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Abstract

Binaural audio is obtained by simulating the biolog-
ical structure of human ears, which plays an important
role in artificial immersive spaces. A promising approach
is to utilize mono audio and corresponding vision to syn-
thesize binaural audio, thereby avoiding expensive binau-
ral audio recording. However, most existing methods di-
rectly use the entire scene as a guide, ignoring the corre-
spondence between sounds and sounding objects. In this
paper, we advocate generating binaural audio using fine-
grained raw waveform and object-level visual information
as guidance. Specifically, we propose a Cyclic Locating-
and-UPmixing (CLUP) framework that jointly learns vi-
sual sounding object localization and binaural audio gen-
eration. Visual sounding object localization establishes the
correspondence between specific visual objects and sound
modalities, which provides object-aware guidance to im-
prove binaural generation performance. Meanwhile, the
spatial information contained in the generated binaural au-
dio can further improve the performance of sounding ob-
ject localization. In this case, visual sounding object local-
ization and binaural audio generation can achieve cyclic
learning and benefit from each other. Experimental re-
sults demonstrate that on the FAIR-Play benchmark dataset,
our method is significantly ahead of the existing baselines
in multiple evaluation metrics (STFT↓: 0.787 vs. 0.851,
ENV↓: 0.128 vs. 0.134, WAV↓: 5.244 vs. 5.684, SNR↑:
7.546 vs. 7.044).

1. Introduction

Hearing and vision are the most important ways for humans
to perceive the world. We are capable of associating differ-
ent sounds with objects through unconscious learning [19].
Simultaneously, we can easily decode the spatial properties
of the sound and locate the sounding object in visual scenes,
since the acquired sound is binaural [1, 42]. Therefore, the
semantic and spatial information conveyed by hearing plays
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Figure 1. Illustration of our core idea on establishing a link be-
tween visual sounding object localization and binaural upmix au-
dio generation. Building upon this connection, the two tasks
achieve cyclic learning and promote each other.

an important role in visual scene perception.
Visual sounding object localization aims to locate sound-

ing objects in the visual scene. In the case of mono au-
dio, sounding object localization mainly relies on semantic
alignment between audio and visual modalities [15, 29, 37].
Binaural audio is recorded through an artificial head pros-
thesis, which closely simulates human auditory mapping.
Compared with mono audio, the rich spatial information
contained in binaural audio can further improve sounding
object localization [33]. However, the recording of binau-
ral audio requires professional equipments and knowledge,
resulting in higher costs and limiting its applications.

The semantic and spatial information contained in vi-
sual modality is also beneficial to restore the binaural spa-
tial sense of mono audio [31]. Therefore, it is a promising
way to leverage visual modalities to guide the generation
model to upmix mono audio into binaural audio [6, 22, 24].
However, existing binaural audio generation methods are
not capable of generating high-fidelity results, they can-
not well preserve object information and accurately model
sounding object-driven generative expressions. Most ex-
isting methods [6, 7, 24, 26, 45, 50] directly learn scene
drivers to reconstruct the spatial sense of sounds. Although
the scene contains semantic and spatial information of the
sounding objects, it also brings interference of silent objects
and background. These ambiguous information may lead to
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failure of binaural audio generation.
As mentioned above, visual sounding object localization

can identify specific sounding objects for binaural audio
generation. Meanwhile, the generated binaural audio adds
spatial information on the basis of semantics, which can fur-
ther improve the performance of sounding object localiza-
tion [14, 17, 38]. Inspired by this point, we make the first
attempt in this field, that is, combining the tasks of binau-
ral audio generation with visual sounding object localiza-
tion and establishing a cyclic learning framework. Specifi-
cally, we first exploit the semantic information of mono au-
dio to localize visual sounding objects. Then, we learn bin-
aural audio generation with the help of localized sounding
objects. To this end, we propose an object-aware upmix-
ing model to generate binaural audio using mono waveform
and explicit objects as guidance. Unlike most spectrogram-
based methods, the proposed approach can directly generate
binaural waveform without spectrogram conversion.

