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Text Descriptions:
A close up portrait shot, a 
adult Caucasian male, fit, 
natural landscape, short sleeve 
normal cotton blue t-shirt, 
wavy blonde above eyes hair, 
woven hat

Text Descriptions:
A portrait shot, an adult Caucasian female, fit, 
a wooden fence and a building, mesh belt, 
sleeveless mesh solid color wedding dress, 
blonde bun above chin hair

Text Descriptions:
A headshot, a Caucasian child 
male, fit, a white wall, normal 
long sleeve cotton black graphic 
solid color sweatshirt, blonde 
above eyes straight hair

Text Descriptions:
A close up portrait shot, an 
adult Indian female, fit, a beige 
wall, above chest brown bun 
hair, short sleeve saree

Figure 1. CosmicMan. High-fidelity images generated by our proposed human-specialized text-to-image foundation model CosmicMan.
The results are with meticulous appearance, reasonable structure, and precise text-image alignment with detailed dense descriptions.

Abstract

We present CosmicMan, a text-to-image foundation
model specialized for generating high-fidelity human im-
ages. Unlike current general-purpose foundation mod-
els that are stuck in the dilemma of inferior quality and
text-image misalignment for humans, CosmicMan enables
generating photo-realistic human images with meticulous
appearance, reasonable structure, and precise text-image
alignment with detailed dense descriptions.

At the heart of CosmicMan’s success are the new reflec-
tions and perspectives on data and models: (1) We found
that data quality and a scalable data production flow are es-
sential for the final results from trained models. Hence, we
propose a new data production paradigm, Annotate Any-
one, which serves as a perpetual data flywheel to produce
high-quality data with accurate yet cost-effective annota-

*Joint first authors.
†Equal advising.

tions over time. Based on this, we constructed a large-scale
dataset, CosmicMan-HQ 1.0, with 6 Million high-quality
real-world human images in a mean resolution of 1488 ×
1255, and attached with precise text annotations deriving
from 115 Million attributes in diverse granularities. (2) We
argue that a text-to-image foundation model specialized for
humans must be pragmatic – easy to integrate into down-
streaming tasks while effective in producing high-quality
human images. Hence, we propose to model the relation-
ship between dense text descriptions and image pixels in
a decomposed manner, and present Decomposed-Attention-
Refocusing (Daring) training framework. It seamlessly de-
composes the cross-attention features in existing text-to-
image diffusion model, and enforces attention refocusing
without adding extra modules. Through Daring, we show
that explicitly discretizing continuous text space into several
basic groups that align with human body structure is the key
to tackling the misalignment problem in a breeze. Project
page:https://cosmicman-cvpr2024.github.io/.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Text-to-image foundation models, e.g., Stable Diffusion
(SD) [43], Imagen [45], and DALLE [40], have made
groundbreaking contributions in the realm of Computer Vi-
sion and Graphics. These models, fueled by expansive
image-text datasets [3, 47] and advanced generative algo-
rithms [11, 20, 51], possess the capability to create images
of remarkable quality and details. These models, under-
pinned by robust prior knowledge, have significantly en-
hanced a wide array of downstream tasks. Notable exam-
ples include DreamBooth [44] and ControlNet [57] in 2D
image generation, alongside DreamFusion [38] and Zero-
1-to-3 [29] in 3D object creation. Despite these advances,
a critical gap remains within the sphere of human-centric
content generation – the absence of a specialized text-to-
image foundation model that serves as a cornerstone for
tasks on human subjects.

In prior research, tasks related to human-centric content
generation, like 2D human generation/editing [14, 22, 27]
and 3D human generation/reconstruction [16, 46, 55, 56],
have typically progressed in isolation, each relying on its
in-domain data. These methods, however, faced a key limi-
tation: the datasets used were often narrow in diversity [6],
exhibited biased distributions [14], or lacked quality [24].
Achieving generalization across a broad range of identities,
appearances, and geometries in real-world applications has
been challenging within this framework. Nevertheless, the
emergence of text-to-image foundation models, which have
excelled in the general-purpose arena, offers a promising
new direction to revolutionize human-centric content gen-
eration with enhanced generalization capabilities.

