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Abstract

Multimodal sentiment analysis (MSA) aims to under-
stand human sentiment through multimodal data. Most
MSA efforts are based on the assumption of modality com-
pleteness. However, in real-world applications, some prac-
tical factors cause uncertain modality missingness, which
drastically degrades the model’s performance. To this end,
we propose a Correlation-decoupled Knowledge Distilla-
tion (CorrKD) framework for the MSA task under uncer-
tain missing modalities. Specifically, we present a sample-
level contrastive distillation mechanism that transfers com-
prehensive knowledge containing cross-sample correlations
to reconstruct missing semantics. Moreover, a category-
guided prototype distillation mechanism is introduced to
capture cross-category correlations using category proto-
types to align feature distributions and generate favorable
joint representations. Eventually, we design a response-
disentangled consistency distillation strategy to optimize
the sentiment decision boundaries of the student network
through response disentanglement and mutual informa-
tion maximization. Comprehensive experiments on three
datasets indicate that our framework can achieve favorable
improvements compared with several baselines.

1. Introduction

“Correlations serve as the beacon through the fog of the
missingness.”

–Lee & Dicken

Multimodal sentiment analysis (MSA) has attracted
wide attention in recent years. Different from the tradi-
tional unimodal-based emotion recognition task [7], MSA

§Corresponding author. Equal contribution.
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Figure 1. Traditional model outputs correct prediction when in-
putting the sample with complete modalities, but incorrectly pre-
dicts the sample with missing modalities. We define two missing
modality cases: (i) intra-modality missingness (i.e., the pink areas)
and (ii) inter-modality missingness (i.e., the yellow area).

understands and recognizes human emotions through mul-
tiple modalities, including language, audio, and visual [28].
Previous studies have shown that combining complemen-
tary information among different modalities facilitates the
generation of more valuable joint multimodal representa-
tions [34, 36]. Under the deep learning paradigm [3, 17,
42, 43, 54, 59, 60], numerous studies assuming the avail-
ability of all modalities during both training and inference
stages [10, 19, 22, 49–53, 55–58, 62]. Nevertheless, this
assumption often fails to align with real-world scenarios,
where factors such as background noise, sensor constraints,
and privacy concerns may lead to uncertain modality miss-
ingness issues. Modality missingness can significantly im-
pair the effectiveness of well-trained models based on com-
plete modalities. For instance, as shown in Figure 1, the
entire visual modality is missing, and some frame-level fea-
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tures in the language and audio modalities are missing, lead-
ing to an incorrect sentiment prediction.

In recent years, many works [20, 21, 23, 24, 32, 45,
46, 66] attempt to address the problem of missing modal-
ities in MSA. As a typical example, MCTN [32] guaran-
tees the model’s robustness to the missing modality case
by learning a joint representation through cyclic transla-
tion from the source modality to the target modality. How-
ever, these methods suffer from the following limitations:
(i) inadequate interactions based on individual samples lack
the mining of holistically structured semantics. (ii) Fail-
ure to model cross-category correlations leads to loss of
sentiment-relevant information and confusing distributions
among categories. (iii) Coarse supervision ignores the se-
mantic and distributional alignment.

To address the above issues, we present a Correlation-
decoupled Knowledge Distillation (CorrKD) framework for
the MSA task under uncertain missing modalities. There
are three core contributions in CorrKD based on the tai-
lored components. Specifically, (i) the proposed sample-
level contrastive distillation mechanism captures the holis-
tic cross-sample correlations and transfers valuable super-
vision signals via sample-level contrastive learning. (ii)
Meanwhile, we design a category-guided prototype distilla-
tion mechanism that leverages category prototypes to trans-
fer intra- and inter-category feature variations, thus deliver-
ing sentiment-relevant information and learning robust joint
multimodal representations. (iii) Furthermore, we intro-
duce a response-disentangled consistency distillation strat-
egy to optimize sentiment decision boundaries and encour-
age distribution alignment by decoupling heterogeneous re-
sponses and maximizing mutual information between ho-
mogeneous sub-responses. Based on these components,
CorrKD significantly improves MSA performance under
uncertain missing-modality and complete-modality testing
conditions on three multimodal benchmarks.

