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Figure 1. Overview of our Auto MC-Reward. Auto MC-Reward consists of three key LLM-based components: Reward Designer, Reward
Critic, and Trajectory Analyzer. A suitable dense reward function is iterated through the continuous interaction between the agent and the
environment for reinforcement learning training of specific tasks, so that the model can better complete the task. An example of exploring
diamond ore is shown in the figure: i) Trajectory Analyzer finds that the agent dies from lava in the failed trajectory, and then gives
suggestion for punishment when encountering lava; ii) Reward Designer adopts the suggestion and updates the reward function; iii) The
revised reward function passes the review of Reward Critic, and finally the agent avoids the lava by turning left.

Abstract

Many reinforcement learning environments (e.g.,
Minecraft) provide only sparse rewards that indicate task
completion or failure with binary values. The challenge
in exploration efficiency in such environments makes it
difficult for reinforcement-learning-based agents to learn
complex tasks. To address this, this paper introduces an
advanced learning system, named Auto MC-Reward, that
leverages Large Language Models (LLMs) to automatically
design dense reward functions, thereby enhancing the
learning efficiency. Auto MC-Reward consists of three im-
portant components: Reward Designer, Reward Critic, and
Trajectory Analyzer. Given the environment information
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and task descriptions, the Reward Designer first design the
reward function by coding an executable Python function
with predefined observation inputs. Then, our Reward
Critic will be responsible for verifying the code, checking
whether the code is self-consistent and free of syntax
and semantic errors. Further, the Trajectory Analyzer
summarizes possible failure causes and provides refinement
suggestions according to collected trajectories. In the next
round, Reward Designer will further refine and iterate the
dense reward function based on feedback. Experiments
demonstrate a significant improvement in the success rate
and learning efficiency of our agents in complex tasks in
Minecraft, such as obtaining diamond with the efficient
ability to avoid lava, and efficiently explore trees and
animals that are sparse in the plains biome.
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1. Introduction
Minecraft, as the world’s best-selling game, offers a range
of tasks from exploration, survival to creating. It has be-
come an important environment for researching efficient
Reinforcement Learning (RL) [16, 22]. In particular, its
extreme sparsity of rewards and huge complexity of the de-
cision space pose significant challenges for RL. Currently,
the most effective learning strategy involves pre-training
through behavior cloning [3], using learned behavioral pri-
ors to narrow the decision space. Nevertheless, it still re-
quires billions of environmental interactions for effective
learning due to the sparse reward nature of Minecraft.

On the other hand, previous researchers have proposed a
variety of dense reward signals to enable efficient learning
for specific sparse reward tasks [2, 27, 28, 35, 37]. However,
their applicability on the complex and long-horizon tasks
in Minecraft remains an open question. To deeply reveal
the challenges in Minecraft, we examine on several repre-
sentative challenging tasks, e.g. exploring underground for
diamonds. We find that even after behavior cloning, most
of these methods still fail to make significant progress on
these tasks, further highlighting the difficulty of Minecraft
and the limitations of existing dense reward methods.

It is noteworthy that for human players, Minecraft is a
relatively simple casual game [12]. The advantage of hu-
man lies in their ability to summarize based on practice. For
example, an accidental burning death from lava can teach
human to avoid getting too close to it. Such summaries,
based on life experience and practice, are key to human in-
telligence [40, 43]. Most existing RL methods overlook this
ability. On the other hand, Large Language Models (LLMs)
have recently demonstrated human-like common sense and
reasoning capabilities [18, 36, 52]. We find that leverag-
ing LLMs can help RL agents simulate the practice sum-
marization abilities of human. Based on the historical ac-
tion trajectories and success-failure signals of the agents,
LLMs can automatically design and refine corresponding
auxiliary rewards, effectively overcoming the sparse reward
challenge in Minecraft.

