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Abstract

Shape assembly composes complex shapes geometries by
arranging simple part geometries and has wide applications
in autonomous robotic assembly and CAD modeling. Ex-
isting works focus on geometry reasoning and neglect the
actual physical assembly process of matching and fitting
joints, which are the contact surfaces connecting different
parts. In this paper, we consider contacting joints for the task
of multi-part assembly. A successful joint-optimized assem-
bly needs to satisfy the bilateral objectives of shape structure
and joint alignment. We propose a hierarchical graph learn-
ing approach composed of two levels of graph representation
learning. The part graph takes part geometries as input to
build the desired shape structure. The joint-level graph uses
part joints information and focuses on matching and aligning
joints. The two kinds of information are combined to achieve
the bilateral objectives. Extensive experiments demonstrate
that our method outperforms previous methods, achieving
better shape structure and higher joint alignment accuracy.

1. Introduction

Shape assembly composes complex shape geometries by
arranging a set of simple or primitive part geometries. Many
important tasks and applications rely on shape assembly al-
gorithms. For example, assembling Ikea furniture requires
one to identify, reorient, and connect the relevant parts.
Computer-Aided Design (CAD) modeling requires design-
ers to reposition and align a set of part geometries to create
complex designs. An accurate and robust shape assembly
algorithm is critical to the development of autonomous sys-
tems for furniture assembly or CAD modeling [34, 41, 48].

In this paper, we aim to tackle the task of multi-part
multi-joint shape assembly. This task simulates the real-
world furniture assembly setting, where multiple shape parts
are connected in different ways through contacting joints to
make a complex shape geometry [23, 25]. As Fig.1 shows,
we are given (a) multiple shape parts, where each part con-
tains multiple joints. For our setting, we use peg-hole joint
pairs to represent the allowed connections, similar to bolts
and nuts where matching is only allowed between male and

(a) input (b) sub-task 1

(c) sub-task 2 (d) target

peg joints hole joints

Figure 1. (a) Joint-annotated part point cloud input where blue
points indicate peg joints and red points denote hole joints. (b) joint
pairing process to produce a bipartite matching between pegs and
holes (c) joint-matching-aware SE(3) pose prediction for each part
to achieve the target (d) of assembling a shape of a valid structure
and with all pegs and holes aligned.

female pieces of the same contacting geometry [49]. Our
goal is to (b) correctly connect all peg joints with hole joints
and (c) piece these parts together to (d) make a desired shape.

Many research efforts have been made towards devising
shape assembly algorithms [3, 5, 7, 12, 15, 18, 26, 30, 39, 42–
44, 49, 52, 53, 58, 60]. These prior works take the holistic
geometric perspective of modeling shapes from parts. These
works produce shapes with great aesthetic value. However,
this pure geometric perspective is agnostic of the rotational
and reflective symmetry of parts, and thus results in upside-
down, flipped, and rotated part pose predictions. These
noisy predictions can lead to unmatched joints or mismatches
between joints, making it difficult to directly employ them
in the context of autonomous assembly [17, 41, 43, 50, 57]
or modeling of functional shapes [32, 62].

Many challenges exist in the multi-part multi-joint as-
sembly setting: 1) large matching search space, 2) non-
continuous optimization, and 3) error compounding. Pre-
viously, Willis et al. [49] have considered joints for shape
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assembly, but they focus on assembling shapes from only
two parts with one pair of joints. In the two-part assembly
setting, the pairing of joints is explicit and thus the desired
assembly can be directly achieved through continuous pose
optimization. However, our multi-part multi-joint task re-
quires solving for a bipartite joint pairing in a very large
matching space. Additionally, our task requires interleaved
discrete and continuous optimization. Joint pairing is a com-
binatorial problem in a discrete solution space, whereas pose
estimation is in a continuous solution space. In the multi-
part multi-joint setting, part poses need to simultaneously
satisfy both the combinatorial and the continuous constraints.
Finally, optimization of this task is sensitive to error com-
pounding. When one pair of joints are mismatched, the
poses for the two parts need to be falsely adjusted in or-
der to align these wrongly matched joints. These erroneous
pose predictions reciprocally affect other joints on the two
parts. These local errors propagate and eventually lead to
the deterioration of the entire shape structure.