The pivotal question then arises: How to obtain a text-
to-image foundation model for humans? By analyzing
the essential demands of a human-specialized foundation
model, we identify three critical elements necessary for
such a model: 1) High-Quality Data. To train a founda-
tion model that will be used in downstream tasks to gen-
erate high-quality content, the raw data quality is criti-
cal. The raw data quality encompasses not only the vol-
ume but also the image quality and diversity, as well as
the precision, granularity, and comprehensiveness of an-
notations. While large-scale datasets featuring text-image
pairs (e.g., LAION-5B [47], and COYO-700M [3]) have ad-
vanced general-purpose foundation models, they often de-
viate from accurately representing real-world human distri-
butions, suffering from jagged image quality and a mass of
annotation noise. 2) Scalable Data Production. A foun-
dation model that generalizes effectively must evolve in
sync with the growth of real-world data. Given the vast
amount of training data that is requisite and the rapid pace
at which it expands in human contexts, developing a scal-
able data production process is imperative – being updated
over time and cost-effective. Traditional methods often in-

cur high costs due to manual annotation [2, 28, 36, 49], or
suffer from accuracy issues when using automated label-
ing [48]. Moreover, the reliance on static datasets limits
their ability to adjust according to dynamic real-world data
distributions. 3) Pragmatic Model. A foundation model
designed for humans should be straightforward to integrate
into downstream tasks, requiring minimal customization of
its architecture. In addition, given the complexity of human
anatomy, the ability of a model to generate high-quality out-
puts is also essential – the outputs should guarantee realis-
tic structures and precise text-image alignment, especially
capturing detailed dense concepts attached to humans. Ex-
isting models, whether closed-source like MidJourney [31],
DALLE [40], or those struggling with high-fidelity human
generation such as SD [43] and SDXL [37], highlight the
need for a versatile, high-quality model tailored for human-
centric applications.

We present CosmicMan – a holistic solution of text-to-
image foundation model for humans. We first introduce a
new data production paradigm Annotate Anyone by human-
AI cooperation, which can produce flowing, high-quality
yet cost-effective data continuously. Annotate Anyone con-
sists of two main stages: Flowing Data Sourcing to get
a flowing data pool with irrigated high-quality human im-
ages from academic datasets and Internet, and Human-in-
the-loop Data Annotation to iteratively refine the labeling
quality of the data in the pool at a fairly low cost. Then, a
data flywheel is constructed to produce vast amounts of data
in a dynamic, up-to-date, and economical manner, which is
well-adaptive in the age of large-scale foundation models.

By running Annotate Anyone, we constructed a large-
scale, high-quality dataset, CosmicMan-HQ 1.0, which cur-
rently included 6 million human images with a mean resolu-
tion of 1488× 1255. It includes rich annotations with high
precision – 115 million attributes, texts, bounding boxes,
keypoints, human parsings, and rich meta information. Em-
powered by Annotate Anyone, CosmicMan-HQ continues
to grow rapidly. Future versions of CosmicMan-HQ will
support the perpetual update of foundation models with
growing real-world data, facilitating long-term research in
human-centric generation.

Finally, based on CosmicMan-HQ, we provide a human-
specialized foundation model to support the human-centric
content generation tasks. To ensure the easy of use of
the proposed model, we construct our model by tailoring
SD with minimum modification. Concretely, we intro-
duce Decomposed-Attention-Refocusing (Daring), a train-
ing framework that is rooted in SD without adding extra
modules. In virtue of the nature of the proposed dataset, the
key insight of the framework is explicitly discretizing dense
descriptions into a fixed number of groups related to hu-
man body structure. Based on this, we could decompose the
cross-attention feature maps according to the groups and en-
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force the network learning attention refocusing at the group
level. This target could be achieved by adding a new loss
supervised on cross-attention maps, called HOLA (short for
Human Body and Outfit Guided Loss for Alignment).

In experiments, we demonstrate superior image quality
and text-image alignment by comparing our models to state-
of-the-art foundation models. Then, we conduct extensive
ablation studies to show the effectiveness of our designs in
data production and model training. Finally, we show the
pragmaticality and potential of our human-specialized foun-
dation model with applications in 2D and 3D generation.

2. Related Work
2.1. Text-to-Image Foundation Models

Advancements in data volume and model design have led
text-to-image foundation models to produce high-fidelity
images that follow the text instructions. DALLE [40],
which pioneered zero-shot text-to-image generation, au-
toregressively modeling text and image tokens in a uni-
fied data stream. Its successors [1, 41] enhance perfor-
mance through model design and improved captions. Ima-
gen [45] utilizes a larger text encoder with better photo real-
ism. Open-source models like DeepFloyd-IF [9], PixelArt-
α [5], and particularly SD [43], along with SDXL [37], have
energized the community, accelerating various applications
in downstream tasks. In 2D content generation, innovations
like ControlNet [57] and T2I-Adapter [33] have emerged,
and in 3D, models like Zero-1-to-3 [29] and DreamFu-
sion [38] leverage SD to create high-quality 3D objects.
However, these foundation models are geared towards the
general-purpose domain, which falls short in generating hu-
mans due to their tendency to overlook the nuances and
complexities of human anatomy and attire. There is still
a gap for a human-specialized text-to-image foundation
model to boost downstream human content generation.

