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Abstract

Images captured under sub-optimal illumination condi-
tions may contain both over- and under-exposures. Cur-
rent approaches mainly focus on adjusting image bright-
ness, which may exacerbate color tone distortion in under-
exposed areas and fail to restore accurate colors in over-
exposed regions. We observe that over- and over-exposed
regions display opposite color tone distribution shifts,
which may not be easily normalized in joint modeling as
they usually do not have “normal-exposed” regions/pixels
as reference. In this paper, we propose a novel method
to enhance images with both over- and under-exposures by
learning to estimate and correct such color shifts. Specif-
ically, we first derive the color feature maps of the bright-
ened and darkened versions of the input image via a UNet-
based network, followed by a pseudo-normal feature gener-
ator to produce pseudo-normal color feature maps. We then
propose a novel COlor Shift Estimation (COSE) module
to estimate the color shifts between the derived brightened
(or darkened) color feature maps and the pseudo-normal
color feature maps. The COSE module corrects the esti-
mated color shifts of the over- and under-exposed regions
separately. We further propose a novel COlor MOdula-
tion (COMO) module to modulate the separately corrected
colors in the over- and under-exposed regions to produce
the enhanced image. Comprehensive experiments show that
our method outperforms existing approaches. Project web-
page: https://github.com/yiyulics/CSEC.

1. Introduction
Real-world scenarios often involve a wide range of illumi-
nation, which poses a significant challenge for photograph-
ing. Uneven scene illumination may easily produce both
over- and under-exposures. Although cameras have an auto-
matic exposure mode to determine an “ideal” exposure set-
ting based on scene brightness, uniformly adjusting the ex-
posure across the entire image may still result in excessively
bright and excessively dark regions. Such under- and over-
exposed regions can exhibit obvious color tone distortions.
The relatively high noise level in under-exposed regions al-

(a) Input (b) MSEC [1] (c) LCDP [28] (d) Ours (e) GT

(f) Sampled pixels in MSEC [1] (g) Sampled pixels in LCDP [28]

Figure 1. Given images with both over- and under-exposures
(a), SOTA methods [1, 28] may still fail to correct color distor-
tion (b,c). We show PCA results of pixels randomly sampled
from MSEC [1] (images with either over- or under-exposed) (f)
and LCDP [28] (images with both over- and under-exposures)
(g) datasets, and make two observations. First, we observe that
under-exposed pixels (greenish dots) tend to have a reverse distri-
bution shift compared to over-exposed pixels (reddish dots) in both
datasets. Second, unlike MSEC [1] that contains normal-exposed
pixels (bluish dots) in their 0 EV input images, images with both
over- and under-exposures do not have such “reference pixels” as
guidance. These two observations inspire us to estimate and cor-
rect such color shifts conditioned on the created pseudo-normal
exposed features. Our method can properly adjust images with
both over- and under-exposures (d).

ters the data distribution to cause shifts in color tone, while
the saturated over-exposed regions lose the original colors.
Hence, enhancing such images typically involves brightness
adjustment and color tone shift correction.

In recent years, numerous endeavors have been made to
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enhance images that are improperly exposed. They can be
broadly grouped into two categories. The first category fo-
cuses on enhancing either over-exposed or under-exposed
images. Some methods [17, 23] propose to learn an ex-
posure invariant representation space, where different ex-
posure levels can be mapped to a standardized and invari-
ant representation. Other methods [18, 34] propose to inte-
grate frequency information with spatial information, which
helps model the inherent image structural characteristics
to enhance the image brightness and structure distortions.
However, as the above methods typically assume that the
over- or under-exposure happens to the whole image, they
do not perform well for images with both over- and under-
exposures (e.g., Figure 1(b)). Recently, Wang et al. [28]
propose the second category of work, which aims to en-
hance images with both over- and under-exposures. They
utilize the local color distributions as a prior to guide the
enhancement process. However, despite their pyramidal
design of local color distributions prior, their method still
tends to produce results with significant color shifts, partic-
ularly in large homogeneous regions (e.g., Figure 1(c)).