To tackle these challenges, we propose an end-to-end
graph learning approach in a divide-and-conquer manner.
We decouple the complex task objective into combinatorial
and continuous subgoals modeled by two levels of graph
representation learning. The joint-level graph uses joint
information and focuses on matching part joints, and the
part graph takes part geometries as input to build the desired
shape structure. The two levels of graphs are then combined
to achieve both two objectives through hierarchical feature
aggregation. Since joints are special locations on parts, we
aggregate all joint-level features for each part to form a set of
joint-centric part features. These joint-centric part features
are combined with the learned part graph to predict part
poses to meet both the shape structure and joint matching
objectives. To alleviate the error compounding issue, we use
several graph iterations to assemble shapes in a coarse-to-fine
manner. Each graph iteration learns to correct and refine part
pose predictions from the previous iteration to eventually
achieve the multi-level objectives. Extensive experiments
demonstrate that we are able to achieve higher joint matching
accuracy and more reliable shape structure over prior works.
Our contributions are summarized as follows:
• We consider the concept of joint for the problem of

category-level multi-part 3D shape assembly. We intro-
duce a joint-annotated part dataset as well as a set of
evaluation metrics to examine the performance.

• We propose a novel hierarchical graph network that simul-
taneously optimizes for both holistic shape structure and
the joint alignment accuracy.

• We conduct extensive experiments to demonstrate the ad-
vantages of our approach over prior works on both task
objectives of holistic shape structure and joint alignment
accuracy. We also show ablation experiments to validate
our design choices.

2. Related Work

Assembly-based 3D Modeling. Part assembly plays an im-
portant role in many tasks [13, 24, 33, 47, 61, 62]. As a
pioneering work, [8] proposes a data-driven synthesis ap-
proach for 3D geometric surface model reconstruction. Since
then, various methods have been proposed to generate shapes
from parts [9–11, 14, 18, 20]. Many works [2, 16, 19] fo-
cus on using probabilistic graphical models to encode se-
mantic and geometric relations among shape parts. Other
works [4, 40, 42, 54] build 3D shapes conditioned on partial
shapes. While most of these methods require a third-party
shape repository, some generative methods have been pre-
sented in recent years [9, 10, 15, 18, 26, 35, 54]. For exam-
ple, [54] first learn to generate shape parts and then estimate
the transformation of parts to compose shapes. [12, 15] de-
sign a dynamic graph learning approach by reasoning about
part poses and relations iteratively. Our task is different from
these prior assembly-based shape synthesis works in that our
goal is not to generate a variety of shapes, but to solve for the
set of part poses that make one desired shape and match all
the joints at the correct locations. Previously, [30] explores
the problem of single-image-guided 3D part assembly, using
an image as guidance to predict 6D part poses to assemble
the desired shape, but they neglect the information of part
joints and contact surfaces. Recently, Willis et al. [49] also
considers joints for shape assembly but with only two parts
and one pair of joints, whereas our task considers multiple
shape parts and each comes with multiple contact joints. [49]
also assumes watertight part geometry, whereas we relax this
assumption and use simple point cloud representation that
can be easily obtained using commercial scanners [32].

Graph Learning for Part Relationship Graph neural net-
work has been proposed to study the relationship between
entities to better understand objects and scenes. Recently,
a line of research [6, 31, 56, 59] learns the scene graph in-
formation from the labeled object relationship with a graph
neural network, which benefits object detection on large-
scale image dataset such as Visual Genome [21]. Other
works [28, 29, 38, 46, 63] explore the physical relation-
ships between objects with geometrical and statistical heuris-
tics, which are encoded in the iterative neural encoding and
achieve decent performance on the 3D scene generation
task. Inspired by the success of graph learning in various
tasks, other research [10, 12, 15, 27, 55] apply the part re-
lation reasoning to learn shape structure and geometry for
3D shape modeling. These prior works deals with more
apparent object-level or part-level relationships and leverage
explicit relationship supervision, which is calculated from
shape topology, adjacency, and support. We are different
from these works in that our task deals with a hierarchy of
relationships, the relationships among joints and the rela-
tionship among parts. We use a hierarchical graph learning
technique to simultaneously achieve bilateral objectives.
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Figure 2. Our multistage graph network is composed of two main GNN modules: the part graph module and the joint graph module. The part
graph module is responsible for predicting poses for each part to construct the desired shape structure. The joint graph module helps to correct
part poses to connect the matched joints. Joint graph message passing (b) contains four message-passing layers: fv!e, fe!v, fv!r, fr!v .