2.2. Text-Driven Human Image Generation

Previous research [22, 27, 32, 34] primarily focused on
fashion-domain data and has achieved high-fidelity human
generation and editing with control over text. For instance,
Text2Human [22] employs a two-stage framework using
VQ-VAE [51] to transfer human pose into human parsing
with cloth shape and generates human images with texture
description. However, the insufficient training data hin-
ders the diversity of generated images from these meth-
ods. Meanwhile, some approaches [24, 57] leverage text-
to-image foundation models [43] to create diverse human
images with additional conditions (e.g., skeletons and nor-
mal maps). HumanSD [24] introduces a skeleton-guided
diffusion model that enhances the accuracy of pose control.
In contrast, CosmicMan stands out as a foundation model
by producing high-quality and diverse human images with-

out relying on spatial conditions in the inference phase.

2.3. Text-Image Alignment for Dense Concepts

Early text-to-image models, often trained on short text cap-
tions, struggle to encapsulate dense concepts present in
longer descriptions. The dense concepts, as discussed in
many text-to-image benchmarks [15, 21], include multiple
objects, attributes, and spatial relationships that describe the
image from different granularities and perspectives. The
challenge lies in generating each element and accurately
depicting their interrelations within long descriptions. Re-
cently, the training-free methods [4, 12, 17, 26, 42, 52, 58]
found that the cross-attention mechanism plays a pivotal
role in text-to-image alignment. Prompt-to-Prompt [17]
first reveals that the cross-attention map governs the se-
mantics of the output. Subsequent methods [4, 26, 52, 58]
are proposed to employ the gradients of the well-designed
loss to update the latent feature along the diffusion process.
Additionally, FastComposer [54] applies the supervision of
cross-attention maps during training. However, intuitively
applying this to human images becomes more complex, as
dense captions for humans often cluster in a small image re-
gion, as shown in Fig. 3. Thus, we propose a training frame-
work that utilizes human-specific prior on arrangement re-
lationships to supervise the cross-attention maps with de-
composed text-human image data, which further improves
the text-image alignment on dense concepts.

3. Annotate Anyone – A Data Flywheel
To enable the learning of the human-specialized foundation
model, we propose a human-AI cooperation paradigm for
data production named Annotate Anyone. It combines the
strengths of AI and human expertise to build a continuously
expandable dataset CosmicMan-HQ with rich annotations.

3.1. Data Production by Human-AI Cooperation

To construct large-scale image datasets with labels, there
are mainly two paradigms – by humans or by AI. Data pro-
duction by humans (as depicted in Fig. 2 (a)) needs human
annotators to manually label images one by one [10, 28, 59],
which suffers from its high cost and thus is hard to scale
up to support the recent development of large foundation
models. On the other hand, data production by AI (as de-
picted in Fig. 2 (b)) uses off-the-shelf models to get labels
for free [1, 5]. Although this paradigm dramatically reduces
costs and is easy to scale up, it is notorious for its noisy,
jagged, and coarse labeling results. Moreover, both of these
paradigms rely on fixed datasets for labeling, which results
in limited diversity and severe bias versus real-world data.
To train a large foundation model, a huge quantity of data,
high-precise and fine-grained labeling, and real-world dis-
tribution are all indispensable. Thus, these paradigms are
especially knotty to adapt to the human domain.
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Paradigm-1: Data Production by Human Paradigm-2: Data Production by AI

(a) (b)

Sampling Labeling

FinetuningImage-Annotation Pairs

Paradigm-3: Data Production by Human-AI Cooperation -- Annotate Anyone

Collecting

Internet

Datasets

DatasetsAI ModelDatasetsHuman

AI ModelData Pool Human

Fetching

(c)

Figure 2. Data Production Paradigm. (a) Data production by
humans and (b) data production by AI. (c) Our proposed new data
production paradigm by Human-AI cooperation, named Annotate
Anyone. It serves as a data flywheel to produce dynamic up-to-
date high-quality data at a low cost.

To this end, we propose a new data production paradigm
by human-AI cooperation named Annotate Anyone (as
shown in Fig. 2 (c)). Compared to data production by hu-
mans and AI, Annotate Anyone pivots on two characteris-
tics: 1) flowing data, and 2) human-in-the-loop annotation.
Flowing data is sourced from two origins: existing pub-
lished datasets and the Internet. By collecting data from ex-
isting published datasets, such as SHHQ [14] and LAION-
5B [47], we can upcycle them to match the qualifications
of a high-quality human dataset. By fetching data from
the Internet, we can obtain the massive data produced by
human beings every second. Our data sourcing system is
always on call to run when the data quantity triggers the
lower-bound threshold. Thus, our data pool is continuously
flowing and refreshed, which distinguishes it from previ-
ous paradigms. Human-in-the-loop annotation coordinates
three entities: data pool, AI, and human annotators, to work
in a circle. By labeling a small quantity of data with the
greatest necessity, human annotators and AI models coop-
erate to iteratively improve the quality of data annotation.
Consequently, data in the pool will have progressively better
annotation quality at a minimal cost. With Annotate Any-
one, we construct a data flywheel to enable a dynamic up-
to-date production of high-quality data.