According to above analysis, we propose an automated
method named Auto MC-Reward, to design and improve
auxiliary reward functions according to task descriptions
and historical action trajectories. This method utilizes the
task understanding and experience summarization abilities
of LLMs, providing detailed and immediate rewards for
learning guidance. Specifically We first use LLMs to de-
sign task-related dense reward functions based on basic de-
scriptions of the environment and tasks, named as Reward
Designer. These reward functions are used to train agents
after self-verification, i.e. Reward Critic. To address poten-
tial biases or oversights in LLM’s understanding, we also
propose a LLM-based Trajectory Analyzer to analyze and
summarize collected trajectories from the trained agent, and

help Reward Designer to improve the reward functions.
We verify the effectiveness of Auto MC-Reward on a se-

ries of representative benchmarks, including horizontal ex-
ploration for diamonds underground and approaching trees
and animals in the plains biome. Experiments show that
Auto MC-Reward achieves significantly better results on
these tasks compared to original sparse reward and existing
dense reward methods, showing its advanced ability of em-
powering efficient learning on sparse reward tasks. By iter-
atively refining the design of rewards functions, Auto MC-
Reward enables the agent to efficiently learn new behaviors
that is beneficial to the corresponding tasks, e.g. avoiding
lava, which greatly improves the success rate. Moreover,
Auto MC-Reward achieves a high diamond obtaining suc-
cess rate (36.5%) with only raw information, demonstrating
its ability of solving long-horizon tasks.

2. Related Work
Minecraft Agents are intelligent agents designed to accom-
plish various tasks while playing the game Minecraft. Most
of previous works adopt reinforcement learning for agent
training. Due to the extremely sparse rewards and com-
plex decision space of Minecraft tasks, early attempts have
tried hierarchical RL [30, 34, 41, 42], curriculum learn-
ing [23], and imitation learning [1] to empower more ef-
ficient RL training. To narrow the decision space, recent
work [3] build a foundation model by performing imita-
tion on YouTube videos. DreamerV3 [17] instead learns
a world model that explores the environment efficiently. As
the LLMs demonstrate their general planning ability, a se-
ries of research [19, 46, 47, 51, 53] leverage LLMs as high-
level planners that decompose long-term complex tasks as
basic skills and implement the skills with RL agents or
handcrafted scripts.

Auto MC-Reward aims to design dense rewards for
Minecraft tasks automatically using LLMs, which is orthog-
onal to previous works on Minecraft agents that mainly fo-
cus on RL learning algorithms or high-level planning.

Efficient Learning in Sparse Reward Tasks is a long-
standing challenge in RL due to the lack of effective learn-
ing signals [26]. A common solution is to handcraft dense
reward functions that provide intermediate reward signals
based on human expertise, which requires time-consuming
trial-and-error for each environment and task. Another line
of previous research focus on proposing general-purpose
dense auxiliary reward functions, such as curiosity-driven
exploration [6, 20, 28, 37], self-imitation learning [35], and
goal-conditioned reinforcement learning [2, 24, 27, 45].
Despite the success on certain specific tasks, the appli-
cability of these methods in the complex environment of
Minecraft remains uncertain. Recent works [10, 11, 14, 31,
32] also propose to use pre-trained models to assign reward
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to intermediate states of completing tasks. However, these
approaches produce reward values in a black-box manner,
which cannot be interpreted and improved based on the
experience of the agents, and the generalizability of these
models on new tasks is not guaranteed.

In contrast, Auto MC-Reward automatically produces
explainable reward functions according to the task descrip-
tions. Moreover, the reward functions can be improved to
be more precise based on the experience of the agent.

Automated Reward Function Design aims to find an op-
timal reward function that drives efficient reinforcement
learning for interested tasks. Previous works [9, 15] employ
evolutionary algorithm for searching optimal reward func-
tions for specific tasks. Most of these attempts have a highly
constrained search space that only adjusts parameters of
task-specific handcrafted reward templates. Recently, a se-
ries of research [7, 11, 25, 29] employs LLMs for integrat-
ing human preference into open-domain tasks without clear
completion criteria by directly prompting LLMs with envi-
ronment trajectories and natural language task descriptions.
The reward values are generated on-the-fly by LLMs, which
is black-box and has heavy computational cost due to the
nature of LLMs. In contrast, Auto MC-Reward employs
LLMs to generate white-box code-form reward functions.

Concurrent works [33, 49, 50] also propose to use LLMs
as a coder to generate reward functions for robotics control
tasks. Specifically, L2R [50] needs to prepare reward func-
tion templates and cannot cope with unexpected situations
in open worlds. Text2Reward [49] and EUREKA [33] re-
quire complete environment code or description and rely on
human feedback, which are not available in open worlds.
Different from these methods, Auto MC-Reward consid-
ers more complex Minecraft environments that has diverse
scenarios and high uncertainty, requiring more precise and
thorough reward designing.

