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Abstract

Compositional Zero-Shot Learning (CZSL) aims to rec-
ognize unseen attribute-object pairs based on a limited set
of observed examples. Current CZSL methodologies, de-
spite their advancements, tend to neglect the distinct speci-
ficity levels present in attributes. For instance, given images
of sliced strawberries, they may fail to prioritize ‘Sliced-
Strawberry’ over a generic ‘Red-Strawberry’, despite the
former being more informative. They also suffer from bal-
looning search space when shifting from Close-World (CW)
to Open-World (OW) CZSL. To address the issues, we in-
troduce the Context-based and Diversity-driven Specificity
learning framework for CZSL (CDS-CZSL). Our framework
evaluates the specificity of attributes by considering the di-
versity of objects they apply to and their related context.
This novel approach allows for more accurate predictions
by emphasizing specific attribute-object pairs and improves
composition filtering in OW-CZSL. We conduct experiments
in both CW and OW scenarios, and our model achieves
state-of-the-art results across three datasets.

1. Introduction

Humans effortlessly combine known ideas, such as the pink
of a rose and a blue dolphin, to recognize unseen concepts
like a pink dolphin. This ability to learn compositionally
is a hallmark of human intelligence [12], enabling us to
infer vast knowledge from limited primitives without see-
ing every possible combination. Inspired by this capabil-
ity, Compositional Zero-Shot Learning (CZSL) [8, 16, 24]
emerged. In CZSL, the goal is to train models on images
of seen attribute-object pairs (e.g., attributes like colors and
objects like animals) so they can recognize unseen pairs,
thereby minimizing the need for extensive training datasets.

Traditional CZSL methods often adopt one of two strate-
gies: 1) they project attribute-object textual labels and im-
ages into a shared space for direct, similarity-based compo-
sition classification [24, 40, 41]; 2) they use dual modules
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Figure 1. Specificity in CZSL. (a)For strawberries, Sliced is more
specific than Red. Instead, Red is more specific than Writing for
a pen, as Writing is its inherent function. (b) Clustering images
based on their object features, Red spans multiple object clusters.
In contrast, Sliced, though applicable to several objects, only links
to the food cluster, indicating its greater specificity.

to classify attributes and objects separately, later fusing the
results for the final composition [8, 15, 18]. Recently, their
performance has been further improved by integrating large,
pre-trained vision-language models like CLIP [32]. Har-
nessing the powerful visual-semantic aligning capabilities
of CLIP, these methods [19, 27, 38] set new performance
benchmarks that surpass traditional approaches.

While current CZSL methods show promise, they often
focus on optimizing model performance while overlooking
an inherent challenge in CZSL: specificity in attributes. Un-
like objects, which generally have straightforward defini-
tions, attributes can be multifaceted. Consider the example
in Fig. 1a: a strawberry can be described as Red, a common
descriptor, or Sliced, which is more specific. The value of
such specific descriptors is supported by the Shannon The-
ory, which holds that rarer events offer more information
than common ones [36]. However, in pursuit of overall
accuracy and broader generalization to unseen pairs, CZSL
models may favor general attributes like Red, which have
wider applicability to almost all categories, over more spe-
cific yet valid descriptors like Sliced. The challenge of ef-
fectively prioritizing these specific attributes without com-
promising accuracy remains under-explored.
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Beyond the challenge of specificity, transitioning from
a Closed-World (CW) setting [16, 26, 30] to an Open-
World (OW) setting [8, 21, 22] poses additional difficul-
ties. In CW, test set compositions are predefined and given
as prior knowledge, making it less realistic for real-world
applications. The OW setting, free of such restrictions,
faces a largely expanded output space. Direct composi-
tion classification methods, as a result, suffer significant
performance drops in OW-CZSL [21]. To address this,
some techniques narrow the search space by determining
composition feasibility based on their similarity to seen
pairs [19, 22, 27]. However, similarity-based feasibility es-
timation risks discarding specific attribute-object pairs in
favor of more generic compositions. In contrast, methods
that separately predict attributes and objects can avoid this
expanding search space and achieve advanced learning of
primitives, i.e., attributes and objects [7, 15, 18]. Yet, these
methods might not grasp the contextual nuances present in
the composition space, like how Small appears differently
in contexts such as Small-Cat versus Small-House.

To address the aforementioned challenges in CZSL, we
introduce the Context-based and Diversity-driven Speci-
ficity learning framework for CZSL (CDS-CZSL). Our
framework employs a 3-branch structure: a composition-
wise branch for contextual understanding through composi-
tion classification and two adapter-enhanced primitive-wise
branches to extract attribute and object features effectively.