2. Related Work

2.1. Multimodal Sentiment Analysis

MSA aims to understand and analyze human sentiment
utilizing multiple modalities. Mainstream MSA studies
[9, 10, 22, 37, 50, 53, 55–58] focus on designing complex
fusion paradigms and interaction mechanisms to enhance
the performance of sentiment recognition. For instance,
CubeMLP [37] utilizes three independent multi-layer per-
ceptron units for feature-mixing on three axes. However,
these approaches based on complete modalities cannot be
deployed in real-world applications. Mainstream solutions
for the missing modality problem can be summarized in
two categories: (i) generative methods [6, 23, 25, 45]
and (ii) joint learning methods [24, 32, 46, 66]. Recon-
struction methods generate missing features and seman-

tics in modalities based on available modalities. For ex-
ample, TFR-Net [63] leverages the feature reconstruction
module to guide the extractor to reconstruct missing seman-
tics. MVAE [6] solves the modality missing problem by
the semi-supervised multi-view deep generative framework.
Joint learning efforts refer to learning joint multimodal rep-
resentations utilizing correlations among modalities. For in-
stance, MMIN [69] generates robust joint multimodal rep-
resentations via cross-modality imagination. TATE [66]
presents a tag encoding module to guide the network to fo-
cus on missing modalities. However, the aforementioned
approaches fail to account for the correlations among sam-
ples and categories, leading to inadequate compensation for
the missing semantics in modalities. In contrast, we design
effective learning paradigms to adequately capture potential
inter-sample and inter-category correlations.

2.2. Knowledge Distillation

Knowledge distillation utilizes additional supervisory in-
formation from the pre-trained teacher’s network to assist
in the training of the student’s network [11]. Knowledge
distillation methods can be roughly categorized into two
types, distillation from intermediate features [15, 29, 38, 61]
and responses [4, 8, 27, 48, 68]. Many studies [13, 18,
33, 40, 47] employ knowledge distillation for MSA tasks
with missing modalities. The core concept of these ef-
forts is to transfer “dark knowledge” from teacher networks
trained by complete modalities to student networks trained
by missing modalities. The teacher model typically pro-
duces more valuable feature presentations than the student
model. For instance, [13] utilizes the complete-modality
teacher network to implement supervision on the unimodal
student network at both feature and response levels. Despite
promising outcomes, they are subject to several significant
limitations: (i) Knowledge transfer is limited to individual
samples, overlooking the exploitation of clear correlations
among samples and among categories. (ii) Supervision on
student networks is coarse-grained and inadequate, without
considering the potential alignment of feature distributions.
To this end, we propose a correlation-decoupled knowledge
distillation framework that facilitates the learning of robust
joint representations by refining and transferring the cross-
sample, cross-category, and cross-target correlations.

3. Methodology
3.1. Problem Formulation

Given a multimodal video segment with three modalities
as S = [XL,XA,XV ], where XL ∈ RTL×dL ,XA ∈
RTA×dA , and XV ∈ RTV ×dV denote language, audio,
and visual modalities, respectively. Tm(·) is the sequence
length and dm(·) is the embedding dimension, where m ∈
{L,A, V }. Meanwhile, the incomplete modality is denoted
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Figure 2. The structure of our CorrKD, which consists of three core components: Sample-level Contrastive Distillation (SCD) mechanism,
Category-guided Prototype Distillation (CPD) mechanism, and Response-disentangled Consistency Distillation (RCD) strategy.

as X̂m. We define two missing modality cases to simu-
late the most natural and holistic challenges in real-world
scenarios: (i) intra-modality missingness, which indicates
some frame-level features in the modality sequences are
missing. (ii) inter-modality missingness, which denotes
some modalities are entirely missing. Our goal is to rec-
ognize the utterance-level sentiments by utilizing the multi-
modal data with missing modalities.