3. Method
Auto MC-Reward consists of three components: Reward
Designer, Reward Critic, and Trajectory Analyzer. Given
the environment information and task descriptions, the Re-
ward Designer proposes the reward function by coding an
executable Python function with pre-defined observation in-
puts. The Reward Critic verifies if the proposed reward
function is self-consistent and if it meets the format require-
ments. The designed reward function which passes the Re-
ward Critic is used to train agents in the environment. To
improve the designed reward function according to empiri-
cal experience, the Trajectory Analyzer is proposed to sum-
marize possible failure causes and provide refinement sug-
gestions on the reward function based on the inference tra-
jectories of the trained agents. Then the Reward Designer
modifies the reward function based on the feedback from

Trajectory Analyzer. Figure 1 shows the overview of the
Auto MC-Reward.

3.1. Reward Designer
We utilize a Reward Designer to generate the reward func-
tion code to provide intermediate instructive learning sig-
nals to the agent. It takes as input task descriptions, game
information, and reward function requirements, generating
reward functions in executable code form. When updating
reward function, we also provide analysis of the agent’s per-
formance when interacting with the game environment. The
input prompt is introduced in Section 4.2.

The generated reward function uses a pre-defined obser-
vation format as input. This includes the nearest distance of
each block type within the visible range in the current and
previous steps, changes in inventory between adjacent steps,
health points, and the agent’s location in each past step.
These parameters can provide information on the agent’s
current and historical states, assisting the reward function
in various situations.

Multi-Step Memory. Long-term tasks require the transfer
of information across multiple steps. Thus, we introduce a
multi-step memory mechanism. It is provided to Reward
Designer as a empty dictionary at the beginning, and the
reward function can save necessary data into the memory
to be used in future steps. In the actual reward function of
the explore-tree task, we observed that the agent records the
distance to a tree at each step, thereby encouraging getting
closer with the tree than the previous step.

Chain of Thought. We require the LLM to first describe its
design thoughts, such as considering potential failure rea-
sons and the details of the reward function design. These
thoughts are to be written as comments at the beginning of
the code. This is a mechanism similar to Chain of Thought
(CoT) [48], where the thought process precedes the cod-
ing implementation. In the specific code implementation,
necessary comments will also be generated every few lines
(e.g., “Check if lava is in the field of view in the previous
step”). This approach not only allows Reward Designer to
refer to the text-form thoughts during reward function ini-
tialization, but also assists subsequent Reward Critic in as-
sessing the code’s rationality, and helps Reward Designer
to understand the current reward function’s purpose when
updating the reward function.

Scale Constraints. We impose a specific scale constraint
for the reward function, where the LLM generates two sub-
functions: dense and sparse. Sparse denotes rewards for
achieving the final goal or heavy penalties (like death),
while dense represents dense intermediate signals during
the task completion process. We preset their numerical val-
ues and only allow the LLM to determine their positivity
or negativity, limiting sparse to {1, 0,−1}, and dense to
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Figure 2. Example of updating the reward function. Trajectory
Analyzer provides analysis for three scenarios at different steps,
and then Reward Designer update the reward function based on
the suggestions. We only display part of the trajectory data for
brevity. Step 1: rewrite the code of encouraging exploration to
avoid going back and forth. Step 2: add lava penalty to avoid
falling into lava. Step 3: add pitch constraint to avoid constantly
looking up to avoid lava.

{0.1, 0,−0.1}. They are then added together for the final
reward. Therefore, the final reward values can be one value
of {±1.1,±1.0,±0.9,±0.1, 0}. The final reward is calcu-
lated as R = sgn(sparse)∗1+sgn(dense)∗0.1, where sgn
denotes the sign function. This is to keep the reward within
a reasonable range, allowing the LLM to focus on various
scenarios that need to be considered in the reward function,
rather than trivial tasks like adjusting the reward value.