A distinguishing feature of our framework is the intro-
duction of a context-based and diversity-driven specificity
learner. Intuitively, the specificity of an attribute is linked
to the range of objects it can describe. We thus cluster ob-
ject features and drive the learning of an attribute’s speci-
ficity using the diversity of clusters it covers, as depicted in
Fig. 1b. We further incorporate the context of attributes into
specificity learning. This is rooted in the observation that
the specificity of an attribute can vary depending on the ob-
ject it’s paired with. For instance, while Red is general for
strawberries, it is more specific than the inherent function
attribute Writing for pen, as illustrated in Fig. 1a. Armed
with the specificity insights, we refine attribute predictions
to emphasize specific pairs.

This specificity also aids in pruning the composition
space, filtering out both overly specific and overly generic
pairs, alleviating the challenges of composition space ex-
plosion in the OW setting. Crucially, using specificity, our
method can retain valid, specific pairs that other feasibility
calibration techniques [19] might overlook.

In summary, our primary contributions include:
1) We propose CDS-CZSL, a novel CLIP-based CZSL
method that employs a 3-branch structure to equip both con-
textual understanding and efficient attribute/object learning.
2) We introduce the specificity concept into attribute predic-
tions for CZSL. The proposed specificity learner prioritizes

specific attributes with accuracy holds. This specificity fur-
ther enhances composition filtering in OW-CZSL setting.
3) Our model achieves state-of-the-art (SOTA) results on
three benchmark datasets in both CW and OW scenarios.

2. Related Work
Compositional Zero-shot Learning (CZSL). CZSL [5,
9, 18, 25, 26, 43] has two main strategies for inferring un-
seen compositions. The first assumes that unseen and seen
compositions share the same attribute and object scopes.
Thus, this strategy first predicts primitive labels and then
combines them to obtain the composition label [16, 18, 24,
26, 30]. For example, Liu et al. [18] separately predict at-
tributes and objects based on contextual semantics to in-
fer the compositions. Li et al. [15] disentangle attributes
and objects with reversed attention. The second strategy
directly predicts compositions by aligning images and tex-
tual labels in a shared space and searching for most similar
compositions [13, 26, 35, 42]. For example, Nagarajan et
al. [26] build a composition space by simulating all the vi-
sual changes of attributes performed on objects. Anwaar
et al. [1] improve composition learning by building a com-
position graph. Recent approaches [19, 27, 38], rooted in
Vision-Language Models (VLM), also adopt either of the
two strategies, utilizing pre-trained VLM encoders to better
encode and align images and texts. For example, Nayak et
al. adapt prompt in CLIP [32] to fit the CZSL task. Lu et
al. [19] further boost the performance by soft prompts and
disentangling strategy. In this study, we unify two strate-
gies and a fixed VLM backbone within a single model and
further enhance the model with specificity-refined attribute
learning and specificity-based composition filtering.

Vision-Language Model (VLM). VLM [14, 20, 31, 33,
34] demonstrates remarkable potential in addressing vari-
ous vision and language tasks, such as visual question an-
swering [28] and image captioning [44]. Recent approaches
have enhanced VLM’s compatibility with downstream tasks
by incorporating small adapters into the network or cus-
tomizing prompt engineering. Small adapters [19, 20, 33,
34] refer to additional layers added to VLMs. They can
boost VLMs’ performance on downstream tasks with mini-
mal network parameters fine-tuned. For instance, Mahabadi
et al. [20] introduce additional layers in each transformer
block for multi-task fine-tuning. Meanwhile, prompt engi-
neering [3, 14, 19, 27, 38] enhance large pre-trained models
like CLIP [32] and GPT [2] by changing prompt guidance.
Prompts can be static text or learnable word embeddings,
aiming to help models quickly adapt to new tasks with lit-
tle or none retraining. For instance, Wang et al. [38] uti-
lize hierarchical prompts to enhance CLIP’s performance
in CZSL. In our model, we investigate both adapters and
prompt engineering to improve the performance.
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Figure 2. CDS-CZSL Overview and process of the context-based and diversity-driven specificity learning.

3. Method

Problem definitions and notations. In CZSL, images
are modeled as compositions of primitives, i.e., attributes
a ∈ A and objects o ∈ O. This leads to a label space Y =
A×O, capturing all possible attribute-object combinations.
Within this space, we distinguish between seen composi-
tions Y S and unseen compositions Y U , with Y S ∩Y U = ∅.
During training, we have access to data from seen compo-
sitions: S = {(x, y)|x ∈ XS , y ∈ Y S}, where each image
x is labeled with an attribute-object pair y = (a, o). Then,
during testing, the model needs to predict labels for images
from both seen and unseen compositions. Depending on
the scope of the output label space, we have two test set-
tings: CW-CZSL and OW-CZSL [21]. In CW, Y U is given
as prior knowledge, and the testing label space is restricted
to y ∈ Y S ∪ Y U , while in OW, the output space expands to
all potential attribute-object pairs, i.e., y ∈ Y .