In this paper, we aim to correct the image brightness
and color distortions for images with both over- and under-
exposures. To approach this problem, we first visualize
the PCA results of pixels randomly sampled from two rel-
evant datasets, MSEC [1] (each scene has five input im-
ages of different exposure values (EV)) and LCDP [28]
(each scene has only one input image with both over- and
under-exposures), in Figure 1(f) and 1(g), respectively. We
have two observations from this initial study. First, under-
exposed pixels (green dots) tend to have an opposite dis-
tribution shift compared to over-exposed pixels (red dots)
in both datasets. Second, unlike MSEC [1] that contains 0
EV input images, which can serve as reference images for
the exposure normalization process, images of LCDP [28]
do not contain such “normal-exposed” pixels. The first ob-
servation inspires us to consider estimating and correcting
such color shifts, while the second observation inspires us
to create pseudo-normal exposed feature maps to function
as a reference for color shift estimation and rectification.

To this end, we propose a novel method to adjust the im-
age brightness and correct the color tone distortion jointly.
Our method first uses a UNet-based network to derive color
feature maps of the over- and under-exposed regions from
the brightened and darkened versions of the input image.
A pseudo-normal feature generator then creates the pseudo-
normal color feature maps based on the derived color fea-
ture maps. A novel COlor Shift Estimation (COSE) mod-
ule is then proposed to estimate and correct the color shifts
between the derived brightened (or darkened) color feature
maps and the created pseudo-normal color feature maps
separately. We implement the COSE module by extend-
ing the deformable convolution in the spatial domain to the

color feature domain. We further propose a novel COlor
MOdulation (COMO) module to modulate the separately
corrected colors of the over- and under-exposed regions to
produce the enhanced image. We implement this COMO
module via a tailored cross-attention mechanism performed
on the input image and estimated darken/brighten color off-
sets. Figure 1(d) shows that our method can produce visu-
ally pleasing images.

Our main contributions can be summarized as follows:
1. We propose a novel neural approach to enhance images

with both over- and under-exposures via modeling the
color distribution shifts.

2. We propose a novel neural network with two novel mod-
ules, a novel COlor Shift Estimation (COSE) module
for the estimation and correction of colors in over- and
under-exposed regions separately, and a novel COlor
MOdulation (COMO) module for modulating the cor-
rected colors to produce the enhanced images.

3. Extensive experiments show that our network is
lightweight and outperforms existing image enhance-
ment methods on popular benchmarks.

2. Related Works
Exposure Correction. When photographing scenes with
complex illuminations, the captured images may have
over- and/or under-exposure problems. Exposure correction
methods [16, 44, 46–48] aim to enhance such images to re-
cover image details buried in over-/under-exposed regions.

A group of methods focus on under-exposed image en-
hancement. Some of these methods are Retinex-based,
which employ either handcrafted features [5, 11, 15] or deep
features [22, 30, 36, 49, 50], to decompose the image into
illumination and reflectance components for their enhance-
ment. Recently, Fu et al. [10] propose to combine con-
trastive learning and self-knowledge distillation to learn the
decomposition process. Fu et al. [12] propose an unsuper-
vised approach to learn the decomposition process, which
uses paired images as input to guide the decomposition of
each other with the consistency regularization between the
two decomposed reflectance components of each image in
the pair. Other methods directly learn the mappings from
under-exposed images to normal-exposed images. These
methods focus on designing various priors, e.g., frequency
information [38], lagrange multiplier [51], de-bayer filter
[8], 3D lookup table [42], normalizing flow [33], and signal-
to-noise ratio [40]. Most recently, Wu et al. [37] propose
to use semantic segmentation maps to help maintain color
consistency. Xu et al. [41] leverage the edge detection for
structural modeling, which helps enhance the appearance.
Wang et al. [29] propose to reconstruct an implicit neural
radiance field (NeRF) using low-light images and then en-
hance the NeRF to produce normal-light images.