3. Method

Problem Setup. Our multi-part multi-joint shape assembly
task is defined as follows: given 1) a set of 3D part point
clouds P = {pi}Ni=1 and 2) each part should contain a num-
ber of peg and/or hole joints J = {jpi , jhi }Mi=1 , we aim to
predict a set of 6-DoF part pose qi = (Ri, ti), qi 2 SE(3)
for all input parts P to satisfy the bilateral objectives: 1) the
union of the transformed parts S = [iqi(pi) that forms a
desired 3D shape, 2) all joints are matched, and the matched
pegs Jp and holes Jh are close to each other.

Overview. Our multi-part multi-joint shape assembly task
has several challenges 1) find the set of one-to-one peg-hole
matching from a very large matching search space (O(M2)),
2) predict poses for all parts such that they simultaneously
achieve two objectives of connecting all matched joints and
forming desired shape structure, 3) local joint matching or
pose prediction errors can easily propergate to the entire
shape and leads to degeneration.

To deal with the first challenge, we introduce a shape
prior heuristic to reduce the matching search space. Inspired
by previous works [15, 30], we use the part geometry infor-
mation to propose an initial rough shape structure via a part
graph. Then, our joint graph works with the rough shape
structure to find an initial peg-hole matching. We address the
second challenge by having the two levels of graph represen-
tation learning focusing on each of the two objectives. Joint
graph module matches joints. Part graph constructs shape.
We then combine the joint-level and part-level information
using hierarchical feature aggregation to predict part poses
subject to both objectives. Finally, we alleviate error com-
pounding by iterative graph convolution to gradually refine
part poses to meet the two objectives.

Part Graph Pose Proposal. The part graph aims to pro-
pose desired shape structure from a given set of part ge-
ometries. Inspired by [15, 30], we directly regress part
poses from part geometries. Therefore, we initialize our

part graph Gp = (Vp
, Ep) by encoding part geometry P

features on each graph node v
p
i and edges epi,j running be-

tween all part nodes. The part geometric features are ex-
tracted using PointNet [37]. In order to explicitly model
the relationship between parts to form the desired shape,
we use graph message passing, a mechanism for nodes to
exchange information with its neighbors through edge con-
nections. Part-level message passing is achieved through
iteratively updating the edge features e

p
ij = f

p
v!e(v

p
i , v

p
j )

and node features vpi
0 = f

p
e!v(vi,

1
N

PN
j=1 eij). We use the

updated graph for pose prediction, as shown in the top sec-
tion in Fig. 2. In the first iteration of part graph convolution,
part pose vectors are decoded from the part node features,
qi = fpose(v

p
i
0). For any subsequent iterations, the pose vec-

tor qi,t+1 is predicted given the previous step pose prediction
and the updated node features qi,t+1 = fpose(v

p
i
0
, qi,t).

Joint Graph Relationship Reasoning. We use a joint
graph to infer and refine joint connectivity relationships. As
shown in the bottom section of Fig. 2, we first initialize joint
node features vji using PointNet to extract the joint-geometry
feature vectors. The joint edges eij are initialized to be a
set of bipartite edges running between all pegs nodes and all
holes nodes Ej = {ejp,h} to reflect all possible allowed con-
nections. We then use message passing to update the edge
and node features iteratively. Specifically, we first update
features of each edge eij with the neural messages calcu-
lated from its connected node features, eij = fv!e(vi, vj).
For the subsequent step, we update the node features vi

by aggregating information from all connected joint edges
v
0
i = fe!v(vi,

1
M

PM
j=1 eij). We further update the joint

node features vi by explicitly modeling the joint connectiv-
ity relationships. Joint connectivity depends on two critical
information, contact surface geometry and relative part posi-
tions. Therefore, we model the joint matching relationship
from joint geometry p