Overview. To tackle CZSL, we propose the CDS-CZSL
framework. It consists of three distinct branches, tailored
for predictions within attribute, object, and pair spaces.
Through pre-trained image fi and text ft encoders, we
project images and composition labels into the common pair
space for direct composition predictions. For attribute and
object predictions, we enhance their visual representations
with an attribute adapter fa and an object adapter fo, both
anchored on the image encoder fi, and improve their se-
mantic understandings with two specialized prompts. We
further design a context-based and diversity-driven speci-
ficity learner fs to 1) refine the attribute learning process,
thus enabling the prioritization of specific attributes, and 2)
filter out undesired compositions in the OW pair space.

3.1. Composition-wise Learning

As mentioned before, contextuality is crucial for CZSL [23,
26] due to the diverse appearances of attributes and ob-
jects across varied compositions. Addressing this, we adapt
CSP [27] as the composition-wise learning branch. The

main idea is to create a unified space to which both images
and composition labels are projected. A similarity search
is conducted within this space to find the most compatible
visual and semantic representations. This branch utilizes
transformer-based encoders to project both visuals and la-
bels. Notably, these encoders, pre-trained using Contrastive
Language Image Pre-Training (CLIP) [32], are kept frozen
throughout our training.

To effectively harness the power of CLIP for our CZSL
task, we reformat composition labels into structured natural
language prompts like [a] [photo] [of] [attribute] [object].
Different from CSP [27], our prompt is entirely soft in that
each word in the prompt is modeled as learnable parameters
θc = {w0, w1, w2, wca, wco}, where the first three parame-
ters represent prefix word embeddings. In contrast, the last
two represent attribute and object word embeddings. Using
the text encoder ft, these embeddings yield a text represen-
tation tca,co; in parallel, the image encoder fi processes the
given image x to produce the image representation vc:

tca,co = ft(θc), vc = fi(x) (1)

Finally, we normalize both text and image representa-
tions using ℓ2-normalization: tca,co =

tca,co

∥tca,co∥ and vc =
vc

∥vc∥ , and obtain the probability for class y = (ca, co) by:

p(y = (ca, co)|x) = exp(vc·tca,co/τ)∑
(ĉa,ĉo)∈Y S exp(vc·tĉa,ĉo/τ)

(2)

where τ is a temperature parameter from CLIP. During
training, we optimize θc to produce better composition-level
representations by minimizing the cross-entropy loss:

min
θc

Lbase = − 1

|S|
∑

(x,y)∈S

log p(y|x) (3)

where, |S| denotes the number of instances in the seen set.
Though composition-wise learning captures the compo-

sitional contextuality and excels in extracting composition-
level representations, it struggles when generalized to OW
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seniors [15, 17]. Hence, we propose primitive-wise learning
for distinct attribute and object learning.

3.2. Primitive-wise Learning

In this section, we introduce our primitive-wise learning
branches. Distinct from composition-level insights of the
composition-wise branch, primitive-wise learning ensures a
deeper understanding of individual attributes and objects. It
also lays the foundation for subsequent specificity learning.

For semantic primitive understanding, sim-
ilar to HPL [38], we adopt two prompts:
a photo of [attribute] object (additional suffix, i.e., object,
is inserted to ensure sentence completeness) for attribute
learning and a photo of [object] for object learning. We de-
note the prompts as θa = {e0, e1, e2, wa, e3} for attributes
and θo = {e0, e1, e2, wo} for objects. Unlike the full soft
composition prompt θc, in θa and θo, only the attribute and
object word embedding wa and wo are learnable during
training, and the remainings are fixed. This ensures the two
branches focus exclusively on attribute/object information.
Primitive-level text representations are then obtained by:

ta = ft(θa), to = ft(θo) (4)

For image representations, a Multi-Head Self-Attention
layer [37] is introduced after the image encoder, functioning
as the attribute/object adapter. Distinct adapters, attribute
adapter fa and object adapter fo, are employed, allowing
the derivation of unique visual representations for attributes
and objects respectively:

va = fa(fi(x)), vo = fo(fi(x)) (5)

Finally, we normalize the representations ta = ta
∥ta∥ ,

to = to
∥to∥ , va = va

∥va∥ , and vo = vo
∥vo∥ , and compute at-

tribute and object probabilities as follows:

p(a|x) = exp(va · ta/τ)∑
â∈A exp(va · tâ/τ)

(6)

p(o|x) = exp(vo · to/τ)∑
ô∈O exp(vo · tô/τ)

(7)

The learned visual representations for objects vo and pre-
dicted attribute probabilities p(a|x) are then fed into our
Context-based and Diversity-driven Specificity Learner to
learn specificity in attributes.