Recently, Afifi et al. [1] construct a large-scale dataset
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that contains over-, normal- and under-exposed images, and
propose a Laplacian pyramid-based network for exposure
correction. Huang et al. [17] propose to learn an exposure
invariant space to bridge the gap between over-exposure and
under-exposure features in image-level. Later, Huang et
al. [18] further leverage Fourier transform to combine spa-
tial and frequency information to enhance image brightness
and structures. Most recently, Huang et al. [19] model
the relationship between over-exposed and under-exposed
samples in mini-batches to maintain a stable optimization
of exposure correction. Wang et al. [34] propose to de-
couple the high and low frequencies of images via spe-
cially designed convolution kernels to improve the image
structural modeling during exposure correction. Yang et
al. [43] propose a unified frequency decomposition method
for multiple illumination-related tasks, in which the expo-
sure information is adjusted in their low-frequency compo-
nent. Baek et al. [2] propose a luminance-aware method for
multi-exposure correction.

The aforementioned methods focus on modeling the ex-
posure correction problem at the image-level, assuming that
each image is either over- or under-exposed. They are un-
able to handle images with both over- and under-exposures.
In contrast, Wang et al. [28] propose to leverage local color
distributions to guide the network to locate and enhance
over- and under-exposed regions. Despite the success, their
local color distributions prior often fails to correct colors,
especially in large over- and under-exposed regions. In con-
trast, in this work, we propose a novel approach to address
images with both over- and under-exposures through adap-
tive brightness adjustment and color shift correction.
Deformable Convolutions. Convolutional neural net-
works [21] have an inherent limitation in modeling the ge-
ometric transformations due to the fixed kernel configura-
tion. To facilitate the transformation modeling capability
of CNNs, Dai et al. [7] propose the deformable convo-
lution operation, which adds additional spatial offsets and
learns the spatial offsets from the target tasks. Later, Zhu et
al. [53] propose an improved version of deformable con-
volution, which incorporates modulation scalar to measure
the importance of different locations. Wang et al. [31] pro-
pose to improve the deformable convolution by introducing
a multi-group mechanism and sharing weights among con-
volutional neurons to make the model computationally ef-
ficient. Numerous works have adopted deformable convo-
lutions in recent years for different high-level vision tasks,
e.g., image classification [31], object detection [7], video
object detection [3], semantic segmentation [7], and human
pose estimation [26]. Meanwhile, deformable convolution
has also been adopted for low-level vision tasks, e.g., for
aligning multi-frame information with a video [9, 27, 32].

While these methods typically use deformable convolu-
tions to aggregate spatial contextual info, we propose in this

work to leverage deformable convolutions to estimate color
shifts of over-/under-exposed regions for enhancement.

3. Proposed Method
Our method is inspired by two observations. First, the over-
exposed pixels tend to have an inverse distribution shift
compared to the under-exposed pixels. This suggests that
it is necessary to capture and correct such color shifts sep-
arately. Second, since majority (if not all) of pixels are af-
fected by over-/under-exposures, it is necessary to create
pseudo-normal exposure information as guidance for the es-
timation of the color shifts of over-/under-exposed pixels.
Inspired by these two observations, we propose a novel net-
work (Sec. 3.1) with two novel modules: a novel COlor
Shift Estimation (COSE) module (Sec. 3.2) and a novel
COlor MOdulation (COMO) module (Sec. 3.3), for the en-
hancement of images with both over-/under-exposures.

3.1. Network Overview

Given an input image Ix ∈ R3×H×W with both over- and
under-exposures, our network aims to produce an enhanced
image Iy ∈ R3×H×W with rectified image brightness and
recovered image details and colors. The overview of our
model is shown in Figure 2. Given the input image Ix, we
first compute its inverse version of Îx by 1 − Ix, both of
which are fed into a UNet-based network to extract two il-
lumination maps FU

L ∈ R1×H×W and FO
L ∈ R1×H×W .