3.2. Overall Framework

Figure 2 illustrates the main workflow of CorrKD. The
teacher network and the student network adopt a consistent
structure but have different parameters. During the train-
ing phase, our CorrKD procedure is as follows: (i) we train
the teacher network with complete-modality samples and
then freeze its parameters. (ii) Given a video segment sam-
ple S, we generate a missing-modality sample Ŝ with the
Modality Random Missing (MRM) strategy. MRM simulta-
neously performs intra-modality missing and inter-modality
missing, and the raw features of the missing portions are re-
placed with zero vectors. S and Ŝ are fed into the initialized
student network and the trained teacher network, respec-
tively. (iii) We input the samples S and Ŝ into the modality
representation fusion module to obtain the joint multimodal
representations Ht and Hs. (iv) The sample-level con-
trastive distillation mechanism and the category-guided pro-
totype distillation mechanism are utilized to learn the fea-
ture consistency of Ht and Hs. (v) These representations
are fed into the task-specific fully-connected layers and the
softmax function to obtain the network responses Rt and
Rs. (vi) The response-disentangled consistency distillation

strategy is applied to maintain consistency in the response
distribution, and then Rs is used to perform classification.
In the inference phase, testing samples are only fed into the
student network for downstream tasks. Subsequent sections
provide details of the proposed components.

3.3. Modality Representation Fusion

We introduce the extraction and fusion processes of modal-
ity representations using the student network as an ex-
ample. The incomplete modality X̂s

m ∈ RTm×dm with
m ∈ {L,A, V } is fed into the student network. Firstly,
X̂s

m passes through a 1D temporal convolutional layer with
kernel size 3 × 3 and adds the positional embedding [39]
to obtain the preliminary representations, denoted as F̂ s

m =
W3×3(X̂

s
m) + PE(Tm, d) ∈ RTm×d. Each F s

m is fed into
a Transformer [39] encoder Fs

ϕ(·), capturing the modal-
ity dynamics of each sequence through the self-attention
mechanism to yield representations Es

m, denoted as Es
m =

Fs
ϕ(F

s
m). The representations Es

m are concatenated to ob-
tain Zs, expressed as Zs = [Es

L,E
s
A,E

s
V ] ∈ RTm×3d.

Subsequently, Zs is fed into the Global Average Pooling
(GAP) to further enhance and refine the features, yielding
the joint multimodal representation Hs ∈ R3d. Similarly,
the joint multimodal representation generated by the teacher
network is represented as Ht ∈ R3d.

3.4. Sample-level Contrastive Distillation

Most previous studies of MSA tasks with missing modal-
ities [33, 40, 47] are sub-optimal, exploiting only one-
sided information within a single sample and neglecting
to consider comprehensive knowledge across samples. To
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this end, we propose a Sample-level Contrastive Distilla-
tion (SCD) mechanism that enriches holistic knowledge
encoding by implementing contrastive learning between
sample-level representations of student and teacher net-
works. This paradigm prompts models to sufficiently cap-
ture intra-sample dynamics and inter-sample correlations to
generate and transfer valuable supervision signals, thus pre-
cisely recovering the missing semantics. The rationale of
SCD is to take contrastive learning within all mini-batches,
constraining the representations in two networks originating
from the same sample to be similar, and the representations
originating from different samples to be distinct.

Specifically, given a mini-batch with N samples B =
{S0,S1, · · · ,SN}, we obtain their sets of joint multimodal
representations in teacher and student networks, denoted as
{Hw

1 ,Hw
2 , · · · ,Hw

N} with w ∈ {t, s}. For the same input
sample, we narrow the distance between the joint represen-
tations of the teacher and student networks and enlarge the
distance between the representations for different samples.
The contrastive distillation loss is formulated as follows:

LSCD =

N∑
i=1

N∑
j=1,j ̸=i

D(Hs
i ,H

t
i )

2+max{0, η−D(Hs
i ,H

t
j)}2,

(1)
where D(Hs,Ht) = ∥Hs −Ht∥2 , ∥·∥2 represents ℓ2
norm function, and η is the predefined distance boundary.
When negative pairs are distant enough (i.e., greater than
boundary η), the loss is set to 0, allowing the model to focus
on other pairs. Since the sample-level representation con-
tains holistic emotion-related semantics, such a contrastive
objective facilitates the student network to learn more valu-
able knowledge from the teacher network.