3.3. Context-based and Diversity-driven Specificity
Learning

To determine attribute specificity, our approach is based on
the intuition that an attribute’s specificity inversely relates to
the range of object clusters it describes. Note that we con-
sider an attribute’s descriptive diversity across object clus-
ters rather than individual categories. This is because, tak-
ing Fig. 1b as an example, both ‘Sliced’ and ‘Red’ apply to

several object, but ‘Sliced’ is more specific as it describes
similar fruits, such as apples and strawberries, while ‘Red’
is less specific because it applies to a broader range of un-
related objects, like apples and cars.

When clustering objects, attributes entangled in their
representations can lead to biased clusters—‘Red Car’ and
‘Red Apple’ might cluster together due to the shared at-
tribute. To address this, we apply an attribute denoising step
before clustering, ensuring that objects are grouped by their
inherent characteristics rather than by shared attributes.

Attribute Denoiser. We design the Attribute Denoiser
following the idea in [18] that image representation vo can
be seen as attribute-denoised if we cannot infer the attribute
from vo. Thus, we first infer the attribute using vo by:

p(a|vo) =
exp(vo · ta/τ)∑

â∈A exp(vo · tâ/τ)
(8)

Then we introduce a denoising loss Lden calculated by the
mean square error to guide the predicted attribute probabil-
ity towards a uniform distribution:

min
fo

Lden =
1

|A|
∑
a∈A

(
1

|A|
− p(a|vo))2 (9)

Note that we detach the gradient of ta during the calculation
of Lden to prevent the denoising loss from compromising
the precision of the text representation of the attribute.

Diversity-driven Specificity Learner. After achieving
unbiased object representations vo, we aim to cluster vo to
infer attributes’ descriptive diversity. Directly clustering the
entire dataset every time vo is updated during training would
require storing all instances of vo and recalculating clus-
ters after each update, a process both computationally and
temporally prohibitive. To address this, we opt for batch-
level cluster updates (using K-Means clustering [29]), and
infer diversity by each time randomly selecting pairs of im-
ages x and x̂ that share attributes but differ in objects. And
then, if their object representations vo and v̂o are in the same
cluster, it indicates that objects linked to this attribute share
visual similarities, resulting in low diversity. Conversely,
different clusters signify high diversity. The probability of
co-clustering serves as an indirect measure of attributes’ de-
scriptive diversity across the dataset.

We then estimate the specificity as binary: it is 1 if vo and
v̂o cluster together, indicating low descriptive diversity of
attribute a and thus high specificity, and 0 if they do not co-
cluster, indicating low specificity. For an image x with the
label pair (a, o), the specificity sa,o is quantified as follows:

sa,o =

{
1 if Γ(vo) = Γ(v̂o)

0 if Γ(vo) ̸= Γ(v̂o)
(10)

where Γ denotes the K-Means algorithm.
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However, specificity is also context-dependent, as dis-
cussed in Sec. 1. Therefore, we do not use sa,o directly as
the specificity. Instead, we introduce a specificity learner,
fs, which employs word embeddings wa and wo to predict
the context-based specificity s′a,o and use sa,o as the target
of fs. This approach ensures that our specificity learner, fs,
is context-based and guided by diversity. We employ the
cross-entropy loss function to optimize fs:

min
fs

Ldiv = − 1

|S|
∑

(x,y)∈S

log p(sa,o|x) (11)

Specificity-refined Primitive Learning. To encourage
the model to prioritize attributes with higher specificity in
its predictions, we introduce specificity predicted by fs as a
penalty term. Then, the specificity-refined attribute predic-
tion and the specificity-refined primitive loss Lprim can be
expressed as follows:

p′(a|x) = p(a|x)− fs(wa, wo)/γ (12)

min
wa,wo,fa,fo

Lprim = − 1

|S|
∑

(x,y)∈S

[log p′(a|x)+ log p(o|x)]

(13)
where, γ = 1

|A| adjusts the range of the penalty term.
During training, a larger specificity penalty term results

in a lower probability of the refined attribute prediction
p′(a|x). Then, to minimize Lprim, the model leans to-
wards assigning a higher probability to p(a|x) (Eq. (6)) to
remedy the penalty term. By optimizing Lprim, this speci-
ficity penalty term amplifies p(a|x) if (a, o) exhibits high
specificity. Consequently, when we remove this penalty
term during testing, the probability p(a|x) is elevated for
attributes with high specificity, increasing the likelihood of
predicting specific attribute a. Conversely, if the attribute a
is general, its smaller specificity penalty terms during train-
ing lead to lower prediction probabilities for a when we re-
move the penalty terms during testing.