joint
i and part position {qi}. We learn

a joint connectivity matrix rij 2 [0, 1] to reflect how joints
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Figure 3. Qualitative comparison of our method and baselines (best viewed in color). We show the predictions in both the shape view
(top-right corner) and the joint view (blue shapes), where the paired joint point sets are in the same color. In top three rows, the baselines are
trained with their original setup. In bottom three rows, the baseline methods are trained with our joint input and loss. Directly imposing our
proposed input and loss setting on baseline methods leads to collapsed shape prediction, whereas our proposed method produces the most
structurally sound and joint optimized predictions.

are connected. The connectivity matrix is then used as edge
weights applied to edge features eij , and we further update
the joint nodes by aggregating the weighted edge features.

r
(t)
ij = fv!r

⇣
fr

⇣
qi; p

joint
i

⌘
, fr

⇣
qj ; p

joint
j

⌘⌘
(1)

e
0
ij = eijrij , v

00
i = fr!v

 
v
0
i,

P
j e

0
ijP

j rij

!
. (2)

Joint-Aware Pose Prediction. In order to generate part
poses that simultaneously achieve both joint matching and
shape structure objectives, we need to combine information
from both the part graph and the joint graph. The joint-part
relationship is hierarchical, since joints are the contacting
locations on parts. We propose to model this relationship
using hierarchical feature aggregation. Specifically, we use
pooling operations on all relevant joint nodes for a part
{vjt }

ni
k=1 to form a new joint-centric part feature v

p⇤
i , as

shown in section (c) in bottom of Figure 2.

v
p⇤
i = MaxPool({vjk}

ni
k=1), (3)

These joint-aggregated part node features are then combined
with the original part graph through part-wise feature con-
catenation for joint-aware pose prediction v

p0

i = {vpi ; v
p⇤
i },

as shown in section (d) in Fig. 2. Now with the new part
features vp

0

i containing both joint and part information, we
conduct the joint-aware pose proposal with the new updated
part graph. Conditioning on part poses {qi,t} generated by
previous graph iteration, we predict a refinement part pose
operator �qi,t+1 = fjoint�pose(v

p0

i |qi,t), as shown in sec-
tion (e) in Fig. 2. The new pose prediction is compose of the
predicted pose operator and previous stage part pose,

qi,t+1 = �qi,t+1(qi,t) = [�Ri,t+1(Ri,t), �ti,t+1 + ti,t] (4)

where the new rotation is calculated by applying the new rota-
tion difference on the previous rotation prediction, and trans-

3284



Shape Chamfer Distance # Part Pose Accuracy "

Setting Method Chair Table Cabinet Average Chair Table Cabinet Average

Original Setting

B-Global 0.015 0.013 0.008 0.013 32.8 30.1 33.6 31.4
B-LSTM 0.017 0.026 0.007 0.021 39.4 22.5 44.4 30.8

B-Complement 0.028 0.034 0.222 0.046 11.0 5.33 0.0 7.2
B-GNN 0.007 0.008 0.006 0.007 65.3 61.4 45.0 61.7
B-NSM 0.013 0.022 0.012 0.018 25.3 48.2 18.9 37.0

Our Full Setting
(joint input and loss)

B-Global 0.029 0.022 0.013 0.024 5.4 12.0 15.0 9.6
B-LSTM 0.037 0.029 0.017 0.031 4.4 4.1 15.3 5.1

B-Complement 0.048 0.044 0.029 0.044 4.5 8.0 11.6 6.9
B-GNN 0.034 0.039 0.021 0.036 11.5 3.2 10.4 7.0
B-NSM 0.014 0.032 0.020 0.024 19.0 12.1 14.7 15.0

B-Joinable 0.026 0.037 0.025 0.032 12.6 7.3 12.1 9.7

Ours 0.006 0.007 0.005 0.006 72.8 67.4 63.3 69.2

Table 1. Quantitative comparison for the Shape Structure Metrics between our approach and the baseline methods under two settings.
Original Setting on the top rows shows the performance of the baselines method with inputs and losses as originally proposed. Our full
setting on the bottom rows shows the baseline performance with our joint-annotated part inputs and our joint-aware losses, same to our
method. Down arrow indicates that lower numerical values corresponds to better performances. Up arrow means higher number is better.

lation is updated by adding the translation difference and pre-
vious translation prediction, more details in Appendix 7.2.