3.5. Category-guided Prototype Distillation

MSA data usually suffers from the dilemmas of high intra-
category diversity and high inter-category similarity. Pre-
vious approaches [13, 18, 33] based on knowledge distilla-
tion to address the modality missing problem simply con-
strain the feature consistency of the teacher and student
networks. The rough manner lacks consideration of cross-
category correlation and feature variations, leading to am-
biguous feature distributions. To this end, we propose a
Category-guided Prototype Distillation (CPD) mechanism,
with the core insight of refining and transferring knowledge
of intra- and inter-category feature variations via category
prototypes, which is widely utilized in the field of few-shot
learning [35]. The category prototype represents the em-
bedding center of every sentiment category, denoted as:

ck =
1

|Bk|
∑

Si∈Bk

Hi, (2)

where Bk denotes the set of samples labeled with category
k in the mini-batch, and Si denotes the i-th sample in Bk.

The intra- and inter-category feature variation of the sample
Si is defined as follows:

Mk(i) =
Hi c

⊤
k

∥Hi∥2 ∥ck∥2
, (3)

where Mk(i) denotes the similarity between the sample
Si and the prototype ck. If the sample Si is of category
k, Mk(i) represents intra-category feature variation. Oth-
erwise, it represents inter-category feature variation. The
teacher and student networks compute similarity matrices
M t and M s, respectively. We minimize the squared Eu-
clidean distance between the two similarity matrices to
maintain the consistency of two multimodal representa-
tions. The prototype distillation loss is formulated as:

LCPD =
1

NK

N∑
i=1

K∑
k=1

∥∥Ms
k(i)−M t

k(i)
∥∥
2
, (4)

where K is the category number of the mini-batch.

3.6. Response-disentangled Consistency Distillation

Most knowledge distillation studies [15, 29, 38, 61] fo-
cus on extracting knowledge from intermediate features of
networks. Although the model’s response (i.e., the pre-
dicted probability of the model’s output) presents a higher
level of semantics than the intermediate features, response-
based methods achieve significantly worse performance
than feature-based methods [41]. Inspired by [67], the
model’s response consists of two parts: (i) Target Cate-
gory Response (TCR), which represents the prediction of
the target category and describes the difficulty of identifying
each training sample. (ii) Non-Target Category Response
(NTCR), which denotes the prediction of the non-target cat-
egory and reflects the decision boundaries of the remaining
categories to some extent. The effects of TCR and NTCR
in traditional knowledge distillation loss are coupled, i.e.,
high-confidence TCR leads to low-impact NTCR, thus in-
hibiting effective knowledge transfer. Consequently, we
disentangle the heterogeneous responses and constrain the
consistency between the homogeneous responses. From the
perspective of information theory, knowledge consistency
between responses can be characterized as maintaining high
mutual information between teacher and student networks
[1]. This schema captures beneficial semantics and encour-
ages distributional alignment.

Specifically, the joint multimodal representation Hw

with w ∈ {t, s} of teacher and student networks pass
through fully-connected layers and softmax function to ob-
tain response Rw. Based on the target indexes, we decou-
ple the response Rw to obtain TCR Rw

T and NTCR Rw
NT .

Define Q ∈ Q and U ∈ U as two random variables. For-
mulaically, the marginal probability density functors of Q
and U are denoted as P (Q) and P (U). P (Q,U) is re-
garded as the joint probability density functor. The mutual
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Figure 3. Comparison results of intra-modality missingness on IEMOCAP. We comprehensively report the F1 score for the happy, sad,
angry, and neutral categories at various missing ratios.
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Figure 4. Comparison results of intra-modality missingness on (a)
MOSI and (b) MOSEI. We report the F1 score at various ratios.

information between Q and U is represented as follows:

I(Q,U) =

∫
Q

∫
U
P (Q,U) log

(
P (Q,U)

P (Q)P (U)

)
dQdU . (5)