3.4. Refined Prediction

During training, we utilize the specificity-refined attribute
and object probabilities to enhance the base model, yielding
the fused prediction of our model:

p′(y|x) = αp(y = (ca, co)|x) + (1− α)p′(y = (a, o)|x)
= αp(y = (ca, co)|x) + (1− α)p′(a|x)p(o|x)

(14)

The refined prediction loss for our model is given by:

min
θc,wa,wo,fa,fo

Lrefine = − 1

|S|
∑

(x,y)∈S

log p′(y|x) (15)

Training Testing
Dataset a o sp i sp up i

MIT-States 115 245 1262 30k 400 400(27k) 13k
UT-Zappos 16 12 83 23k 18 18(109) 3k
C-GQA 413 674 5592 27k 888 923(272k) 5k

Table 1. Statistics of datasets: a, o, i, sp, and up are the number of
attributes, objects, images, seen pairs, and unseen pairs. Numbers
in brackets are the unseen search space in OW.

3.5. Training and Inference

Training Objectives. To ensure that specificity learning
does not affect the optimization of representations, our
training process is divided into two phases: representation
learning and specificity learning. The representation learner
encompasses adapters and learnable word embeddings, de-
noted as θc, wa, wo, fa, and fo. The specificity learner is
represented as fs. The overall training loss is defined as
follows:

min
θc,wa,wo,fa,fo

Lbase+Lprim+Lden+Lrefine ; min
fs

Ldiv

(16)
Initially, we optimize the representation learner exclusively
for one epoch, ensuring reliable representations for sub-
sequent specificity learning. All object image representa-
tions are retained as initial inputs for the K-Means cluster-
ing. Subsequently, we iteratively optimize the representa-
tion learner, K-means kernel, and specificity learner in a
batch-wise manner.

Inference. During testing, we exclude the penalty term
in Eq. (12) to obtain attribute probability (Eq. (6)) and fuse
primitive predictions and composition predictions as the fi-
nal results:

y′ = argmax
y∈Y T

αp(y = (ca, co)|x)+(1−α)p(y = (a, o)|x)

(17)
where, Y T = Y S∪Y U in the CW-CZSL, and Y T = A×O
in the OW-CZSL.

Additionally, we employ specificity to filter out less
likely pairs, reducing the search space for compositions in
the open world. This strategy is not used in the closed-world
scenario where all pairs are feasible. Specifically, we intro-
duce two thresholds to retain compositions with moderate
specificity, such that Y T = {y = (a, o) : sa,o ∈ [tl, th]},
excluding compositions that are overly specific or overly
general, where tl < th.

4. Experiments
4.1. Experiment Settings

Datasets and evaluation metrics. We evaluate our model
on three benchmark datasets: 1) MIT-States [6] features
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Closed-World
MIT-States UT-Zappos C-GQA

S U HM AUC S U HM AUC S U HM AUC

w
/o

C
L

IP

CGE [24] 32.8 28.0 21.4 6.5 64.5 71.5 60.5 33.5 31.4 14.0 14.5 3.6
CompCos [21] 25.3 24.6 16.4 4.5 59.8 62.5 43.1 28.7 28.1 11.2 12.4 2.6
Co-CGE [22] 32.1 28.3 20.0 6.6 62.3 66.3 48.1 33.9 33.3 14.9 14.4 4.1
SCEN [13] 29.9 25.2 18.4 5.3 63.5 63.1 47.8 32.0 28.9 25.4 17.5 5.5
CANet [39] 29.0 26.2 17.9 5.4 61.0 66.3 47.3 33.1 30.0 13.2 14.5 3.3
CoT [10] 34.8 31.5 23.2 7.8 - - - - 34.0 18.8 17.5 5.1
ADE [4] - - - - 63.0 64.3 51.1 35.1 35.0 17.7 18.0 5.2

w
C

L
IP

CLIP [32] 30.2 46.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4
CLIP-based Co-CGE [22] 46.7 45.9 33.1 17.0 63.4 71.3 49.7 36.3 34.1 21.2 18.9 5.7
CoOP [45] 34.4 47.6 29.8 13.5 52.1 49.3 34.6 18.8 20.5 26.8 17.1 4.4
CSP [27] 46.6 49.9 36.3 19.4 64.2 66.2 46.6 33.0 28.8 26.8 20.5 6.2
HPL [38] 47.5 50.6 37.3 20.2 63.0 68.8 48.2 35.0 30.8 28.4 22.4 7.2
DFSP [19] 46.9 52.0 37.3 20.6 66.7 71.7 47.2 36.0 38.2 32.0 27.1 10.5

CDS-CZSL (ours) 50.3 52.9 39.2 22.4 63.9 74.8 52.7 39.5 38.3 34.2 28.1 11.1

Table 2. Model performance in CW. We use ‘w’ and ‘w/o’ to distinguish models adopting CLIP as visual and language encoders or not.
The best results are in bold. The second best results are in blue.

natural objects with diverse attributes. Its relatively noisy
data and fine-grained attributes make it challenging to learn;
2) UT-Zappos is a specialized, small-scale dataset centered
on footwear, encompassing a limited set of 16 attributes
and 12 objects; 3) C-GQA stands out with its expansive
vocabulary, 413 attributes and 674 objects. Such breadth
presents a formidable challenge, particularly in OW scenar-
ios. Datasets are split into seen and unseen compositions
following the split in previous works [24, 30] to ensure fair
comparisons. The splits are based on generalized CZSL set-
ting [24] to ensure both seen and unseen compositions ap-
pear during testing. Split details are in Tab. 1.