Loss Functions. We leverage two sets of loss functions:
shape loss Lshape and joint loss Ljoint to optimize our mul-
tistage graph network. Lshape aims to help the part graph
network to generate valid shape structure, and Ljoint helps
the joint graph to match and connect all joints.

Shape loss We focus on the aspects of translation, rota-
tion, and holistic shape structure in devising our shape loss
Lshape, where Lshape = �1Lt + �2Lr + �3La. We use L2

loss to supervise translation, and CD to supervise rotation
and holistic shape structure.

Lt =
NX

i=1

||ti � tgti ||22,

Lr =
NX

i=1

dchamfer(Ri(pi), R
gt
i (pi))

La = dchamfer

 
NX

i=1

(qi(pi)) ,
NX

i=1

�
qgti (pi)

�
!

(5)

where Chamfer Distance (CD) is defined as [1]:

dchamfer (a, b) =
X

x2a

min
y2b

||x� y||22+
X

x2b

min
y2a

||x� y||22.

(6)
Additionally, as inspired by [30], we ensure our shape loss to
be an order invariant loss metric to address the geometrically
congruent parts, e.g. legs of a chair. Specifically, we perform
Hungarian matching [22] within each congruent part class
to supervise with the closest ground truth part pose.

Joint loss The joint matching task is very sensitive to
prediction errors; one small matching error can lead to the

deterioration of the entire shape. Therefore, we supervise for
the joint matching objective in a coarse-to-fine manner with
three loss components: Ljoint = �4Lflip + �5Lcoarse +
�6Lfine. The first loss term Lflip directly corrects the
flipped pose predictions. Inspired by [30], we use rotation
L2 loss to correct upside-down predictions for parts with
reflective symmetry:

Lflip =
NX

i=1

��qi(pi)� q
gt
i (pi)

��2
F
, (7)

The second loss term Lcoarse provides a coarse guidance to
attach the matched joints. We use L2 distance between the
matched pegs jpa and holes jhb . We use njoint denotes the
number of joint points,

Lcoarse =
MX

�i=1

||qa(j̄pa)� qb(j̄hb )||
2
2, j̄

p
a =

1

njoint
j
p
a (8)

The last loss component Lfine uses joint geometric cues to
refine joint alignment. We use Chamfer Distance between
the paired peg j

p
a and hole j

h
b with predicted poses applied,

Lfine = dchamfer(qa(j
p
a), qb(j

h
b )), jpa 2 pa, j

h
b 2 pb (9)

The latter two components of the joint losses are conditioned
on a joint matching assignment � : {�i = (jpa , j

h
b )}. Since

any arbitrary permutations in the congruent part class are also
valid predictions, we cannot directly use the ground truth
joint matching �gt as our supervision signal. Therefore, to
guarantee the order invariance of joint matching, we design
a joint-matching algorithm with a graph traversal scheme to
reassign matching of joints between congruent part classes
(details in Alg. 1 in Supplementary Material).
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Joint Chamfer Distance # Joint Matching Accuracy "

Setting Method Chair Table Cabinet Average Chair Table Cabinet Average

Original Setting

B-Global 0.712 0.847 0.667 0.780 13.4 15.8 10.7 14.5
B-LSTM 0.756 0.728 0.651 0.733 17.0 13.2 14.8 14.8

B-Complement 0.901 0.977 1.074 0.954 7.5 8.3 23.6 9.2
B-GNN 0.725 0.855 0.683 0.791 24.4 30.0 18.6 26.9
B-NSM 0.697 0.717 0.700 0.708 15.1 16.9 17.1 16.2

Our Full Setting
(joint input and loss)

B-Global 0.513 1.268 0.488 0.912 12.7 4.0 6.9 7.6
B-LSTM 0.394 0.875 0.467 0.655 20.3 7.7 13.8 13.1