These two maps (i.e., FU
L and FO

L ) indicate the regions af-
fected by under-exposure and over-exposure, respectively.
We then compute the darkened (FD) and brightened (FB)
feature maps as:

FB =
Ix
FU
L

=
Ix

f(Ix)
, (1)

FD = 1− 1− Ix
FO
L

= 1− 1− Ix
f(1− Ix)

, (2)

where f(·) represents the UNet-based feature extractor. We
model the color shifts based on the brightened and darkened
feature maps FB , FD ∈ R3×H×W .

Given FB and FD, we first apply a Pseudo-Normal Fea-
ture Generator to fuse them with the input image Ix into a
pseudo-normal feature map FN , as:

FN = g(FB , FD, Ix), (3)

where g(·) denotes the pseudo normal-exposure generator.
FN can then serve as a reference to guide the estimation of
color shifts between FB and FN (and FD and FN ), sepa-
rately, via two proposed COSE modules. The darken offset
OD and the brighten offset OB produced by the two COSE
modules model both brightness and color shifts w.r.t. the
input image Ix, and therefore OD, OB , and Ix are fed into
the proposed COMO module to adjust the image brightness
and correct color shifts, to produce the final image Iy .
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Figure 2. Overview of our proposed model. We first generate darkened features FD and brightened features FB using the UNet-based
feature extractor. We then derive a pseudo-normal feature map FN using the generated brightened/darkened feature maps and the input
image Ix. We further estimate the color shifts between the brightened/darkened color features FB /FD and the created pseudo-normal
feature map FN using the proposed Color Shift Estimation (COSE) module to obtain two individual offset maps OB and OD . Finally, we
modulate the image brightness and colors using the proposed Color Modulation (COMO) module, to produce the final output image.

3.2. Color Shift Estimation (COSE) Module

Unlike brightness adjustment, color shift correction is more
challenging as it essentially requires the network to model
the pixel directions in RGB color space, instead of the
magnitudes of pixel intensity. Although there are some
works [28, 30, 39] that use the cosine similarity regulariza-
tion to help maintain the image colors during training, such
a strategy often fails in large under-/over-exposed regions
where pixels of small/high-intensity values are expected to
have different colors.

We propose the COSE module to address this prob-
lem based on the deformable convolution techniques. De-
formable convolution (DConv) extends vanilla convolution
by incorporating spatial offsets ∆pn to adaptively perform
convolution at any location of any N × N pixels, where
N × N denotes the kernel size. The modulation ∆mn is
proposed to assign different weights to different kernel po-
sitions, making the convolution operator focusing on im-
portant pixels. While DConv can predict the offsets with
respect to the basis, it is possible for DConv to capture
the color distribution shift. However, since previous meth-
ods [7, 31, 53] only apply DConv in the pixel spatial do-
main, we propose to extend DConv to be performed in both
spatial domain and color space, for modeling the brightness
changes and color shifts jointly. Specifically, as depicted in
Figure 3, our COSE module first concatenates the pseudo
normal feature map FN and the brightened/darkened fea-
ture map FB /FD along the channel dimension. It then
employs three separate 3 × 3 convolutions to extract po-
sitional offsets ∆pn ∈ RB×2N×H×W , color offsets ∆cn ∈
RB×3N×H×W , and modulation ∆mn ∈ RB×N×H×W .
Positional offsets ∆pn and modulation ∆mn are the same
as those in [53]. They are performed in the spatial domain

to aggregate spatial contextual information within the de-
formed irregular receptive fields of the convolution oper-
ation. Additionally, the color offsets ∆cn are introduced,
to represent the color offsets for each channel at each ker-
nel position. The learned color offsets ∆cn are formulated
to have 3N channels to model the color shifts of the input
sRGB image with 3 channels.