We evaluate our model using the protocol from [21, 30].
Varied biases are added to unseen pairs to adjust testing re-
sults, during which the best-seen accuracy (S), best-unseen
accuracy (U), best harmonic mean (HM), and Area Under
the Curve (AUC) of the HM-bias curve are recorded as per-
formance indicators. Among these, AUC is the core metric
as it evaluates the model comprehensively.

Implement details. We follow prior practices [19, 27]
to adopt CLIP [32] as our image/text encoder. Object and
attribute adapters are one-layer Multi-head Attention. The
specificity learner is a four-layer Fully-Connected Network(
FCN). We use K-means to cluster object representations,
and the clustering is batch-wise to save computation costs.
The cluster number is calculated using the base-2 logarithm
of the object classes, resulting in numbers of 8, 4, and 10
for three datasets, respectively. The model is trained end-
to-end with Adam optimizer [11]. Hyper-parameters, such
as learning rate and fusion weight (α), are determined based
on validation set performance. The supplementary provides
codes with detailed parameters.

4.2. Comparisons with SOTAs

We compare our CDS-CZSL with most recent CZSL meth-
ods [4, 8, 10, 13, 15, 18, 19, 21, 22, 22, 27, 32, 39, 45]
in both CW and OW settings. Given the same data splits
and evaluation metrics, the reported performances from the
original publications are directly used for competitors. The
results of all CLIP-based methods are run with ViT-L/14
with CLIP fixed during training.

The CW results, presented in Tab. 2, reveal that CDS-
CZSL achieves the best results on all datasets. Specifically,
it yields improvements of 1.8%, 3.2%, and 0.6% in AUC
over the second-best methods on three datasets. It also at-
tains considerable gains in HM on MIT-States and C-GQA,
with increases of 1.9% and 1%, respectively. Although
CGE outperforms it in HM on UT-Zappos, the overall per-
formance of CDS-CZSL surpasses that of CGE, particularly
in AUC, with a 6% improvement.

Comparing methods with and without CLIP as back-
bones, we observe that CLIP-based methods possess higher
performance ceilings. However, our enhancements are not
solely due to CLIP. Compared with other CLIP-based meth-
ods, our performance still prevails. Firstly, unlike CSP [27]
and DFSP [19], which only predict in the composition
space, our approach also leverages separate learning of at-
tributes and objects, thereby exhibiting better generalization
capabilities. This is also proved by our model achieving the
highest unseen accuracy (U) across all datasets. Secondly,
we introduce context-based and diversity-driven specificity
learning that prioritizes informative specific attributes, thus
facilitating more accurate predictions.

The OW results, depicted in Tab. 3, indicate a significant
performance drop for all methods transitioning from CW to

17042



Open-World
MIT-States UT-Zappos C-GQA

S U HM AUC S U HM AUC S U HM AUC

w
/o

C
L

IP

CGE [24] 32.4 5.1 6.0 1.0 61.7 47.7 39.0 23.1 32.7 1.8 2.9 0.47
CompCos [21] 25.4 10.0 8.9 1.6 59.3 46.8 36.9 21.3 28.4 1.8 2.8 0.39
Co-CGE [22] 30.3 11.2 10.7 2.3 61.2 45.8 40.8 23.3 32.1 3.0 4.8 0.78
KG-SP [8] 28.4 7.5 7.4 1.3 61.8 52.1 42.3 26.5 31.5 2.9 4.7 0.78
SAD-SP [18] 29.1 7.6 7.8 1.4 63.1 54.7 44.0 28.4 31.0 3.9 5.9 1.00
DRANet [15] 29.8 7.8 7.9 1.5 65.1 54.3 44.0 28.8 31.3 3.9 6.0 1.05
ADE [4] - - - - 62.4 50.7 44.8 27.1 35.1 4.8 7.6 1.42

w
C

L
IP

CLIP [32] 30.1 14.3 12.8 3.0 15.7 20.6 11.2 2.2 7.5 4.6 4.0 0.27
CLIP-based Co-CGE [22] 38.1 20.0 17.7 5.6 59.9 56.2 45.3 28.4 33.2 3.9 5.3 0.91
CoOP [45] 34.6 9.3 12.3 2.8 52.1 31.5 28.9 13.2 21.0 4.6 5.5 0.70
CSP [27] 46.3 15.7 17.4 5.7 64.1 44.1 38.9 22.7 28.7 5.2 6.9 1.20
HPL [38] 46.4 18.9 19.8 6.9 63.4 48.1 40.2 24.6 30.1 5.8 7.5 1.37
DFSP [19] 47.5 18.5 19.3 6.8 66.8 60.0 44.0 30.3 38.3 7.2 10.4 2.40