3.2. Reward Critic
In practice, it is difficult for LLM to generate a relatively
complete reward function in the beginning. There may be
errors in understanding parameter formats and data types
(syntax errors), failure to consider game-specific informa-

tion, or misunderstanding of tasks (semantic errors), etc.
In order to eliminate above errors that are not easy to

find, we design a LLM based Reward Critic to automati-
cally review the designed reward function. In addition to
checking for syntax errors, Reward Critic is also asked to
check the quality of the reward function to further eliminate
semantic errors. Specifically, we require Reward Critic to
check whether the current code implementation matches its
thoughts, whether it meets the reward function design re-
quirements, and whether it takes game information into ac-
count. If the review fails, the Critic will provide a critique,
and the Reward Designer will then modify the reward func-
tion based on the criterion and submit it for review again.
The above process is repeated up to 3 times.

If an error occurs during the execution of the reward
function in the process of interacting with the environment,
the Python traceback of the error message will be fed back
to Reward Designer for modification. These errors may in-
clude misunderstandings of input parameters, list index out
of range, uninitialized keys in dictionaries, and other such
issues. Some runtime errors only appear during the actual
execution of the code.

3.3. Trajectory Analyzer

LLMs have the ability to understand environmental infor-
mation and task instructions through in-context prompts to
generate dense rewards. However, this zero-shot approach
completely relies on LLMs understanding of the task and
imagination of the problems it may face, and it is difficult
to ensure the effectiveness of the designed reward. Take the
the yellow highlighted part in Figure 1 as an example, in the
initially designed reward function, Reward Designer does
not consider the situation where the agent would encounter
lava and be burned to death. Thus, in order to introduce em-
pirical improvements to the designed dense reward, we pro-
pose to use LLMs, named as Trajectory Analyzer, to sum-
marize the historical information of the interaction between
the trained agent and the environment and use it to guide
the revision of the reward function. The division of labor
of Reward Designer and Trajectory Analyzer allows for in-
dependent operations of data analysis and reward function
updates. Trajectory Analyzer does not need to know the de-
tails of the reward function, and Reward Designer does not
need to process complex trajectory data.

Specifically, the current trained model is used to inter-
act with the environment and obtain K trajectories. Then,
we truncate these trajectories and use a LLM to summarize
the observations of the last consecutive L frames of each
failed trajectory to automatically infer its possible failure
reasons. Based on the analysis of the reasons for the fail-
ure, the LLM Trajectory Analyzer is asked to propose key
points that Reward Designer needs to consider in the next
round of reward function revision. For instance, failure sce-
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narios where punishment is not considered, misalignment of
dense reward and sparse reward causes the agent’s behavior
to deviate from the final goal, etc.

Figure 2 shows an example of multiple rounds of im-
proving the reward function during the search for diamonds.
In the first step, through analysis of the trajectory, Trajec-
tory Analyzer finds that the agent would opportunistically
find a shortcut to increase the reward, that is, move back
and forth to deceive the reward function into thinking that
the agent is moving actively. Therefore, the Reward De-
signer modifies the code snippet that encourages the agent
to move, i.e. encourage the agent to appear in unvisited lo-
cations as much as possible. Although the initially designed
reward function has taken into account the penalty for the
loss of the agent’s health, the agent still cannot effectively
learn to avoid lava. When modifying the reward function
in the second round, Trajectory Analyzer discovers through
the failed trajectory that the agent may die from lava, so it is
suggested that Reward Designer increase the penalty for en-
countering lava, as shown in the step 2 update in Figure 2.
According to the interactive experience, Reward Designer
explicitly punishes the continuous appearance of lava in the
field of view. However, the excessive punishment of lava
caused the agent to choose to turn its perspective upward
or downward to avoid the appearance of lava in the visible
range, making it impossible for the agent to continue ef-
fective exploration, which deviates from the ultimate goal.
To this end, Reward Designer further constrain the agent’s
perspective in step 3, so that the lava disappeared from the
agent’s perspective by turning left/right while continuing to
search for diamonds, which is the desired strategy. Fig-
ure 3(a) shows the successful trajectory of avoiding lava:
The agent sees the lava after breaking the stone ahead using
iron pickaxe, and then turn left to avoid the lava through the
mining tunnel.