Formally, the computation of deformable convolution in
both spatial domain and color space can be written as:

y =
∑
pn∈R

(wn · x(p0 + pn +∆pn) + ∆cn) ·∆mn, (4)

where x denotes the input features to the convolution op-
eration, while p0, pn, and ∆pn are 2-dimensional vari-
ables indicating the spatial location, and y (or y(p0)) de-

Figure 3. The proposed Color Shift Estimation (COSE) module
aims to model the color distribution shifts in over- and under-
exposed regions. We use three different convolutions to estimate
the positional offsets, color shift offsets, and modulation scalars.
We then utilize the color space deformable convolution in Eq. 4 to
compute the color offsets and produce the offset feature map for
brightened and darkened features.
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notes the output of color space deformable convolution
for each pixel p0 within the input image. The set R =
{(−1,−1), (−1, 0), . . . , (1, 1)} represents the grids of a
regular 3 × 3 kernel. n is the enumerator for the elements
in R indicating the n-th position, and N is the length of R
(N = 9 for a regular 3× 3 kernel). Since the displacement
∆pn may assume fractional values in practice, we apply bi-
linear interpolation for computation, which aligns with the
spatial deformable convolution [7].

3.3. Color Modulation (COMO) Module

We propose the COMO module to modulate the brightness
and color of the input image and produce the final output
image Iy , based on the learned offsets OB /OD between
brightened features FB /darkened features FD and pseudo
normal features FN . Since it is crucial to aggregate global
information in order to produce the corrected image with
harmonious colors, we draw inspiration from the non-local
context modeling in [52] and formulate our COMO module
by extending the self-affinity computation in [52] into the
cross-affinity computation so that COMO can enhance the
input image by querying both OB and OD.

As shown in Figure 4, we assign three branches to pro-
cess the input image Ix, darken offset OD, and brighten
offset OB , separately, while each branch contains three
1 × 1 convolution layers (denoted as Convψ, Convϕ, and
ConvZ). We then compute the self-affinity matrix Ai in
each branch, as:

Ai = ψi ⊗ ϕi, for i ∈ {I,B,D}, (5)

where ⊗ is the matrix multiplication, ψi and ϕi are the fea-
ture maps obtained by Convψ and Convϕ, respectively.
Ai is then symmetrized and normalized to ensure the exis-
tence of real eigenvalues and the stabilization of backward
propagation. Each row of Ai serves as a spatial attention
map, and Zi (obtained by ConvZ) serves as weights for the
attention maps. Next, we model the correlations between
Ix and OB /OB via matrix multiplication and add them to-
gether with the self-affined features, as:

fj = w1Aj ⊗ Zj + w2Aj ⊗ ZI , (6)

where j ∈ {B,D} is the index of the affinity matrixAj and
feature map Zj from the brighten or darkened branch. w1

andw2 are weight matrices generated by 1×1 convolutions.
While the first term in Eq. 6 is to discover the significant
color offset regions in OB and OD learned by COSE, and
the second term aims to use the learned weights of input ZI

to attend to attention maps of OB and OD to discover what
the offsets are like in the significant regions of input.

Finally, we combine fB , fD and input image Ix to fuse
the explored color offsets as guidance for input image. We
then produce the final result Iy , as:

Iy = w4(BN(fB) +BN(fD) + w3AI ⊗ ZI) + Ix, (7)

Figure 4. The proposed Color Modulation (COMO) module aims
to adjust the brightness and correct the color shifts of the input
image Ix, guided by the color offsets from our COSE modules.
The COMO module takes the image Ix and brighten/darken off-
sets OB /OD as input and produces the enhanced image via a tai-
lored cross-attention mechanism.

where BN(·) represents Batch Normalization, and w3, w4

are weight matrices generated by 1× 1 convolutions.

3.4. Loss Function

Two loss functions, Lpesudo and Loutput are used to train
our network. As we need to generate a pseudo-normal fea-
ture map to help identify the color shifts, we use Lpesudo to
provide intermediate supervision for the generation process:

Lpesudo = ||FN −GT ||1. (8)

The Loutput contains four terms to supervise the network
to produce the enhanced images, which are L1 loss, Co-
sine similarity Lcos, SSIM loss Lssim [35], and VGG loss
Lvgg [25]. The Loutput can be formulated as:

Loutput = λ1LL1 + λ2Lcos + λ3Lssim + λ4Lvgg, (9)

where λ1, λ2, λ3 and λ4 are four balancing hyper-
parameters. The overall loss function is then:

L = λpLpesudo + λoLoutput, (10)

where λp and λo are two balancing hyper-parameters.