3.2. Procedure of Annotate Anyone

3.2.1 Flowing Data Sourcing

We first source images from various origins to ensure mas-
sive quantity and catch the real-world distribution. Then,
we design a data filter to eliminate unbefitting images for

human content generation tasks.
Data Origins. We start with three academic datasets to re-
cycle existing data resources: LAION-5B [47], SHHQ [14],
and DeepFashion [30]. LAION-5B is a renowned collec-
tion of massive images shared online, while the other two
datasets are smaller in scale and diversity but meticulously
curated to ensure high quality. Then, we initiate 128 parallel
processes in 32 CPU servers, monitoring a wide spectrum of
APIs on the Internet, including Flickr [13], Unsplash [50],
Pixabay [35], etc. These APIs give access to a vast collec-
tion of growing and diverse images, rendering a real-world
distribution.
Data Filtering. The current data pool exhibits a broad
distribution, but high-resolution human images are not the
primary constituent. We use a set of data filtering strate-
gies to distill a high-quality human-centric subset, including
fake-people detection, image quality assessment, and so on.
More details can be found in the supplementary material.

3.2.2 Human-in-the-loop Data Annotation

Having a data pool with diverse and high-quality human im-
ages, the next step is to possess precise, fine-grained yet
cost-effective annotations for the images. We propose a
human-in-the-loop data annotation workflow to iteratively
refine the labeling quality of the data in the pool.
Annotation Iteration. As shown in Fig. 2 (c), the iterations
start from sampling an image set Ii from the data pool and
end up with putting all image-annotation pairs (I, A) back
to the data pool. We set an evaluation set Ie with ground
truth. In each iteration, Ie is used to determine the cate-
gories that need to be labeled by human annotators, and Ii
will be partially labeled with the selected categories. Then,
Ii is used to finetune the AI model. The finetuned AI model
is evaluated on Ie to determine whether to continue or stop
the iterations. Finally, a well-finetuned AI model is used
to get image-annotation pair (I, A) for all data in the pool.
Specifically, inspired by methods [1, 5] that use the Vision-
Language Model (VLM) to perform image captioning tasks,
we leverage a pretrained InstructBLIP [8] as our AI model
in the iteration. Please refer to the supplementary for the
pseudo-code of the annotation iteration.

The pivotal mechanism to implement the high-precise
yet low-cost annotation is the trigger of human annotation.
During the initial iteration, the annotation team labels all
categories based on 70 questions. We observed that the
accuracy of the predicted labels follows a real-world dis-
tribution, exhibiting a long-tail distribution. For the head
categories, such as age and gender, the pretrained AI model
already proficients in the prediction. Thus, in subsequent
iterations, human annotators focus on tail categories, and
categories with an accuracy above 85% will no longer be
manually labeled. Our iterative process significantly im-
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Table 1. Dataset Comparison. The statistical comparison between publicly available human-related datasets and CosmicMan-HQ 1.0.
“Common Scale” refers to the dataset that includes images captured at common scales, such as full-body shots, portrait photos, and
half-body shots. “HP” and “Aes” refer to Human Parsing maps and Aesthetic scores.

Data Quantity Imaging Quality Annotation
DomainTotal

Image #
Mean

Resolution
Common

Scale Global↑ Face↑ Cat # Attr # Text Bbox Kpts HP Aes

Human-Art [23] 50K 1115× 1287 ✓ 3.42 2.87 - - ✓ ✓ ✓ ✗ ✗ Real world & AI
DF-MM [22] 44K 750× 1101 ✗ 4.64 3.38 18 587K ✓ ✓ ✗ ✓ ✗ Fashion

LAION-Human [24] 1M 688× 650 ✓ 4.20 2.66 - - ✓ ✗ ✗ ✗ ✓ Real world
SHHQ 1.0 [14] 40K 1024× 512 ✗ 4.23 2.13 - - ✗ ✗ ✓ ✓ ✗ Fashion

CosmicMan-HQ 1.0 6M 1488× 1255 ✓ 4.37 3.37 70 115M ✓ ✓ ✓ ✓ ✓ Real world

Left Leg

Global Attributes
• Person type: Full 

body
• Gender: Female 
• Country: Asian
• Age: adult
• Body shape: fit
• Background: small 

road with trees

Bottoms
• Wear bottoms: Yes
• Type: Skirt
• Pattern: Plaid
• Material: Cotton
• Length: Short
• Shape: Pleated