The mutual information I(Q,U) can be written as the
Kullback-Leibler divergence between the joint probability
distribution PQU and the product of the marginal distribu-
tions PQPU , denoted as I(Q,U) = DKL (PQU∥PQPU ) .
For efficient and stable computation, the Jensen-Shannon
divergence [12] is employed in our case to estimate the mu-
tual information, which is denoted as follows:

I(Q,U) ≥ Î
(JSD)
θ (Q,U)

= EP (Q,U)

[
− log

(
1 + e−Fθ(Q,U)

)]
− EP (Q)P (U)

[
log

(
1 + eFθ(Q,U)

)]
,

(6)

where Fθ : Q×U → R is formulated as an instantiated sta-
tistical network with parameters θ. We only need to maxi-
mize the mutual information without focusing on its precise
value. Consequently, the distillation loss based on the mu-
tual information estimation is formatted as follows:

LRCD = LT
RCD + LNT

RCD = −I(Rt
T ,R

s
T )− I(Rt

NT ,R
s
NT ).

(7)
Finally, the overall training objective Ltotal is expressed as
Ltotal = Ltask +LSCD +LCPD +LRCD, where Ltask is
the standard cross-entropy loss.

4. Experiments
4.1. Datasets and Evaluation Metrics

We conduct extensive experiments on three MSA datasets
with word-aligned data, including MOSI [64], MOSEI [65],
and IEMOCAP [2]. MOSI is a realistic dataset that com-
prises 2,199 short monologue video clips. There are 1,284,
229, and 686 video clips in train, valid, and test data, re-
spectively. MOSEI is a dataset consisting of 22,856 video
clips, which has 16,326, 1,871, and 4,659 samples in train,
valid, and test data. Each sample of MOSI and MOSEI is
labeled by human annotators with a sentiment score of -3
(strongly negative) to +3 (strongly positive). On the MOSI
and MOSEI datasets, we utilize weighted F1 score com-
puted for positive/negative classification results as evalua-
tion metrics. IEMOCAP dataset consists of 4,453 samples
of video clips. Its predetermined data partition has 2,717,
798, and 938 samples in train, valid, and test data. As rec-
ommended by [44], four emotions (i.e., happy, sad, angry,
and neutral) are selected for emotion recognition. For eval-
uation, we report the F1 score for each category.

4.2. Implementation Details

Feature Extraction. The Glove embedding [31] is used
to convert the video transcripts to obtain a 300-dimensional
vector for the language modality. For the audio modal-
ity, we employ the COVAREP toolkit [5] to extract 74-
dimensional acoustic features, including 12 Mel-frequency
cepstral coefficients (MFCCs), voiced/unvoiced segment-
ing features, and glottal source parameters. For the visual
modality, we utilize the Facet [14] to indicate 35 facial ac-
tion units, recording facial movement to express emotions.
Experimental Setup. All models are built on the Py-
torch [30] toolbox with NVIDIA Tesla V100 GPUs. The
Adam optimizer [16] is employed for network optimiza-
tion. For MOSI, MOSEI, and IEMOCAP, the detailed
hyper-parameter settings are as follows: the learning
rates are {4e − 3, 2e − 3, 4e − 3}, the batch sizes are
{64, 32, 64}, the epoch numbers are {50, 20, 30}, the at-
tention heads are {10, 8, 10}, and the distance boundaries
η are {1.2, 1.0, 1.4}. The embedding dimension is 40 on
all three datasets. The hyper-parameters are determined via
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Table 1. Comparison results under inter-modality missing and complete-modality testing conditions on MOSI and MOSEI.