4. Experiments
4.1. Experimental Settings

Datasets. We evaluate our proposed method on two
datasets: LCDP [28], and MSEC [1]., both of which are
derived from the MIT-Adobe FiveK dataset [4]. Specifi-
cally, LCDP contains images with both over-exposure and
under-exposure regions, and we use it to test the ability of
our method to handle both over- and under-exposure condi-
tions. The LCDP dataset consists of 1,733 images, which
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are split into 1,415 for training, 100 for validation, and
218 for testing. MSEC contains images with either over-
or under-exposure, while their exposure values are in the
collection of {-1.5EV, -1EV, 0EV, +1EV, +1.5EV}, and the
expert-retouched images are used as the ground truths. The
MSEC dataset comprises 17,675 training images, 750 val-
idation images, and 5,905 testing images. We conduct ex-
periments on this dataset in order to test the generalization
ability of the proposed method.
Evaluation Metrics. To evaluate the performance of
different image enhancement methods and our proposed
method, we adopt the commonly used metrics Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity Index
Measure (SSIM) [35] as numerical evaluation metrics. Ad-
ditionally, to gauge the accuracy of color correction, we uti-
lize the Root Mean Squared Error (RMSE) on LAB color
space as a color-related metric.

4.2. Comparisons with State-of-the-art Methods

Quantitative Comparisons. To verify the effectiveness of
our proposed method, we compare our method with one
conventional method: Histogram Equalization [24], and 13
deep learning based SOTA methods: DSLR [20], HDR-
Net [13], RetinexNet [36], DeepUPE [30], ZeroDCE [14],
MSEC [1], RUAS [22], SNRNet [40], LCDPNet [28], Fec-
Net [18], LANet [43], SMG [41], and RetinexFormer [6].

We first evaluate the effectiveness of our model in en-
hancing images with both over- and under-exposures by
comparing our model to existing methods on the LCDP [28]
dataset. Table 1 reports the comparison results, where all
methods are re-trained for a fair comparison. We can see
that our method outperforms the second-best method, the
RetinexFormer [6] in terms of the PSNR and SSIM met-
rics while using only around 20% network parameters com-
pared to it. Our method outperforms the LCDPNet [28]
by a large margin (∆PSNR: +0.70, ∆SSIM: +0.038)

Method PSNR ↑ SSIM ↑ # params
HE’87 [24] 16.215 0.669 -
DSLR’17 [20] 20.856 0.758 0.39M
HDRNet’17 [13] 21.834 0.818 0.48M
RetinexNet’18 [36] 20.199 0.709 0.84M
DeepUPE’19 [30] 20.970 0.818 1.02M
ZeroDCE’20 [14] 12.861 0.668 0.08M
MSEC’21 [1] 20.377 0.779 7.04M
RUAS’21 [22] 13.757 0.606 0.003M
SNRNet’22 [40] 20.829 0.711 4.01M
LCDPNet’22 [28] 22.931 0.817 0.28M
FECNet’22 [18] 23.333 0.823 0.15M
LANet’23 [43] 21.444 0.691 0.57M
SMG’23 [41] 22.427 0.786 17.90M
RetinexFormer’23 [6] 23.360 0.850 1.61M
Ours 23.627 0.855 0.30M

Table 1. Quantitative comparison between the proposed method
and SOTA methods on the LCDP [28] test set. All methods are re-
trained on the LCDP training set. Best results are marked in bold
and second best results are underlined.