Right Leg

Bags 
• Wear bags: Yes
• Type: Backpack
• Material: Cotton

Left Leg

Hair
• Hair color: Red
• Hair style: Straight
• Hair length: Above 

chest

Face

Tops
• Wear tops: Yes
• Type: Shirt
• Pattern: Solid Color
• Color: White
• Material: Cotton
• Sleeve length: Long 

sleeve
• Top length: Normal
• Collar shape: Collar 

Shoes
• Wear shoes: Yes
• Type: Oxford shoes
• Pattern: Solid color
• Color: Black
• Material: Leather
• Length: Ankle

Text Descriptions:
A full-body shot, an Asian adult female, fit, small road with trees, 
straight red above-chest hair, normal-length, white and long sleeve cotton 
shirt, short plaid skirt in pleated shape, cotton backpack, socks, black 
leather oxford shoes.

Figure 3. Parsing Examples from CosmicMan-HQ. The parsing
results of sampled image in our dataset, along with detailed labels
for each part. Text descriptions are obtained from labels.

proved the VLM model’s overall accuracy by at least 30%
compared to the pretrained model. Moreover, the progres-
sive reduction of labeled annotations during the iterations
resulted in only 1% compared to full manual labeling.

Label Protocol. We devised a label protocol using the
SCHP [25] human parsing model, dividing each image into
18 fine parts such as background, face, and clothing (as
shown in Fig. 3). Each part corresponds to 3 to 8 questions,
totaling 70 categories like “top-sleeve length”. This hierar-
chical approach ensures comprehensive labeling, covering
global attributes and spatial positions.

3.3. CosmicMan-HQ 1.0 Dataset

By running Annotate Anyone, so far, the first version of the
produced dataset CosmicMan-HQ 1.0 consists of 6M high-
resolution, single-person images, along with corresponding
rich annotations. Here we compare our dataset with repre-
sentative human-centric datasets in terms of data quantity,
imaging quality, and annotations.

As depicted in Tab. 1, our dataset is the largest crafted
human-centric dataset, six times larger than LAION-
Human [24]. The mean resolution is 1488 × 1255, sur-
passing previous human-only datasets like DF-MM [22]
and SHHQ [14] by a large margin. Our dataset possesses
a diverse collection of human images, including full-body
shots, headshots, half-body shots, and so on. In terms of im-
age quality at both overall and face level, our dataset ranks
second only to the fashion-focused DF-MM dataset, which
predominantly contains professional studio images but with
less diversity and a data amount. As for annotation, only
DF-MM and ours provide manually labeled categories, but
the former dataset is much smaller in data volume and cate-
gory numbers. CosmicMan-HQ 1.0 provides 70 categories
and around 115M detailed attributes.

Highlighting our dataset’s uniqueness, CosmicMan-HQ
1.0 distinguishes itself by providing an unparalleled wealth
of diverse annotations, including 115M attributes, texts,
bounding boxes, keypoints, human parsings, and rich meta
information (web alternative texts, aesthetic scores, water-
mark scores, face/global quality scores, and camera EXIF
parameters).

4. Daring - The Training Framework
We propose Daring (Decomposed-Attention-Refocusing),
a training framework rooted in original Stable Diffusion
(SD) with minimal modification. The framework is illus-
trated in Fig. 4. It enjoys three properties at the same time
– friendly to computational costs, compatible with down-
stream tasks supported by SD, and robust in producing
high-quality human images that align well with dense con-
cepts. These come from two parts’ design – data discretion
for decomposing text-human image data (Sec. 4.2), and a
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new loss aiming to improve the alignment with respect to
the scale of the human body and outfits (Sec. 4.3).

4.1. Preliminaries

We employ SD as the backbone model for its efficiency and
widespread application in various downstream tasks. SD
incorporates a variational autoencoder E to encode images
x as latent variables z in a compact latent space, and ap-
plies diffusion schema in the latent space, thereby facili-
tating the diffusion process and reducing the computational
cost. The denoising network is optimized by minimizing
the L2 error between predicted noise ϵθ and ground-truth
noise ϵ ∼ N (0, I):

Lnoise = Ez∼E(x),c,ϵ,t
[
||ϵ− ϵθ(zt, t, c)||22

]
, (1)

where zt is the latent at time-step t, and c is the condition
information that can be instantiated by text input.

The cross-attention layers are the hinge for textual in-
formation to play a role in influencing the updating of in-
termediate features. Specifically, a text prompt P is first
transformed into a text embedding c via a CLIP text en-
coder. The latent zt and text embedding are projected to
form a query Q and keys K. The cross-attention maps are
computed to flatten textual information into spatial features:

M = Softmax(
QKT

√
d

) (2)

where d is the dimension of Q and K embeddings. The de-
sign works well when the text descriptions are short sparse
captions. However, it can not handle text information with
dense concepts, due to the lack of effective guidance to learn
distinctive and precisely located features.