4. Experiment
4.1. Environment Setup
We mainly use the harvest mode in the MineDojo [14] en-
vironment to verify the model’s ability to play Minecraft.
The training pseudo code of Auto MC-Reward is shown in
Algorithm 1. We set up the following challenging tasks for
model performance comparison and ablation study:

• Exploring diamond ore on the 11-th floor under-
ground: Initially, the agent is equipped with an iron
pickaxe on the 11-th floor underground. When the dia-
mond ore is within the visible range and the distance is
less than 2 distance units, the task is deemed completed.
The difficulty of the task lies in the fact that diamonds
are very rare, lava frequently appears during exploration,
leading to death, and the maximum number of steps is
limited to 60,000. When steps exceed the limit, the tra-

Algorithm 1 Auto MC-Reward Training Pseudo Code
Require: Task (T ), Inital Agent (A0), Environment (Env), Max number

of Critic reviews (NCritic)
Ensure: Final Agent (AN ), Final Reward (RN )

Summary = None
Critique = None
R0 = None
for i = 1, . . . , N do

Ri = RewardDesigner(Summary, Critique, T , Ri−1)
for j = 1, . . . , NCritic do

Critique, Done = RewardCritic(Ri)
if Done then

break
else

Ri = RewardDesigner(Summary, Critique, T , Ri)
end if

end for
Ai = TrainAgent(A0, Ri, Env, T )
Traji, Stati = Eval(Env, Ai)
Summary = TrajectoryAnalyzer(Traji, Stati)
Critique = None

end for

jectory is considered failed. Long-term exploration can
demonstrate the advantages of dense rewards.

• Approaching tree in plains biome : The task is
considered successful if the tree is within the agent’s
visible range and the distance is less than 1 distance unit.
The difficulty of the task lies in the fact that the trees are
very sparse on plains, which is extremely detrimental to
sparse reward functions. The maximum number of steps
is limited to 2,000 steps.

• Approaching specific animal (e.g. cow , sheep )
in plains biome : The task is considered successful
if the animal is within the agent’s visible range and
the distance is less than 2 distance unit. The difficulty of
the task is that the animals are constantly moving. The
maximum number of steps is limited to 2,000 steps.

• Obtaining diamond : The agent needs to complete
the whole process of mining diamonds, including key be-
haviors such as finding and obtaining materials on the sur-
face, crafting, digging down, going back to the ground,
and mining stone/iron ore/diamond ore. The tech tree is
shown in Figure 4.

4.2. Implementation Details
LLM Prompt. The components of the input prompts for
Trajectory Analyzer include task description, game infor-
mation, statistical metrics, and information on failed trajec-
tories. Components of the input prompts for Reward De-
signer and Reward Critic includes task description, game
information, input parameters, and reward function require-
ments and format. We use GPT-4 [36] for all the LLM
components, and set temperature to 0.3. Since the LLMs
are only used once for each whole agent training instead of
each action, their computation overhead is negligible.
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Figure 3. The trajectories of the new behaviors. (a) Avoid lava
when exploring for diamond ore . (b) Attack cow in plains.

• Instruction: Instructions on initializing, updating and
handling execution error of reward function for Reward
Designer, reviewing function for Reward Critic, and ana-
lyzing trajectory for Trajectory Analyzer.

• Task description: The objective, initial conditions, suc-
cess criteria, and task flow. For example, for the explore
diamond task, the objective is “to find and approach a
diamond, achieving a high success rate while avoiding
death.” The initial condition is “agent at y level 11 with
an iron pickaxe.” The success criteria is “being less than 1
meter from the nearest diamond block”, and the task flow
is “horizontally explore to find a diamond, face it, and
approach it”. In the task description, we do not provide
prior game strategy information (task challenges, DFS ex-
ploration strategies, or avoiding lava, etc.) to ensure the
method’s versatility.

• Game information: Game version, block names, field
of view, action space, and units of measurement. Game
information provides knowledge about the game’s simu-
lation environment, not game strategy.

• Statistical metrics and information on failed trajec-
tories: success rates, and actions sequences, reward se-
quences, final inventory and nearby blocks of K = 10
failed trajectories. If a trajectory exceeds L = 32 steps, it
is truncated to the last 32 steps.