Method HE [24] Retinex [36] ZeroDCE [14]
RMSE ↓ 7.525 6.945 7.960
Method MSEC [1] SNR [40] LCDP [28]
RMSE ↓ 7.378 6.715 6.608
Method FEC [18] RetinexF [6] Ours
RMSE ↓ 6.384 6.148 6.105

Table 2. Quantitative comparison between the proposed method
and SOTA methods using RMSE on the LCDP [28] test set. All
methods are re-trained on the LCDP training set. Best perfor-
mances are marked in bold and second best results are underlined.

Method PSNR ↑ SSIM ↑
HE’87 [24] 15.873 0.731
MSEC’21 [1] 20.482 0.825
LCDPNet’22 [28] 22.224 0.849
FECNet’22 [18] 22.519 0.848
SMG’23 [41] 22.075 0.781
RetinexFormer’23 [6] 21.809 0.846
Ours 22.728 0.863

Table 3. Quantitative comparison between the proposed method
and SOTA methods on the MSEC [1] test set. All methods are re-
trained on the MSEC training set. Best performances are marked
in bold and second best performances are underlined.

while we have approximately similar network parameters
(Ours/LCDPNet: 0.30M/0.28M).

To evaluate the color correction performance of our
method, we also compare our model with SOTA methods
using color-related metrics, which is the root mean squared
error (RMSE) on LAB color space. Table 2 shows the re-
sults, where our method achieves the best performance.

We further compare our method with LCDPNet [28],
FECNet [18], SMG [41] and RetinexFormer [6], which are
the best-four performing existing methods according to Ta-
ble 1, on the MSEC [1] dataset. We also report the per-
formance of MSEC [1] and HE [24] for reference. As
shown in Table 3, our method also outperforms these ex-
isting methods, which demonstrates that our color shift es-
timation and correction method can handle either over- or
under-exposure at image level well.
Qualitative Comparisons. We further visually compare
the results of the proposed method and state-of-the-art
methods in Figure 5, where input images are from the
LCDP [28] dataset. We can see that methods proposed for
handling either over- or under-exposures (i.e., MSEC [1],
LANet [43], and FECNet [18]) cannot rectify the bright-
ness of over- and under-exposed regions at the same time.
For example, they either fail to restore the greenish color of
under-exposed grasses, or fail to restore the bluish color of
the over-exposed sky (see Figure 5 (c, g, and h)). Methods
originally proposed for low-light image enhancement (i.e.,
RetinexNet [36], SNRNet [40], and RetinexFormer [6])
tend to increase the overall image brightness, which fur-
ther buries the details of clouds (Figure 5 (b, d, and f)).
LCDP [28] is designed to deal with the coexistence of over-
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(a) Input (b) RetinexNet [36] (c) MSEC [1] (d) SNRNet [40] (e) LCDP [28]

(f) RetinexFormer [6] (g) LANet [43] (h) FECNet [18] (i) Ours (j) GT

(k) Input (l) RetinexNet [36] (m) MSEC [1] (n) SNRNet [40] (o) LCDP [28]

(p) RetinexFormer [6] (q) LANet [43] (r) FECNet [18] (s) Ours (t) GT

Figure 5. Visual comparison between our method and state-of-the-art methods on LCDP [28] dataset, which has images with both over-
exposure and under-exposure.

and under-exposure; however, the sky regions after the en-
hancement tend to have purplish colors (e). Similar prob-
lems can be found in the second case. In contrast, our
method can enhance these images with better details and
colors (Figure 5 (i and s)).

Figure 6 further shows visual results of real-world im-
ages from the Flickr 30K [45] dataset. While existing meth-
ods tend to produce obvious color artifacts after enhance-
ments, our method produces results of better visual quality.