Dataset Models
Testing Conditions

{l} {a} {v} {l, a} {l, v} {a, v} Avg. {l, a, v}

MOSI

Self-MM [62] 67.80 40.95 38.52 69.81 74.97 47.12 56.53 84.64
CubeMLP [37] 64.15 38.91 43.24 63.76 65.12 47.92 53.85 84.57

DMD [22] 68.97 43.33 42.26 70.51 68.45 50.47 57.33 84.50
MCTN [32] 75.21 59.25 58.57 77.81 74.82 64.21 68.31 80.12
TransM [46] 77.64 63.57 56.48 82.07 80.90 67.24 71.32 82.57
SMIL [26] 78.26 67.69 59.67 79.82 79.15 71.24 72.64 82.85
GCNet [23] 80.91 65.07 58.70 84.73 83.58 70.02 73.84 83.20

CorrKD 81.20 66.52 60.72 83.56 82.41 73.74 74.69 83.94

MOSEI

Self-MM [62] 71.53 43.57 37.61 75.91 74.62 49.52 58.79 83.69
CubeMLP [37] 67.52 39.54 32.58 71.69 70.06 48.54 54.99 83.17

DMD [22] 70.26 46.18 39.84 74.78 72.45 52.70 59.37 84.78
MCTN [32] 75.50 62.72 59.46 76.64 77.13 64.84 69.38 81.75
TransM [46] 77.98 63.68 58.67 80.46 78.61 62.24 70.27 81.48
SMIL [26] 76.57 65.96 60.57 77.68 76.24 66.87 70.65 80.74
GCNet [23] 80.52 66.54 61.83 81.96 81.15 69.21 73.54 82.35

CorrKD 80.76 66.09 62.30 81.74 81.28 71.92 74.02 82.16

the validation set. The raw features at the modality miss-
ing positions are replaced by zero vectors. To ensure an
equitable comparison, we re-implement the state-of-the-art
(SOTA) methods using the publicly available codebases and
combine them with our experimental paradigms. All experi-
mental results are averaged over multiple experiments using
five different random seeds.

4.3. Comparison with State-of-the-art Methods

We compare CorrKD with seven representative and repro-
ducible SOTA methods, including complete-modality meth-
ods: Self-MM [62], CubeMLP [37], and DMD [22], and
missing-modality methods: 1) joint learning methods (i.e.,
MCTN [32] and TransM [46]), and 2) generative methods
(i.e., SMIL [26] and GCNet [23]). Extensive experiments
are implemented to thoroughly evaluate the robustness and
effectiveness of CorrKD in the cases of intra-modality and
inter-modality missingness.
Robustness to Intra-modality Missingness. We randomly
drop frame-level features in modality sequences with ratio
p ∈ {0.1, 0.2, · · · , 1.0} to simulate testing conditions of
intra-modality missingness. Figures 3 and 4 show the per-
formance curves of models with various p values, which
intuitively reflect the model’s robustness. We have the
following important observations. (i) As the ratio p in-
creases, the performance of all models decreases. This
phenomenon demonstrates that intra-modality missingness
leads to a considerable loss of sentiment semantics and
fragile joint multimodal representations. (ii) Compared to
the complete-modality methods (i.e., Self-MM, CubeMLP,

and DMD), our CorrKD achieves significant performance
advantages in the missing-modality testing conditions and
competitive performance in the complete-modality testing
conditions. The reason is that complete-modality methods
are based on the assumption of data completeness, whereas
customized training paradigms for missing modalities per-
form better at capturing and reconstructing valuable sen-
timent semantics from incomplete multimodal data. (iii)
Compared to the missing-modality methods, our CorrKD
exhibits the strongest robustness. Benefiting from the de-
coupling and modeling of inter-sample, inter-category, and
inter-response correlations by the proposed correlation de-
coupling schema, the student network acquires informative
knowledge to reconstruct valuable missing semantics and
produces robust multimodal representations.

Robustness to Inter-modality Missingness. In Table 1 and
2, we drop some entire modalities in the samples to simu-
late testing conditions of inter-modality missingness. The
notation “{l}” indicates that only the language modality
is available, while audio and visual modalities are miss-
ing. “{l, a, v}” represents the complete-modality testing
condition where all modalities are available. “Avg.” indi-
cates the average performance across six missing-modality
testing conditions. We present the following significant in-
sights. (i) Inter-modality missingness causes performance
degradation for all models, suggesting that the integration
of complementary information from heterogeneous modali-
ties enhances the sentiment semantics within joint represen-
tations. (ii) In the testing conditions of the inter-modality
missingness, our CorrKD has superior performance among
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Table 2. Comparison results under six testing conditions of inter-modality missingness and the complete-modality condition on IEMOCAP.