• Input parameters: The nearest distance of each block
type within the visible range in the current and previous
steps, changes in inventory between adjacent steps, health
points, and the agent’s location in each past step. The
memory is also provided as an input parameter for storing
information to monitor changes across different steps. We
provide explanation and examples of the parameters in the
input prompt.

• Reward function requirements and format: We require
the Designer to write a dense function and a sparse func-
tion, and consider only the sign of the two functions’ re-
turn values, not the magnitude. The detail of the scale
constraints is in Section 3.1.

Imitation Learning Details. When large labeled datasets

do not exist, the canonical strategy for training capable
agents is RL, which is inefficient and expensive to sam-
ple for hard-exploration problems [3, 4, 21], e.g. mining
diamond in Minecraft. Therefore, in order to more effi-
ciently explore the effectiveness of the LLM-based reward
function design mechanism proposed in this paper, we pre-
trained some foundation models through imitation learning
as done by VPT [3]. Specifically, we use GITM [53] to
continuously perform Diamond Mining task and record im-
portant observation data of each frame, such as RGB, ac-
tion, inventory, GPS, compass, structured actions, etc. In
the end, we collect about 11 million image data, totaling
about 153 hours (the control frequency is 20 Hz) of game
videos. Subsequently, we train these data through fully su-
pervised learning by using Impala CNN [13] and Trans-
former [44] as backbone, and obtained several foundation
models. The main differences between the foundation mod-
els are different biomes (forest and plains), temporal frames
(16 and 128), and whether goal embedding is used. In sub-
sequent experiments, these foundation models were used in
two different purposes:
• Give the RL model preliminary basic Minecraft gameplay

capabilities, e.g. forward/back, turn left/right, attack, etc.
For some tasks that have not been learned (e.g. approach-
ing cows in Figure 3(b)) or not learned well (e.g. avoid
lava in Figure 3(a), explore tree on plains) in imitation
learning, RL algorithms can be studied more efficiently.

• In the Diamond Mining task, the diamond collection suc-
cess rate, lava escape rate, death rate, etc. between the RL
model and the imitation learning model are compared to
demonstrate the superiority of the proposed method.

RL Training Details. We use proximal policy optimization
(PPO) algorithm [39] with generalized advantage estima-
tion (GAE) [38] to train our RL model. We use γ = 0.99
and λ = 0.95 for all of our experiments, and the total train-
ing frames is 256,000. To prevent catastrophically forget-
ting or overly aggressive policy update during RL training,
we follow VPT [3] to apply an auxiliary Kullback-Leibler
(KL) divergence loss between the RL model and the frozen
pre-trained policy. We also normalize the reward based on
the trajectory returns to constrain the gradient scales of dif-
ferent tasks. See Appendix for details.

4.3. Main Results
Baselines. We compare our Auto MC-Reward against the
following methods:
• Naive Handcraft: The agent keeps moving (and mining

for diamond exploring task) in one direction with a small
probability of turning left/right.

• Imitation Learning: Our foundation model pre-trained
with GITM-generated data, as introduced in Section 4.2.

• RL with Sparse Reward: Use only the reward from the
original environment, i.e. only receives a reward when
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Table 1. Comparison with other reward methods on three Minecraft tasks. Max steps for exploring tree and cow are set to 2000.
†Sparse reward receives a low death rate because it is often stuck in the same place or move in a small area without encountering lava .

Method Reward
Explore Diamond Ore Underground Approach Tree on Plains Approach Cow on Plains

avg. dist. ↑ death (%) ↓ lava escape (%) ↑ succ. (%) ↑ avg. step ↓ succ. (%) ↑ avg. step ↓ succ. (%) ↑
Naive Handcraft - 85.7 74.3 1.5 18.6 1993 2.1 1956 10.8

Imitation Learning - 102.2 55.6 46.8 38.9 1988 2.5 1772 22.4
RL Sparse 16.8 1.5† 0 0.5 1936 4.3 1854 12.6
RL Dense (Curiosity) 102.6 55.1 46.0 39.3 1672 45.8 1477 13.7
RL Dense (Self-Imitation) 104.0 54.8 47.2 39.7 1532 42.5 1280 23.5
RL Dense (MineCLIP) 105.9 54.0 47.8 40.5 1022 65.6 1206 44.9

Ours Dense (LLM) 142.8 45.2 70.0 45.2 972 73.4 1134 56.3

Table 2. Comparison with previous methods on success rates of
obtaining diamond . We list observations that are used in the
inference phase. Auto MC-Reward achieves a remarkable success
rate without exploiting unfair information (i.e. Lidar and Voxel)
during inference.