CDS-CZSL w filtering (ours) 49.4 21.8 22.1 8.5 64.7 61.3 48.2 32.3 37.6 8.2 11.6 2.68

Table 3. Model performance in OW. ‘w filtering’ indicates that the reported CDS-CZSL uses specificity to filter compositions.

OW. Yet, CDS-CZSL continues to outperform in all criteria
(bar the seen accuracy in C-GQA) across datasets. Particu-
larly, it achieves improvements of 1.6%, 2%, and 0.28% in
AUC. While the absolute increments are modest compared
to the CW scenario, the relative improvements are higher
on MIT-States (23.2% vs. 8.7%) and C-GQA (11.7% vs.
5.7%), confirming the effectiveness of our model. In ad-
dition to the aforementioned reasons in CW analysis, our
specificity-based filtering strategy also contributes to the
improvements in the OW setting. The lower relative im-
provements on UT-Zappos for OW (6.7%) compared to CW
(8.8%) may be due to its small-scale and fine-grained na-
ture, making our specificity learning and filtering less effec-
tive. However, the model still benefits from our design of
composition-wise and primitive-wise learning, hence out-
performing other methods. Notably, our model achieves the
best U in OW as well; this demonstrates that our model’s
specificity learning does not compromise the model’s gen-
eralization ability to unseen compositions.

4.3. Ablation Study

Module ablation. In our ablation study, we evaluate
the efficacy of each component in our proposed CDS-
CZSL by comparing it against four variants. The variant
SPM contains only the composition-wise learning branch,
while 3branch extends SPM by incorporating primitive-
wise learning branches for both attributes and objects but
without the specificity learning component. To assess the
impact of specificity learning, we introduce CBS, which in-
tegrates context-based specificity into 3branch, and DDS,
which incorporates diversity-driven specificity. Fig. 3
shows differences among CBS, DDS, and CDS.

The results, presented in Tab. 4, illustrate several key

MIT-States UT-Zappos
S U HM AUC S U HM AUC

C
W

SPM 44.1 51.7 35.8 19.1 64.3 66.3 47.3 33.8
3branch 47.1 53.2 37.5 21.1 64.5 71.3 49.0 36.2
CBS 50.0 52.5 38.4 22.0 65.1 75.0 52.5 39.3
DDS 49.6 52.5 38.2 21.8 63.2 73.5 52.2 38.6
CDS 50.3 52.9 39.2 22.4 63.9 74.8 52.7 39.5

O
W

SPM 45.8 16.7 18.3 6.1 63.2 52.0 44.1 27.1
3branch 45.0 21.1 20.6 7.4 61.9 60.0 45.2 29.9
CBS 48.3 22.1 21.8 8.3 63.5 59.0 47.9 31.0
DDS 50.1 21.2 21.7 8.3 66.8 56.0 45.4 29.5
CDS 49.4 21.8 22.1 8.5 64.7 61.3 48.2 32.3

Table 4. Module ablation study. CDS denotes our CDS-CZSL
with ‘-CZSL’ removed to save space.

findings. Firstly, the comparison between SPM and
CSP [27]—which differs from SPM in terms of whether the
prompt is fully learnable—highlights the efficiency gains
afforded by fully learnable prompts within the composition-
wise branch. Furthermore, 3branch demonstrates an im-
provement over SPM, validating the importance of includ-
ing primitive-wise learning. Significantly, our model out-
performs HPL [38], which also employs a three-branch
structure. This proves the advantages of our unique prompt
designs and the integration of adapters in primitive learning.

Introducing specificity learning through both CBS and
DDS leads to further performance gains over 3branch, con-
firming the effectiveness of specificity. The superior per-
formance of CBS over DDS suggests that context-based
adaptability provides additional advantages over the cluster-
based, less-learnable diversity strategy of DDS. However,
DDS’s success indicates the importance of descriptive di-
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Figure 3. Module ablation.

UT-Zappos C-GQA
feasible pairs S U HM AUC feasible pairs S U HM AUC

w/o filtering 192 64.7 60.3 47.9 32.0 278362 - - - -
w similarity-based filtering [19] 189 64.7 60.4 48.0 32.1 67293 38.2 8.0 10.9 2.61
w our filtering 176 64.7 61.3 48.2 32.3 30332 37.6 8.2 11.6 2.68

Table 5. Ablation on filtering strategy.