Models Categories
Testing Conditions

{l} {a} {v} {l, a} {l, v} {a, v} Avg. {l, a, v}

Self-MM [62]

Happy 66.9 52.2 50.1 69.9 68.3 56.3 60.6 90.8
Sad 68.7 51.9 54.8 71.3 69.5 57.5 62.3 86.7

Angry 65.4 53.0 51.9 69.5 67.7 56.6 60.7 88.4
Neutral 55.8 48.2 50.4 58.1 56.5 52.8 53.6 72.7

CubeMLP [37]

Happy 68.9 54.3 51.4 72.1 69.8 60.6 62.9 89.0
Sad 65.3 54.8 53.2 70.3 68.7 58.1 61.7 88.5

Angry 65.8 53.1 50.4 69.5 69.0 54.8 60.4 87.2
Neutral 53.5 50.8 48.7 57.3 54.5 51.8 52.8 71.8

DMD [22]

Happy 69.5 55.4 51.9 73.2 70.3 61.3 63.6 91.1
Sad 65.0 54.9 53.5 70.7 69.2 61.1 62.4 88.4

Angry 64.8 53.7 51.2 70.8 69.9 57.2 61.3 88.6
Neutral 54.0 51.2 48.0 56.9 55.6 53.4 53.2 72.2

MCTN [32]

Happy 76.9 63.4 60.8 79.6 77.6 66.9 70.9 83.1
Sad 76.7 64.4 60.4 78.9 77.1 68.6 71.0 82.8

Angry 77.1 61.0 56.7 81.6 80.4 58.9 69.3 84.6
Neutral 60.1 51.9 50.4 64.7 62.4 54.9 57.4 67.7

TransM [46]

Happy 78.4 64.5 61.1 81.6 80.2 66.5 72.1 85.5
Sad 79.5 63.2 58.9 82.4 80.5 64.4 71.5 84.0

Angry 81.0 65.0 60.7 83.9 81.7 66.9 73.2 86.1
Neutral 60.2 49.9 50.7 65.2 62.4 52.4 56.8 67.1

SMIL [26]

Happy 80.5 66.5 63.8 83.1 81.8 68.2 74.0 86.8
Sad 78.9 65.2 62.2 82.4 79.6 68.2 72.8 85.2

Angry 79.6 67.2 61.8 83.1 82.0 67.8 73.6 84.9
Neutral 60.2 50.4 48.8 65.4 62.2 52.6 56.6 68.9

GCNet [23]

Happy 81.9 67.3 66.6 83.7 82.5 69.8 75.3 87.7
Sad 80.5 69.4 66.1 83.8 81.9 70.4 75.4 86.9

Angry 80.1 66.2 64.2 82.5 81.6 68.1 73.8 85.2
Neutral 61.8 51.1 49.6 66.2 63.5 53.3 57.6 71.1

CorrKD

Happy 82.6 69.6 68.0 84.1 82.0 70.0 76.1 87.5
Sad 82.7 71.3 67.6 83.4 82.2 72.5 76.6 85.9

Angry 82.2 67.0 65.8 83.9 82.8 67.3 74.8 86.1
Neutral 63.1 54.2 52.3 68.5 64.3 57.2 59.9 71.5

w/o SCD w/o RCDw/o CPD CorrKD
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Figure 5. Ablation results of intra-modality missingness using var-
ious missing ratios on MOSI.

the majority of metrics, proving its strong robustness. For
example, on the MOSI dataset, CorrKD’s average F1 socre
is improved by 0.85% compared to GCNet, and in particular
by 3.72% in the testing condition where language modal-
ity is missing (i.e., {a, v}). The merit stems from the pro-

Table 3. Ablation results for the testing conditions of inter-
modality missingness on MOSI.