B-Complement 0.456 0.647 0.503 0.561 17.2 15.5 17.0 16.3
B-GNN 0.379 0.786 0.416 0.598 21.5 10.3 20.0 15.4
B-NSM 0.556 0.698 0.517 0.629 18.9 12.1 7.8 14.4

B-Joinable 0.653 0.812 0.483 0.725 16.1 13.9 9.4 14.4

Ours 0.352 0.602 0.620 0.505 57.2 50.6 27.5 51.4

Table 2. Quantitative comparison for the Joint Matching Metrics between our approach and the baseline methods under two settings. The
two metrics reflects different aspect of the joint matching quality. Joint chamfer distance evaluates the average distance between matched
peg-hole, but does not reflect whether joints are successfully aligned. Joint matching accuracy evaluates the number of aligned peg-hole
pairs among all peg-hole joints for the shape. The bottom rows indicates that our joint input and loss setting helps baselines to lower the
distance between all joints, but resulting in collapsed shapes and thus worse matching accuracy.

Remark. To tackle the intertwined problem of joint-
centric part assembly, we propose an iterative hierarchical
graph learning approach. We use two subgraph embeddings
to focus on different aspects of the bilateral objectives. The
part graph learns to predict and refine part poses to optimize
the shape structure. The joint graph messaging passing dis-
covers the joint-wise relationships. The two kinds of learned
messages are combined to predict part poses to construct
shapes that are both structurally sound and joint aligned.

4. Experiments

We introduce a joint-augmented part dataset as well as a set
of evaluation metrics to examine both the shape-structure
and joint-alignment aspects of the task performance. We
compare with six re-purposed prior works to demonstrate
that our proposed method is more effective. We conduct
ablation studies to validate our design choices.

4.1. Dataset

We adapt the PartNet [36] for our task by augmenting the
shapes parts with joint annotations. Following [30], we use
the three largest furniture categories that requires real-world
assembly, chairs, tables and cabinets, and adopt the PartNet
official train/validation/test split. We use Furthest Point
Sampling (FPS) to sample 1,000 points over each part mesh.
All parts are canonicalized to be zero centered and rotated to
be local axis aligned using PCA. We detect joint points by
computing all pair-wise part Chamfer Distance (eq. 3) and
take the closest 50 points between two connected parts with
minimum distance less than 0.05. Following [15, 30], we
use Level-3 granularity and filter out the shapes with more

than 50 pairs of joints, which leaves us with 3736 chairs,
5053 tables, 719 cabinets.

4.2. Baseline Methods

Since our task is novel, there is no direct comparison from
previous works that address the exact joint-alignment as-
pect of multi-part shape assembly. Instead, we re-purpose
and adapt previous works as baselines to tackle our tasks
as described below (implementation detail and additional
baselines experiments can be found in Appendix 7.2, 7.4).
B-Complement: Sung et al. [42] tackles shape generation
by retrieving part candidates from a large part repository.
Following [15, 30], we modify it to tackle our task.
B-LSTM: Inspired by the sequential part generation
work [12, 54], B-LSTM utilizes a LSTM backbone to sequen-
tially decode part poses given previous part pose estimation.
B-Global: Inspired by [26, 39], B-Global augments part
attributes with the global context when decoding part poses.
B-GNN: Previous works [12, 15] propose to use iterative
graph neural network to assemble a variety of shapes given
a part set. B-GNN follows [12, 15] to use dynamic graph
learning for our joint-centric part assembly task.
B-NSM: Chen et al. [7] proposes a two part mating network
by regressing part poses using transformer and adversarial
training. B-NSM uses transformer with self-attention.
B-Joinable: Willis et al. [49] tackle the task of joint-centric
assembly of two watertight volumetric parts by joint axis
prediction. We adapt it for our task.

4.3. Evaluation Metric

Shape Evaluation Metric. Following [30], we adopt the two
metrics of part accuracy (Part Acc.) and shape chamfer dis-
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Figure 4. Examples of coarse-to-fine part pose prediction over different iterations of our network. The iterations are interleaved graph
convolutions of part graph and joint graph.

tance (Shape CD) to evaluate the assembled shape structure.
Part accuracy threshold ⌧p is chosen to be 0.1.

