PDEs with vary-
ing channel numbers. We name the network InvarPDEs-Net

(see Figure 1), including InvarPDE-Net as a special case.
In addition, we aim to design an equivariant layer that

can be directly integrated into convolutional networks of
various architectures by replacing convolutional layers.
Such an equivariant layer will offer enhanced flexibility in
its applications. A key aspect lies in the ability to freely

Invariants
Hidden
Layer

Compute
Invariants

Figure 3. InvarLayer is an equivariant layer extracted and adapted
from the iterative process of a symmetric PDE, which allows for
free specification of input and output channel numbers.

specify input and output channel numbers, similar to a con-
volutional layer. By observing the iterative process in (12),
we can adjust the output dimension of h✓i , and directly em-
ploy h✓i � ÎSNDI [u(ti)] as the output of this layer, which is
still equivariant. Given input and output channel numbers,
C1 and C2, we formulate the equivariant layer as follows:

uout = h✓ � ÎSNDI [uin], (13)

where ISNDI is a k-dimensional SNDI, and h✓ is an MLP
with input dimension k and output dimension C2. We name
the equivariant layer InvarLayer (see Figure 3). It has a sim-
ilar structure to the PDE iteration process (see Figure 2) but
without the skip connection, allowing different input and
output channel numbers.

3.5. Implementation
We establish a theoretical foundation in the continuous

setting. When it comes to implementation, in the context of
processing image data, discretization on 2D grids becomes
necessary. We employ Gaussian derivatives to estimate
derivatives by applying derivatives of a Gaussian kernel
[25, 27]. For example, fx(x0) ⇡

PN
n=1 @xG(xn;�)f(xn+

x0), where G(x;�) is a Gaussian kernel with standard devi-
ation � centered around 0, and xn are grid points around 0.
In the case of 2D grid points, it can be implemented using
convolutions with specific kernels.

It is important to highlight that common network com-
ponents are compatible with our approach. Proposition 3
guarantees that invariants under the operation of post-
composition maintain their invariance property. This means
BatchNorm [26], pointwise nonlinearities, 1 ⇥ 1 Convolu-
tion, and DropOut [55] can all be seamlessly integrated into
our models without compromising equivariance. Pooling
can also be incorporated into the models, though it intro-
duces equivariance error to some extent. Specially, when
using global pooling, we obtain invariant features.

In the following, we will discuss the input and ultimate
output in InvarPDEs-Net, with a specific focus on image
classification tasks. Currently, we simply replicate the im-
age data along the channel dimension multiple times until
the given number of channels is reached, which serves as
the input of the network, i.e. u(t0) = u0. For the final out-
put of equivariant features of the network u

(tN ), we perform
spatial global pooling to extract a set of invariant features,
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matching the number of channels. Subsequently, we apply
two fully connected layers to acquire the ultimate classifi-
cation result.

As for MLPs used for combining invariants in our net-
works, we apply two layer perceptrons in practice. Since
MLPs operate on the vector I(x,u) for each point x and
share weights spatially, they can be effectively implemented
using 1⇥1 convolutions with the ReLU activation function.
Likewise, connections between PDEs of different dimen-
sions in InvarPDEs-Net can also be realized using 1 ⇥ 1
convolutions. As for the computation of SupNorm in con-
structing SNDIs, it can be easily implemented by applying
global Max-Pooling over the channels corresponding to rel-
ative differential invariants that are normalized together.

3.6. Discussion
Unlike existing methods for designing equivariant net-

works, our framework does not apply discretization or sam-
pling to the group. The number of channels is independent
of the dimension of the group. When the group is larger, the
number of fundamental differential invariants is bounded by
the number of derivatives, and the same holds true for poly-
nomial relative differential invariants. Therefore, the model
size does not increase as the group becomes larger. That is
why our framework can handle affine equivariance.

Moreover, our framework can be extended to continuous
subgroups of the affine group. Common examples include
the scale group, the shearing group, the rotation group, the
rotation-scale group and the equi-affine group. To construct
equivariant networks for these groups, we simply compute
corresponding differential invariants and incorporate them
into InvarPDE-Net. If the differential invariants involve
fractions, the normalization technique is also applicable.
The network structures, InvarPDEs-Net and InvarLayer, are
compatible with these groups, and the implementation pro-
cess remains the same. Therefore, it is a unified framework
for the affine group and its continuous subgroups.