4.2. Data Discretization for Humans

We argue that there is no necessity to optimize the latent
code guided by cross-attention maps during inference or
harm the original architecture design of SD with sophisti-
cated modules, as long as keys K are decomposable and fi-
nite at the first place. This is doable and simple to achieve.
Because for the human generation scenario, textual descrip-
tions about a person always revolve around body structure
and attachments. As humans are structured in nature, tex-
tual descriptions could be explicitly classified into fixed
groups that correspond to body regions, no matter how
many concepts are described.

Thus, rather than directly utilizing nature language de-
scription, we propose a discretized textual prototype as il-
lustrated in Fig. 4 for the network to enable precise commu-
nication between tokens. The prototype defines the conven-
tion of classifying and arranging the concepts of text cap-
tions to a finite set, where all captions can be represented
as C = {Cbody, Coutfit}. The subset Cbody is for overall

…
𝐾𝑖

𝑄

𝓛𝑯𝑶𝑳𝑨

ℎ1 ℎ2 ℎ𝑖

brown wavy hair (𝑐(𝑠𝑖,𝑒𝑖))

full-body woman (𝑐(𝑠1,𝑒1))

short blouse 

𝐶𝑏𝑜𝑑𝑦

𝐶𝑜𝑢𝑡𝑓𝑖𝑡

𝓏𝑡 𝓏𝑡−1

Decomposed-Attention-Refocusing

𝑚(𝑠1,𝑒1)

“A full-body shot, a 
adult woman … with 
brown hair … short 
white blouse and …”

…

……

𝓛𝒏𝒐𝒊𝒔𝒆

𝑚(𝑠2,𝑒2) 𝑚(𝑠𝑖,𝑒𝑖)

𝐾𝑖

𝑄

white jacket
(𝑐(𝑠2,𝑒2))

Figure 4. Daring Training Framework. It includes two parts: (1)
data discretion for decomposing text-human data into fixed groups
that obey human structure; (2) a new loss – HOLA, to enforce the
cross-attention features actively response in proper spatial region
with respect to the scale of body structure and outfit arrangement.

appearance, and the subset Coutfit is for fine-grained at-
tributes of outfits.

Concretely, as shown in Fig. 4, given a human data sam-
ple x in CosmicMan-HQ, we first reorganize human pars-
ing maps into the semantic map sets H = {hi}Ni=1, where
N is the number of semantic masks and h1 is the aggre-
gation of all human parsing maps to differentiate human
foreground with background. These masks are categorized
into two levels – h1 lies in human-body-level and the oth-
ers belong to outfit-level. Then, we split the text captions
with respect to H . Specifically, Cbody = c(s1,e1) and
Coutfit = {c(s2,e2), . . . , c(sN ,eN ), cother}. c(sn,en) denotes
the nth sub-caption group related to the semantic map hn,
and sn, en are the start and end indices of the concepts in the
caption respectively. We gather the caption phrases without
corresponding semantic masks as cother, such as the caption
for background. Note that, as our dataset naturally con-
structs annotation labels in a hierarchical manner, we can
easily associate textual concepts with the semantic maps.
For example, given a semantic map h2 that represents the
top clothing mask, we retrieve all the labels related to the
top clothing and group them as a sub-caption c2.

4.3. Decomposing and Refocusing Features

During training diffusion models, the denoising loss Lnoise

can ensure the content generative capability of the model,
but it lacks explicit alignment constraints between the cap-
tion and image pixels, especially when encountering de-
scriptions with dense concepts that cover very high infor-
mation density. Thus, on the shoulders of discrete hu-
man data mentioned in Sec. 4.2, we propose a new loss
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Table 2. Quantitative Comparison to SOTA Text-to-Image Models. The best and second-best results are marked with Red and Green.

Methods FID↓ HPSv2↑ CLIP↑ Accobj↑ Acctex↑ Accshape↑ Accall ↑
SD 1.5 [43] 48.09 0.2659 30.43 87.3 77.4 59.3 74.6
SD 2.0 [43] 51.61 0.2588 26.27 82.8 74.7 58.7 72.0
SDXL [37] 48.61 0.2647 30.78 88.5 82.5 63.2 78.1
DeepFloyd-IF [9] 44.62 0.2603 29.33 87.9 84.4 62.0 78.1
DALLE2 [41] 49.60 0.2630 29.86 83.3 79.3 55.3 72.6
DALLE3 [1] 66.36 0.2673 28.86 86.2 87.1 60.1 77.8
MidJourney [31] 53.89 0.2688 28.89 85.2 79.5 59.4 74.7
CosmicMan-SD 36.78 0.2690 28.47 91.7 85.7 66.1 81.2
CosmicMan-SDXL 35.42 0.2698 27.31 92.7 88.3 69.7 83.6

– HOLA (short for Human Body and Outfit Guided Loss
for Alignment) to seamlessly decompose the cross-attention
features in SD model and enforce attention refocusing with-
out adding extra modules.