Method Controller Observation Diamond
Succ. (%)

Human [3] - - 50.0

DreamerV3 [17] RL RGB, Status 0.01
DEPS [47] IL RGB, Status, Voxel 0.6

VPT [3] IL + RL RGB 20.0
GITM [53] Handcraft Lidar, Voxel, Status 55.0

Ours IL (GITM-guided) RGB, GPS 28.8
Ours IL + RL RGB, GPS 36.5

Table 3. Ablations on Reward Critic and Trajectory Analyzer for
explore diamond ore task. The first row corresponds to using
the sparse reward from the original environment. †Sparse reward
receives a low death rate because it is often stuck in the same place
or move in a small area without encountering lava .

Designer Critic Analyzer Avg. Dist. ↑ Death ↓ Lava Esc. ↑ Succ. ↑
16.8 1.5† 0 0.5

! 75.8 58.2 30.4 35.1
! ! 95.2 49.3 40.7 40.5
! ! 130.6 47.8 64.8 43.1
! ! ! 142.8 45.2 70.0 45.2

the success criteria is completed.
• RL with Curiosity Dense Reward [37]: Encourage the

agent to discover and learn about parts of the environment
that it has not encountered before.

• RL with Self-Imitation Dense Reward [35]: Encourage
the agent to replicate its past actions that led to high re-
wards.

• RL with MineCLIP [14] Dense Reward: Use
MineCLIP to calculate the dense reward based on the sim-
ilarity between RGB frames and task objectives.

Results on Diamond Ore Exploring Task. For the plain
imitation learning model, fitting the training data makes it
lack the awareness of avoiding lava, so it often dies in lava
during the search for diamonds, and only has 38.9% suc-
cess rate under the limit of 60,000 steps, as shown in Ta-
ble 1. In contrast, our Auto MC-Reward makes the agent
realize the importance of avoiding lava by continuously im-

Figure 4. The tech tree of obtaining diamond. The green squares
are tasks to be optimized with Auto MC-Reward, i.e. obtaining
log , cobblestone , iron ore and diamond .

proving the dense reward function, and the final success rate
has increased to 45.2% with 70% lava escape success rate.
Figure 3(a) demonstrates good awareness of avoiding lava.
Based on the same reinforcement learning algorithm, the
disadvantages of sparse reward functions in long-horizon
tasks are undoubtedly revealed. By watching the videos of
collected trajectories, we find that using sparse functions
often leads to irreversible behavior, such as being unable
to break the surrounding ores to move due to maintaining
a head-up posture. Although a low death rate of 1.5% is
achieved, the actual average moving distance is only 16.8,
and the success rate is only 0.5%. Due to the similar scenes
underground, MineCLIP cannot give differentiated rewards,
so its performance is close to the initial imitation learning
model. Other baselines, like curiosity and self-imitation
dense reward, also have mediocre performance and the suc-
cess rate has not been significantly improved.

Results on Tree Approaching Task. Since trees are ex-
tremely sparse on the plain, the imitation learning model
and the RL model with sparse reward cannot perform well,
with only 2.5% and 4.3% success rates respectively, and
their average action steps are close to the maximum limit.
MineCLIP dense reward receives a success rate of 65.6%
since it can provide positive reward when tree is visible.
Curiosity and self-imitation methods also achieve better re-
sults than imitation learning. For Auto MC-Reward, Re-
ward Designer uses a strategy of giving positive rewards for
getting closer and deducting rewards for going away, so that
the agent learns to slowly approach the target, ultimately
achieving 73.4% success rate with only 972 average steps.