4. Experiments
For empirical validation, we implement InvarPDEs-Net

and InvarLayer for three non-Euclidean groups: the scale
group, the rotation-scale group, and the affine group. We
conduct classification experiments on image datasets with
different group transformations, and refrain from using data
augmentation to emphasize the innate equivariance of net-
works.

4.1. Scale equivariance
Following previous works on scale equivariance [29, 41,

53, 79], we conduct experiments on datasets with scale vari-
ations, specifically Scale-MNIST and Scale-Fashion. We
build Scale-MNIST and Scale-Fashion by rescaling the im-
ages of the MNIST [30] dataset and the Fashion-MNIST

Models Scale-MNIST Scale-Fashion

SiCNN [74] 97.53± 0.12 85.32± 0.22
SI-ConvNet [29] 97.56± 0.13 85.16± 0.14
SEVF [38] 97.28± 0.16 84.73± 0.11
DSS [70] 97.34± 0.13 84.50± 0.51
SS-CNN [19] 97.68± 0.15 85.39± 0.32
SESN [53] 97.92± 0.09 85.93± 0.28
ScDCFNet [79] 97.91± 0.08 86.19± 0.15
SE-CNN [41] 97.16 87.48

InvarPDEs-Net (Ours) 98.30 ± 0.06 89.62 ± 0.26
InvarLayer (Ours) 97.75± 0.05 89.50± 0.15

Table 2. Test accuracy (%) on Scale-MNIST and Scale-Fashion.
All models have approximately 500k trainable parameters.

[72] dataset with the scaling factor randomly selected from
[0.3, 1]. Then we reshape them back to the original size
28 ⇥ 28 by zero paddings. For both datasets, we use 10k
samples for training and 50k for testing. In line with prior
works [41, 53, 79], we integrate InvarLayer into a CNN with
three convolution layers and two fully connected layers, and
ensure that both InvarPDEs-Net and InvarLayer have fewer
than 500k trainable parameters. For more details on the
models and experiments, please refer to Supplementary Ma-
terial.

Experiments are repeated for six times using datasets
generated with independent seeds. We report the mean ±
std of the test accuracy of our models in Table 2. The results
of SE-CNN on both datasets and SESN on Scale-MNIST
come from the original papers [41, 53], and the others come
from [79] under the same settings. On Scale-MNIST, Invar-
Layer achieves comparable results with other models and
InvarPDEs-Net delivers the best performance. On Scale-
Fashion, InvarPDEs-Net and InvarLayer outperform other
models significantly.

4.2. Rotation-Scale equivariance
Gao et al. [18] first presented a rotation-scale equivariant

network, RST-CNN. Following [18], we generate datasets
RS-MNIST and RS-Fashion for evalutation. With the same
procedure, we apply rotation (uniformly in [0, 2⇡]) and
rescaling (uniformly in [0.3, 1]) to the images of MNIST
and Fashion-MNIST, and zero-pad them back to the origi-
nal size followed by upsizing images to 56 ⇥ 56. For both
datasets, we use 5k samples for training and 50k for test-
ing. Consistent with [18], we integrate InvarLayer into a
CNN with three convolution layers and two fully connected
layers, and keep the number of trainable parameters below
500k for both InvarPDEs-Net and InvarLayer.

The mean ± std of the test accuracy over six indepen-
dent trials are reported in Table 3. Compared models in-
clude RST-CNN [18] and other models that are equivariant
to either rotation (SFCNN [64] and RDCF [2]) or scaling
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Models RS-MNIST RS-Fashion

SFCNN [64] 89.69± 0.40 75.80± 0.11
RDCF [2] 90.46± 0.33 73.96± 0.19

SEVF [38] 90.29± 0.37 71.03± 0.31
SESN [53] 90.19± 0.39 72.19± 0.05
ScDCFNet [79] 90.40± 0.09 72.24± 0.23

RST-CNN [18] 93.19± 0.29 78.64± 0.60

InvarPDEs-Net (Ours) 95.80 ± 0.09 79.48 ± 0.31
InvarLayer (Ours) 93.15± 0.21 74.51± 0.71

Table 3. Test accuracy (%) on RS-MNIST and RS-Fashion. All
models have approximately 500k trainable parameters. RST-CNN
is a rotation-scale equivariant network, while other compared
models are only equivariant to rotation (SFCNN and RDCF) or
scaling (SEVF, SESN, and ScDCFNet).