Models
Testing Conditions

{l} {a} {v} {l, a} {l, v} {a, v} Avg. {l, a, v}

CorrKD 81.20 66.52 60.72 83.56 82.41 73.74 74.69 83.94
w/o SCD 78.80 64.96 57.49 81.95 80.53 71.05 72.46 82.13

w/o CPD 79.23 63.72 57.83 80.11 79.45 70.53 71.81 82.67

w/o RCD 79.73 65.32 59.21 82.14 81.05 72.18 73.27 83.05

posed framework’s capability of decoupling and modeling
potential correlations at multiple levels to capture discrim-
inative and holistic sentiment semantics. (iii) In the uni-
modal testing conditions, the performance of CorrKD with
only the language modality favorably outperforms other
cases, with comparable results to the complete-modality
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(c) GCNet(a) Self-MM (b) MCTN (d) CorrKD

Figure 6. Visualization of representations from different methods with four emotion categories on the IEMOCAP testing set. The default
testing conditions contain intra-modality missingness (i.e., missing ratio p = 0.5 ) and inter-modality missingness (i.e., only the language
modality is available). The red, orange, green, and blue markers represent the happy, angry, neutral, and sad emotions, respectively.

case. In the bimodal testing conditions, cases containing
the language modality perform the best, even surpassing
the complete-modality case in individual metrics. This phe-
nomenon proves that language modality encompasses the
richest knowledge information and dominates the sentiment
inference and missing semantic reconstruction.

4.4. Ablation Studies

To validate the effectiveness and necessity of the proposed
mechanisms and strategies in CorrKD, we conduct abla-
tion studies under two missing-modality cases on the MOSI
dataset, as shown in Table 3 and Figure 5. The principal
findings are outlined as follows. (i) When SCD is elim-
inated, there is a noticeable degradation in model perfor-
mance under both missing cases. This phenomenon sug-
gests that mining and transferring comprehensive cross-
sample correlations is essential for recovering missing se-
mantics in student networks. (ii) The worse results un-
der the two missing modality scenarios without CPD in-
dicate that capturing cross-category feature variations and
correlations facilitates deep alignment of feature distribu-
tions between both networks to produce robust joint mul-
timodal representations. (iii) Moreover, we substitute the
KL divergence loss for the proposed RCD. The declining
performance gains imply that decoupling heterogeneous re-
sponses and maximizing mutual information between ho-
mogeneous responses motivate the student network to ade-
quately reconstruct meaningful sentiment semantics.

4.5. Qualitative Analysis

To intuitively show the robustness of the proposed frame-
work against modality missingness, we randomly choose
100 samples from each emotion category on the IEMO-
CAP testing set for visualization analysis. The compari-
son models include Self-MM [62] (i.e., complete-modality
method), MCTN [32] (i.e., joint learning-based missing-
modality method), and GCNet [23] (i.e., generative-based
missing-modality method). (i) As shown in Figure 6, Self-

MM cannot address the modality missing challenge, as the
representations of different emotion categories are heavily
confounded, leading to the least favorable outcomes. (ii)
Although MCTN and GCNet somewhat alleviate the issue
of indistinct emotion semantics, their effectiveness remains
limited since the distribution boundaries of the different
emotion representations are generally ambiguous and cou-
pled. (iii) Conversely, our CorrKD ensures that representa-
tions of the same emotion category form compact clusters,
while representations of different categories are clearly sep-
arated. These observations confirm the robustness and supe-
riority of our framework, as it sufficiently decouples inter-
sample, inter-category and inter-response correlations.

5. Conclusions

In this paper, we present a correlation-decoupled knowl-
edge distillation framework (CorrKD) to address diverse
missing modality dilemmas in the MSA task. Con-
cretely, we propose a sample-level contrast distillation
mechanism that utilizes contrastive learning to capture and
transfer cross-sample correlations to precisely reconstruct
missing semantics. Additionally, we present a category-
guided prototype distillation mechanism that learns cross-
category correlations through category prototypes, refining
sentiment-relevant semantics for improved joint representa-
tions. Eventually, a response-disentangled consistency dis-
tillation is proposed to encourage distribution alignment be-
tween teacher and student networks. Extensive experiments
confirm the effectiveness of our framework.
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