Results on Cow Approaching Task. The task of explor-
ing for cows does not appear in the training data of imitation
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learning, so the zero-shot ability on this task is not ideal,
with about 22.4% success rate and average steps close to
the maximum limit. By checking the videos, we find most
of the successful cases are due to good luck without inten-
tion to actively approach the target. The same experimental
conclusion is also obtained in the experiment of sparse re-
ward function. Similar to the Tree Approaching Task, the
superior dense reward function design mechanism makes
our agent 43.7% (56.3% vs. 12.6%) higher than sparse re-
ward, as listed in Table 1. Another dense reward MineCLIP
also shows strong performance in this task, but due to the
need to calculate the similarity of images and texts at all
times during training, the efficiency is unacceptable.
Results on Obtaining Diamond . We verify the pro-
posed method on a more difficult task, that is, the tech tree
of collecting diamonds, as shown in Figure 4. As mentioned
before, our foundation imitation learning model already has
a certain ability from birth to diamond mining. We use the
proposed method to optimize several key tasks in the pro-
cess to increase the success rate of final diamond acquisi-
tion. The green parts in Figure 4 are the tasks that need
to be optimized, i.e. obtaining log, cobblestone, iron ore
and diamond. We conduct experiments in two biomes in
Minecraft, and the cumulative success rate is shown in Fig-
ure 5. Specifically, the lower death rate allows our agent
to have a higher success rate in mining iron ore and dia-
mond, and ultimately achieves 36.5% success rate on for-
est biome, which is 7.7% higher than the imitation learning
model. As for plains, the difficulty of obtaining log makes
the imitation learning model unable to complete any tasks.
Auto MC-Reward overcomes the difficulty of obtaining log,
thus achieving a 28.1% success rate in obtaining diamonds.
Table 2 provides a rough comparison of several different
methods on the task of mining diamonds. We achieve a
high success rate without exploiting unfair information (i.e.
Lidar and Voxel) during the inference phase.

4.4. Ablation studies
Effectiveness of Reward Designer. The first row of Table 3
is an RL experiment with a sparse reward function. As men-
tioned before, it cannot explore diamonds normally. After
adding Reward Designer, it regained the ability to explore
under a dense reward function.
Effectiveness of Reward Critic. As listed in Table 3,
the success rate of exploring diamonds has increased from
35.1% to 40.5% by adding Reward Critic, because it can
reduce the syntax and semantic errors in the code, making
the training process more effective and sufficient. For exam-
ple, the Trajectory Analyzer concludes that the agent died in
lava and asks the Reward Designer to add relevant penalties.
However, without being checked by Critic for semantic er-
rors, it is possible that the added code snippet uses the word
“magma” instead of the correct one “lava”. This will result

Figure 5. Cumulative success rates for 4 key items of obtaining
diamond on forest and plains . In terms of diamond, the per-
formance comparison between imitation learning and Auto MC-
Reward in two biomes are: 28.8% vs. 36.5%, and 0% vs. 28.1%.

in insufficient learning of lava avoidance, which is reflected
in a 2.1% (43.1% vs. 45.2%) success rate difference.
Effectiveness of Trajectory Analyzer. As observed in Ta-
ble 3, Trajectory Analyzer is the key to improve the suc-
cess rate of completing tasks. It summarizes the reasons for
failure to be fed into Reward Designer, allowing it to itera-
tively modify an appropriate dense reward function to guide
the agent to overcome difficulties. In terms of Diamond Ex-
ploring Task, Trajectory Analyzer provides timely feedback
on the potential risks of lava, which greatly improves the
survival rate and moving distance, ultimately improving the
success rate from 40.5% to 45.2%.

5. Conclusion
We proposed Auto MC-Reward, an automated dense re-
ward design framework for addressing challenges caused by
sparse reward and complex environment of Minecraft. It ad-
dresses the issue of sparse rewards by leveraging LLMs to
automatically generate dense reward functions, enhancing
learning efficiency. The system consists of three key com-
ponents: Reward Designer, Reward Critic, and Trajectory
Analyzer, which are used for the design, verification and
analysis of the reward function respectively. Its capabilities
are validated through experiments, demonstrating a remark-
able improvement in complex tasks in Minecraft. Future
work may deal with the limited trajectory length for analysis
(last 32 frames) due to the context length of LLMs, which
hinders the analysis of long-term failures (e.g., not explor-
ing new areas, circling around lava). Auto MC-Reward
humbly contributes to more effective learning in complex
tasks through its automated dense reward function design.
We hope it can pave the way for further research in rein-
forcement learning and its real-world applications.
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