Part Acc. =
1

N

NX

i=1

1
⇥
dchamfer

�
qi(pi), q

gt
i (pi)

�⇤
< ⌧p

(10)

shape CD =
1

N · npoints

NX

i=1

dchamfer

�
qi(pi), q

gt
i (pi)

�

(11)
Joint Evaluation Metric. We propose two metrics for

evaluating the second objective of the joint-centric part as-
sembly task, joint accuracy (Joint Acc.) and joint cham-
fer distance (Joint CD). Specifically, Joint Acc. evaluates
how many joints are matched under the order-invariant joint
matching algorithm defined by Alg. 1 (in Supplementary
Material). It measures the percentage of joint pairs with
Chamfer Distance under chosen threshold ⌧j=0.01.

Joint Acc. =
1

M

MX

�i=1

1
⇥
dchamfer(qb(j

h
b ), qa(j

p
a))
⇤
< ⌧j

(12)
where �i = (jpa , j

h
b ) and j

p
a 2 pa, j

h
b 2 pb. Additionally, we

also resort to joint Chamfer Distance metric to reflect the
preciseness of part joint alignment by each method,

Joint CD =
1

M

MX

�i=1

dchamfer

�
qa(j

p
a), qb(j

h
b )
�

(13)

4.4. Results and Analysis

To guarantee the fairness of comparison, we devise two
settings for the baseline experiments: (I) the setting in their
original formulation, as also adopted in [12, 15, 30]; (II)
baseline models trained with the same joint inputs and losses
used in our model. The original task formulation of B-
Joinable [49] also explicitly consider joints, so we show
its results in setting II.

Setting I. By explicitly modeling joint connections, our
method improves shape structure over previous methods that
purely considers part geometries. Table 1 compares our
proposed methods and baseline methods according to the
shape structure metric. We can see from the table that our
method consistently outperforms baseline methods on the
shape metric. Qualitative evidence in Fig. 3 (shape structure
in the top-right corner) also shows that our predictions are
structurally similar to the ground truth, outperforming all the
baselines. We can observe from the joint-centric view of the
figure (blue shapes joint pairs are in the same color) that the
baseline methods make flipped or upside-down predictions
for parts with rotational and reflective symmetry, e.g. the
chair armrest and seat poses predicted by B-GNN. Addition-
ally, in their original proposed setting, the baseline methods
only consider part geometries and can be confused by parts
with similar geometries. Thus, they cannot determine the
correct pose for these parts. For example, Fig. 3 shows, cabi-
nets are made with boards of similar shapes. B-LSTM and
B-Complement place all boards horizontally. Joints provide
additional information for the functionality of each part. The
two vertical side boards has multiple parallel joints, and the
horizontal racks have joints at the two ends. Our method
utilizes this information to achieve better shape structure.

Setting II. The performance of the baseline methods de-
grades significantly under the experimental setting II, com-
pared with setting I. We can tell from Table 1 that the bottom
section showing setting II is almost one-third of the perfor-
mance of setting I, their original proposed setting, shown
on the top section of the table. This demonstrates that our
multi-part multi-joint task is challenging. Baseline methods
cannot be directly adopted to tackle our task that involves
two different objectives with two kinds of relationship rea-
soning. Similar phenomenon can be observed in Fig. 3, in
which the bottom three rows show the baseline predictions
under setting II. We can see that the baselines predict col-
lapsed shapes. This is because when all parts are clustered
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SCD # PA " JCD # JA "

w/o 1st iter of part graph 0.025 23.71 0.572 33.86
w/o joint embedding 0.019 33.36 0.258 36.90

w/o matching alg. 0.010 55.10 0.416 37.50
w/o Lflip 0.007 68.44 0.436 39.71

w/o Lcoarse 0.006 66.65 0.381 44.82
w/o Lfine 0.006 63.72 0.377 52.01

Ours full 0.006 72.81 0.352 57.18

Table 3. Ablation study conducted on the Chair category. SCD
denotes Shape Chamfer Distance; PC denotes Part Accuracy; JCD
denotes the Joint Chamfer Distance, and JA denotes Joint Accuracy.
Arrows indicates the direction of better performance.

together, their joint distances are also decreased. This type of
collapsed prediction is a local minimum for the joint losses.