4.3. Ablation Study

We now conduct ablation studies on the proposed network
designs in Table 4. First, we replace the proposed color
space deformable convolution with three different types of
spatial deformable convolutions (i.e., deformable convo-

lution with only spatial offsets OursSpatial, deformable
convolution with spatial offsets and modulation scalars
OursSpatial+Modul, and deformable convolution with spa-
tial offsets and proposed color offsets OursSpatial+Color),
and with the standard convolution (denoted as OursConv),
to test the effectiveness of the proposed Color Shift Esti-
mation module. Second, we replace the proposed Color
Modulation module with the original non-local block and
concatenateOB , OD, and Ix as input (denoted asOursNL)
to test the effectiveness of Color Modulation module. The
first three rows in Table 4 show that replacing either the pro-
posed COSE or COMO modules results in the degradation
of the enhancement performance.

We also investigate different pipeline variants. First,
we change the over-exposed illumination map FO

L from
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Options PSNR ↑ SSIM ↑
OursConv 23.443 0.834
OursSpatial 22.623 0.827
OursSpatial+Modul 23.569 0.840
OursSpatial+Color 23.415 0.836
OursNL 23.201 0.844
Oursopposition 21.829 0.799
Ours3channel 23.016 0.830
OursNoShare 23.513 0.844
Oursoutput 23.588 0.836
Oursw/oV GG 23.593 0.846
Oursw/oV GGSSIM 23.512 0.837
Ours 23.627 0.855

Table 4. Ablation study. Best results are marked in bold.

f(1 − Ix) to 1 − f(IX) (where f(·) denotes the UNet-
based feature extractor), to make a strict opposition be-
tween over-exposed map and under-exposed map (denoted
as Oursopposition). Second, we change two illumina-
tion maps from having 1-channel to 3-channels (which is
adopted in LCDP [28] and DeepUPE [30]) (denoted as
Ours3channel). We also use an independent pseudo-normal
feature generator that does not share parameters with the
color modulation module (denoted as OursNoShare). The
4th to 6th rows in Table 4 show that using other pipeline
variants may significantly degrade the performance, which
verifies the effectiveness of our designs.

Last, we perform ablation studies on the loss function.
Specifically, we first remove Lpseudo and only supervise
the final result (denoted as Oursoutput). Second, we re-
move the VGG loss (denoted as Oursw/oV GG). Last,
we remove both SSIM loss and VGG loss (denoted as
Oursw/oV GGSSIM ). The 7th to 9th rows shows that adding
these losses help improve the performance of our network.

5. Conclusion
In this paper, we have studied the problem of enhancing
images with both over- and under-exposures. We have ob-
served opposite color tone distribution shifts between over-
and under-exposed pixels, and a lack of “normal-exposed”
regions/pixels as reference resulting in the unsatisfactory
performance of existing methods. We have proposed a
novel method to enhance images with both over- and under-
exposures by learning to estimate and correct the color tone
shifts. Our method has a novel color shift estimation mod-
ule to estimate the color shifts based on our created pseudo-
normal color feature maps and correct the estimated color
shifts of the over- and under-exposed regions separately. A
novel color modulation module is proposed to modulate the
separately corrected colors in the over- and under-exposed
regions to produce the enhanced image. We have conducted
extensive experiments to show that our method outperforms
existing image enhancement approaches.

Our method does have limitations. Since our method
relies on the generation of pseudo-normal feature maps to

Input MSEC [1] LCDP [28] Ours

Figure 6. Visual results of real-world examples from the Flickr
30K [45] dataset. Our method produces better visual results.

help estimate and correct the brightness and color shifts,
it may fail in scenarios where the over-exposed pixels
are completely saturated (e.g., the forehead and cheeks in
Figure 7(a)), resulting in an unsatisfactory enhancement
result (Figure 7(b)). Incorporating generative models into
our pseudo-normal feature generator may help address such
limitations and can be interesting for future work.

Acknowledgements. This work is partly supported by an
ITF grant from the Innovation and Technology Commission
of Hong Kong SAR (ITC Ref.: PRP/003/22FX).

(a) Input (b) Ours

Figure 7. Our method may fail when pixels are completely satu-
rated in over-exposed regions (e.g., the forehead and cheeks) (a),
where there is insufficient contextual information for our model to
estimate color shifts and restore the original colors (b).
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