Concretely, given the caption C and latent zt, the
cross-attention maps M can be decomposed as M =
(m(s1,e1),m(s2,e2), . . . ,m(sN ,eN ),mother). Each Mi is
calculated through Eq. 2, with turning K to Ki (the pro-
jected embeddings of sub-caption c(si,ei)). We then incor-
porate HOLA alongside the original loss in SD to explicitly
guide the cross-attention maps to have high responses only
in specific regions. The HOLA is defined as follows:

LHOLA =
1

N

N∑
i=1

(

ei∑
j=si

∥mj − hi∥2
2 +

∥∥∥∥∥∥ 1

ei − si

ei∑
j=si

(mj) − hi

∥∥∥∥∥∥
2

2

) (3)

Specifically, the first term of HOLA works under the
guidance of human body structure – it pushes the high re-
sponse region of each concept feature to be as close as pos-
sible to the corresponding semantic region. However, since
certain outfit-related concepts may only occupy a specific
proportion within a semantic region, it is unnecessary to en-
force their features to align with the whole semantic region.
Also, concepts within the same group should be arranged
harmoniously. Thus, we use the second term of HOLA to
satisfy the situation. This term requires the average atten-
tion maps within one group to be close to their semantic
map. It helps reduce ambiguities in outfit-level descriptions.
The overall loss function is as follows:

L = αLnoise + βLHOLA (4)

where α and β are hyper-parameters to balance the contri-
bution of each loss.

5. Experiments
5.1. Evaluation Metrics

We evaluate results from three perspectives: 1) Image Qual-
ity: Frechet Inception Distance (FID) [19] and Human Pref-
erence Score v2 (HPSv2) [53] are used to reflect diver-

sity and authenticity. 2) Text-Image Alignment: CLIP-
Score [18] provides a holistic measure of image-text align-
ment. However, it struggles to capture detailed image-text
relationships, especially in fine-grained texture, shape, and
object descriptions [7, 15, 21]. Our proposed semantic ac-
curacy metric, inspired by DSG [7], enhances fine-grained
text-image alignment, focusing on object (Accobj), texture
(Acctex), shape (Accshape), and overall (Accall), making it
suitable for human-centric evaluation. 3) Human Prefer-
ence: we conduct a user study to evaluate the image quality
and text-image alignment of each method.

5.2. Comparison to Text-to-Image Models

We compared our foundation model with various state-of-
the-art text-to-image models, including open-source models
like Stable Diffusion (SD-1.5/2.0), SDXL, DeepFloyd-IF,
and commercial models such as DALLE2/3 and MidJour-
ney. For a thorough comparison, we evaluated two versions
of our foundation model: CosmicMan-SD based on SD-1.5
and CosmicMan-SXDL based on SDXL.
Quantitative Evaluation. We prepared a test set compris-
ing 2048 human images with fine-grained manually anno-
tated prompts for fine-grained text-image generation. We
report the quantitative comparison in Tab. 2. CosmicMan-
SDXL excels in both image quality (FID) and fine-grained
text-image alignment (Accall). In terms of image genera-
tion quality, CosmicMan-SD/SDXL outperforms the corre-
sponding SD-1.5/SDXL by a large margin, showing up to
23.52% and 27.13% relative improvements in FID. As for
fine-grained text-image alignment, compared to DALLE-3,
CosmicMan-SDXL shows significant improvements in ob-
ject (7.54%), texture (1.38%), shape (15.97%), and over-
all alignment (7.46%). Note that CosmicMan-SD/SDXL
obtains a relatively low CLIPScore, as our emphasis was
on evaluating fine-grained text-image alignment. In con-
trast, CLIPScore lacks the ability for fine-grained evalua-
tion, consistent with the conclusions in the DSG [7] and
GenEval [15]. CosmicMan-SD/SDXL achieves the best
performance in Accall and human preference evaluation, in-
dicating its superiority in 2D human image generation.
Human Preference Evaluation. We compared our re-
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Table 3. Ablation on Training Data. “AltText” refers to Web
Alternative Text, “IBpre” denotes the image descriptions generated
by the pretrained InstructBLIP model, and “Ours” corresponds to
captions produced by Annotate Anyone (“AA”).