(SEVF [38], SESN [53], and ScDCFNet [79]). The results
of these models are obtained from [18] under the same set-
tings. On RS-MNIST, InvarPDEs-Net significantly outper-
forms other models and InvarLayer exhibits comparable re-
sults with RST-CNN. On RS-Fashion, InvarPDEs-Net re-
mains the top-performing model, while InvarLayer delivers
relatively modest results. With minor adjustments of hy-
perparameters, InvarLayer lifts the accuracy to 93.40% on
RS-MNIST and to 76.08% on RS-Fashion. More details
about models and experiments are provided in Supplemen-
tary Material.

4.3. Affine equivariance

Models Accuracy Parameters

CapsNet [46] 79 8.1M
GE CapsNet [31] 89.10 235K
affine CapsNet [21] 93.21 –
RU CapsNet [8] 97.69 > 580K

affConv [37] 95.08± 0.31 373K

InvarPDEs-Net (Ours) 95.72± 0.12 340K
InvarLayer (Ours) 98.45 ± 0.15 365K

Table 4. Test accuracy (%) on affNIST after training on MNIST.
The first four models are Capsule Networks that demonstrate ro-
bustness to affine transformations but admit few rigorous mathe-
matical guarantees, while affConv is an affine equivariant network.

As for affine equivariance, the main counterpart we com-
pare with is the affine equivariant model, affConv [37]. Fol-
lowing [37], we evaluate our models on the public dataset
affNIST under the out-of-distribution setting. Specifically,
we train our models on 50k non-transformed MNIST im-
ages (padded to 40 ⇥ 40) and test them on 320k affine-
perturbed MNIST (affNIST) images with size 40 ⇥ 40. As
mentioned before, it is impractical to apply affConv to deep

networks, while InvarLayer overcomes the limitation. We
use the structure of ResNet-32 for InvarLayer. For a fair
comparison, we ensure that InvarPDEs-Net and InvarLayer
both have fewer parameters than affConv (373k). Addi-
tional details can be found in Supplementary Material.

We present the mean ± std of test accuracy over six train-
ing runs with different random seeds in Table 4. Besides
affConv, we also list the results under the same setup from
some Capsule Networks [8, 21, 31, 46], which may lack
rigorous theoretical guarantees of invariance. Although RU
CapsNet performs better than affConv, which could not be
well understood according to [37], our InvarLayer beats it
by a margin of 0.76%. Moreover, our InvarPDEs-net also
outperforms affConv. Additional results of the conventional
setting, training on affNIST and testing on affNIST, can be
found in Supplementary Material.

5. Conclusion
In this paper, we propose a new framework to achieve

affine equivariance, a long-standing challenge in the field
of equivariant networks. Within our framework, we con-
struct a PDE-inspired equivariant network, InvarPDEs-Net,
which showcases strong performance across extensive ex-
periments. Furthermore, for more flexibility, we introduce
an equivariant layer, InvarLayer, which can serve as a drop-
in replacement for convolutional networks of various archi-
tectures. When combined with a ResNet structure, Invar-
Layer retains state-of-the-art results on the affNIST dataset.
While the performance of InvarLayer exhibits some vari-
ability in certain setups, we recognize its immense poten-
tial. We believe that further refinement of the layer de-
sign based on our paradigm will elevate its capabilities to
a higher level.

Our framework is quite promising and merits further ex-
tension. It is known that differential invariants exist for Lie
groups satisfying certain regular conditions [42]. We con-
centrate on the affine group and make differential invari-
ants applicable through the normalization technique, which
is also suitable for its subgroups. How to adapt differential
invariants of more general Lie groups into equivariant net-
works remains a future research. Additionally, besides the
2D planes considered in our work, it is worthwhile to study
the extension of our framework to other manifolds, such as
spheres and 3D spaces. Moreover, while our experiments
involve image classification tasks, applications to a broader
range of tasks in real world can be further explored.
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