This observation gives us insights into the loss landscape
of the two task objectives. The shape structure objective
aims to spread out the part geometries to various locations.
The joint alignment objective aims to connect and contact
parts together. For any inaccurate pose predictions, these two
objectives conflict with each other. Shape structure wants to
expand parts, whereas joint matching wants to contract parts.
There exists only one set of pose predictions that simultane-
ously satisfy both task objectives–that is, the global optimum.
This explains why most baseline methods fail when they are
subjected to both objectives at the same time. The local
minimum for the joint matching objective can easily trap
pose predictions for baseline methods from achieving valid
shape structures. However, our method maintains the valid
shape structure using a coarse-to-fine scheme, and thus is
less prone to stuck in the local minimum of collapsed shape.

In Figure 4, we show our coarse-to-fine assembly scheme
by visualizing the predicted shape structures in the interme-
diate stages of our graph convolution. We observe that the
first iteration of part graph learns to predict a rough shape
structure. The subsequent joint graph iteration learns to
modify part poses so more parts can connected with each
other. Another iteration of part graph then learns to refine
part poses with the corrected joint matching. Eventually,
through these iterations of graph convolution, we can pro-
duce structurally sound and joint matched part assemblies.
We use the part-joint-part-joint-joint graph combination, as
we discovered that this combination works best empirically.

Ablation Study. We conduct three ablation experiments
to demonstrate the effectiveness of different design choices
of our proposed approach, as shown in Table 3. We first test
our network design of using a part graph module as the first
iteration of our network. We believe that the rough shape
structure proposed by the first part graph module can serve
as a shape structure heuristic to reduce the joint matching
difficulty. As shown on the top row in Table. 3. Removing
the first iteration of the part graph by directly having the
joint graph to propose joint matching solutions significantly

reduce our performance, and hence verifies our conjecture
of shape structure heuristic on joint matching.

Our second ablation experiment aims to test the impor-
tance of the joint embedding, as shown on the second row in
Table. 3. We remove the joint embedding step and applying
the joint losses on the last stage part graph directly. The
result shows a significant performance decrease in Shape
CD and Part Accu.. This setting is similar to experimental
setting II by directly adding joint losses to baseline methods.
This shows that joint embedding is a non-trivial component
to our network that provides more explicit joint-alignment
pose editing signal.

We then test our method without the matching algorithm
in the loss scheme, as described in Alg. 1 in Appendix. We
observe that the performance decreases significantly across
all metrics. This is because Hungarian-matching allows
shape losses to be permutation invariant for geometrically
congruent parts, the joint matching algorithm maintains this
order-invariance property for the joint losses. Alg. 1 finds a
new matching assignment considering permutations within
the congruent part class, granting consistency between the
two loss objectives. Without such consistency, the two losses
are not synchronized and work in different directions, and
thus result in problematic part pose predictions.

5. Conclusion and Future Work

We formulate a novel variant of the category-level multi-part
3D shape assembly problem by introducing the concept of
joints. We focus on the peg-hole abstraction of part joints
and proposed a hierarchical graph network approach that
consists of a joint embedding and a part embedding for
explicit hierarchical relationship reasoning to tackle the chal-
lenges. We introduce a joint-augmented multi-part assembly
dataset along with evaluation metrics to set up the test bed
for this task. We also provide extensive empirical evidence
to demonstrate the effectiveness of our approach compared
to the re-purposed prior works. We believe our work can on
autonomous assembly systems.

As a start of the multi-part multi-joint assembly problem,
we focus on the simple but commonly-used peg-hole joints.
There are several possible scenarios that are not considered
in our paper and are left for future work. One future direction
is to extend to more complicated joints for this problem, and
construct a general formulation for all possible joint types.
Another future direction is programmatic or sequential plan-
ning for joint alignment, which would better enable vision
algorithms to be deployed in autonomous systems.
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