Dataset Num Text FID↓ Accall ↑
LAION-5B 5B AltText 48.09 74.6
HumanSD 1M AltText 49.01 75.0

Ours-1 1M AltText 47.65 75.2
Ours-2 1M IBpre 51.02 75.6
Ours-3 1M AA 40.08 78.8

Ours 6M AA 37.57 79.7

sults with DeepFloyd-IF, SDXL, DALLE3, and MidJour-
ney through pairwise comparisons. The evaluation consid-
ered both image quality and text-image alignment, using
100 randomly selected prompts to generate corresponding
images for each method. The evaluation shows 93.06%,
82.93%, 78.13%, and 70.43% in terms of image quality,
and 85.38%, 90.25%, 88.56%, and 81.68% in terms of
text-image alignment, preferring our results over those of
DeepFloyd-IF, SDXL, DALLE3, and MidJourney. Qualita-
tive results in the supplementary material further highlight
our model’s superiority in image quality, fine-grained de-
tails, and text-image alignment.

5.3. Ablation Study

Ablation on Training Data. To show the validity of our
proposed CosmicMan-HQ dataset, Tab. 3 reports the evalu-
ation from three aspects: data source, data scale and anno-
tation quality. 1) Data Source. Compared with two cutting-
edge datasets, LAION-5B and HumanSD, Ours surpasses
them by over 11.44 and 10.52 in FID, and 5.1 and 4.7 in
Accall, respectively. LAION-5B has large noise in both data
and annotation, while HumanSD has fewer data quantities
and coarse annotations. Owing to the scalable ability of
our data production workflow, Annotate Anyone, the con-
structed CosmicMan-HQ dataset features a large quantity
of high-quality annotations, which benefits the final results.
2) Data Scaling. Ours, trained with 6M images, brings a
promotion of 2.51 in FID and 0.9 Accall compared to 1M
version Ours-3, proving the effectiveness of data scaling.
Thus, Annotate Anyone’s capacity to run constantly to pro-
duce data is necessary to push the boundaries of foundation
models’ performance. 3) Annotation Quality. We make a
comparison under three different caption settings. Ours-3
with AA caption exhibits a significant improvement of 7.57
and 10.94 in FID, as well as 3.6 and 3.2 in Accall compared
to Ours-1 and Ours-2. This verifies the effectiveness of im-
proving the annotation quality of our proposed human-in-
the-loop annotation mechanism in Annotate Anyone.
Ablation on Training Strategy. Tab. 4 shows the abla-

Table 4. Ablation on Training Strategy. “Baseline” refers to the
SD pretrained model. “CMHQ” stands for CosmicMan-HQ.

Methods FID↓ Accobj↑ Acctex↑ Accshape↑ Accall ↑
Baseline 48.09 87.3 77.4 59.3 74.6
+ CMHQ 37.57 90.8 83.5 64.8 79.7
+ LHOLA 36.78 91.7 85.7 66.1 81.2

Table 5. Quantitative Comparison on 2D Human Editing and
3D Human Reconstruction. User study reports the ratio of users
who prefer our results to SD/SDXL.

2D Application FID↓ Accall ↑ User Study

T2I-Adapter + SDXL 47.73 76.6 18.33%
T2I-Adapter + CosmicMan-SDXL 37.62 82.9 81.67%

3D Application CLIP-Sim↑ Accall ↑ User Study

Magic123 + SD 0.83 67.6 26.36%
Magic123 + CosmicMan-SD 0.88 70.8 73.64%

tion of the training dataset and model design used in Cos-
micMan. By leveraging our CosmicMan-HQ dataset, fine-
tuning the model gains a promotion of 10.52 in FID and 6.3
in Accall. Our proposed LHOLA further enhances FID and
Accall by 0.79 and 1.5. Our novel perspectives on data and
model design boost remarkable promotions of CosmicMan
on fine-grained human generation.

5.4. Applications

2D Human Editing. 2D human editing manipulates human
images for specified poses. We compare our CosmicMan-
SDXL with SDXL based on T2I-Adapter [33]. In Tab. 5,
our model outperforms SDXL on both FID and Accall,
showing its superiority in 2D human editing tasks.
3D Human Reconstruction. We validate the effectiveness
of our CosmicMan-SD model based on Magic123 [39], one
representative 3D object reconstruction method from a sin-
gle image. We replace the SD pretrained model with our
foundation model in Magic123 for comparison. The higher
CLIP-similarity [39] and Accall in Tab. 5 exhibit the supe-
rior potential of our model on 3D human reconstruction.

6. Future Work
Not placing CosmicMan merely as a research paper,
we also commit ourselves to providing a long-term and
sustainable foundation platform to support the research
in human-centric content generation. Thus, we will
continuously 1) operate Annotate Anyone to produce sub-
sequent versions of CosmicMan-HQ aligned dynamically
with real-world data, and 2) provide up-to-date human-
specialized foundation models periodically trained on new
versions of our data. By providing a well-constructed and
long-term-maintained infrastructure, we hope to benefit
broader research communities centered on human subjects.
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