Failure cases of our filtering

without versus with our filtering

SPM:
Bent-Handle
3branch: 
Bent-Blade

SPM:
Broken-Clock
3branch: 
Ancient-Clock

3branch:
Large-Library
DDS: 
Cluttered-Library

3branch:
Mossy-Moss
DDS: 
Dry-Moss

DDS:
Muddy-Moss
CDS: 
Burnt-River

DDS:
Peeled-Egg
CDS: 
Cracked-Egg

w/o filtering:
Frozen-Ice
w our filtering: 
Frozen-Fish

w/o filtering:
Chipped-Basement
w our filtering: 
Damp-Basement

w/o filtering:
Chipped-Forest
w our filtering: 
Dry-Forest

w other filtering:
Cooked-Coal
w our filtering: 
Burnt-Coal

w other filtering:
Draped-Orange
w our filtering: 
Draped-Silk

w other filtering:
Wet-Animal
w our filtering: 
Wet-Cat

SPM versus 3branch 3branch versus DDS  DDS versus CDS

other filtering versus our filtering

3branch: 
Large-Bucket
CDS:
Empty-Bucket

3branch: 
Large-Toy
CDS:
Inflated-Toy

3branch: 
Cooked-Chicken
CDS:
Caramelized-Chicken

3branch: 
Closed-Gate
CDS:
Rusty-Gate

Failure cases of CDS compared with 3branch

w/o filtering: 
Engraved-Camera
w our filtering:
Pressed-Camera

w/o filtering: 
Huge-Wave
w our filtering:
Tight-Wave

Figure 4. Qualitative Results of varying network structure (first row), changing filtering method (second row), and failure cases (third row).

versity in ascertaining attribute specificity. Combining the
strengths of both context and diversity, our complete model,
CDS-CZSL, achieves the highest results in terms of HM and
AUC. This validates that both context and descriptive diver-
sity are vital components of specificity learning in CZSL.

Filtering ablation. To assess the effectiveness of our
specificity-based filtering strategy in OW, we compare it
against no filtering and similarity-based filtering [19]. Fil-
tering thresholds are chosen on validation sets. Due to GPU
limitations, we excluded unfiltered results for C-GQA. The
results, detailed in Tab. 5, show that while both filtering
reduces the search space and increases performance, our
specificity-based approach retains fewer but more relevant
pairs, leading to superior HM and AUC. This proves its abil-
ity to effectively discard both overly general and highly spe-
cific pairs, unlike the similarity-based method, which may
preserve generic pairs and omit unique, specific ones.

4.4. Qualitative Results

Module ablation. We study the qualitative results to ex-
plore the effects of varying network structures in the first
row of Fig. 4. Initially, SPM is misled by seen pairs
(e.g., Bent-Handle), while 3branch overcomes this through
primitive-wise learning but struggles with too-general pairs
like Mossy-Moss. DDS learning corrects this, refining such
pairs to more specific Dry-Moss. CDS-CZSL further im-
proves DDS with contexts, as seen when Peeled-Egg is ad-
justed to Cracked-Egg.

Filtering. The efficacy of our filtering strategy is shown
in the second row; it can exclude overly general pairs,

such as Frozen-Ice, and too specific ones, like Chipped-
Basement. This contrasts with similarity-based filtering that
might settle for broader categories, resulting in predictions
like Wet-Animal instead of the more precise Wet-Cat.

Limitations and potentials. The third row in Fig. 4
shows cases where CDS-CZSL fails compared to 3branch
and non-filtered version. It occasionally predicts specific
pairs unsupported by the image content—for instance, we
cannot tell if the Large-Bucket is Empty. Moreover, our fil-
tering method is not unmistakable, retaining specific yet in-
valid pairs such as Pressed-Camera. However, CDS-CZSL,
while not always accurate, often provides more descrip-
tive labels than the original—refining Cooked-Chicken to
Caramelized-Chicken, for example. This suggests that our
model may have the potential to aid in refining labels.

5. Conclusion
In this work, we propose a Context-based and Diversity-
driven Specificity learning framework for Compositional
Zero-Shot Learning (CDS-CZSL). We incorporate
composition-wise and primitive-wise learning to capture
compositional contextuality and enhance attribute/object
learning simultaneously. We then design the context-based
and diversity-driven specificity learning to prioritize spe-
cific attributes that are more informative and use the learned
specificity to filter compositions in Open-World scenarios.
Through comprehensive experiments, we demonstrate the
effectiveness of our model and achieve SOTA performance
on three datasets. Furthermore, we discuss the limitations
and potentials of our model leaning towards specific pairs.
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