Obviously, a good localization model is capable of mit-
igating interference from silent objects and background
noise and improving generation results. However, unsuper-
vised visual sounding object localization without the man-
ual annotations is challenging [3, 28, 39]. The model may
tend to associate object sounds with backgrounds when
similar backgrounds and objects often co-occur [35]. To
tackle this issue, we propose an unsupervised sounding ob-
ject localization model, which consists of two modules,
i.e., Object-Scene Awareness (OSA) module and Semantic-
Spatial Mining (SSM) module. The OSA module simulta-
neously computes the gap between visual and audio modali-
ties at the object and scene levels. The object-level loss can
locate a more precise object range, while the scene-level
loss can well distinguish potential sounding objects from
the background. To further utilize binaural audio to improve
localization results, we design a SSM module to simultane-
ously mine the semantic and spatial information contained
in binaural audio. This enables cyclic learning between vi-
sual sounding object localization and binaural audio gener-
ation, improving both the localization and generation per-
formance, as illustrated in Fig. 1. To summarize, our main
contributions can be described as follows:

(1) We analyze the relationship between sounding ob-
ject localization and binaural audio generation, and present
a cyclic learning strategy achieving mutual benefits of them
within a unified framework.

(2) We propose an object-aware upmixing model to gen-
erate binaural audio, meanwhile, design an OSA module
and a SSM module to improve the localization performance
of binaural audio.

(3) Experimental results demonstrate that the proposed
approach can make sounding object localization and bin-
aural audio generation promote each other and accomplish
state-of-the-art performance.

2. Related Work

2.1. Visual Sounding Object Localization

Visual sounding object localization aims to locate the re-
gions in an image corresponding to the sounds. The result
of visual sounding object localization is usually obtained by
computing the similarity matrix of the audio and visual fea-
ture maps, which is expressed as a heat map [25, 36, 51].
In pioneering works, Senocak et al. [35] replaced visual-
related audio to explore the correspondence between audio
and visual modalities to achieve sounding object localiza-
tion. Hu et al. [12] introduced the clustering process into
audiovisual learning and used the center distance of audio-
visual modalities as a supervision information to sort the
audiovisual features. Qian et al. [32] presented a multi-task
method to perform audiovisual classification and correspon-
dence learning simultaneously, and then used class activa-
tion maps [2, 4] to locate category-specific elements. In ad-
dition, Hu et al. [13] presented a two-stage approach that
uses audiovisual semantics learned under a single sound
source to help localize multiple sound sources. In recent
years, inspired by the localization of human binaural sys-
tems, the use of binaural audio for sounding object local-
ization has received widespread attention [33, 44]. Wu et
al. [44] proposed a BAVNet for binaural localization by
extracting and fusing features from images, binaural audio,
left channel, and right channel. Kranthi et al. [33] intro-
duced an audio localization model to locate the sounding
object by extracting the interaural level difference and inter-
aural phase difference [20, 41] of the binaural spectrogram.
The binaural audio localization method achieves good lo-
calization results. However, they rely heavily on extensive
manual annotations.

2.2. Binaural Audio Generation

Traditional binaural audio generation methods are often
modeled as a linear invariant system, which can produce
plausible auditory perceptions through simple mathemati-
cal modeling [5, 8, 46]. However, real sound propagation
is non-linear, resulting in traditional methods that are con-
sistently unable to compete with recorded binaural audio
[21]. Furthermore, traditional methods rely on personal-
ized head-related transfer function and head tracking, re-
sulting in limited flexibility [9, 16, 43]. In recent years, bin-
aural audio generation using deep learning techniques has
received widespread attention [6, 7, 23, 24, 45, 49]. Gao
et al. [6] proposed a UNet-like framework that converts
mono audio to binaural audio by connecting visual modali-
ties into the decoder. Sound source separation and binaural
audio generation have similar mixing-separating paradigms
[27, 40, 48]. Zhou et al. [50] combined them in a com-
prehensive framework to boost the performance of binaural
generation model. Xu et al. [45] proposed two mappings
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Figure 2. Illustration of the cyclic locating-and-upmixing framework. (a) Firstly, the localization model utilizes the semantic information of
mono audio to localize sounding objects. (b) Then, the generation model learns object-aware binaural audio generation using the localized
sounding objects. (c) Finally, the spatial information in binaural audio is mined to further improve the localization of sounding objects.

to link monaural and binaural as well as visual and spatial
locations. Finally, head-related impulse responses [18] are
used to generate binaural audio. Li et al. [23] proposed a
shared vision-guided generative adversarial method to gen-
erate binaural audio. The visual modality provides guidance
information for the generator while providing reference in-
formation for the discriminator. Garg et al. [7] presented a
multi-task framework to synthesize binaural audio, which is
guided by decomposed geometric cues in visual modalities.
However, this multi-cue collection is only represented by a
shared visual feature without a specific sounding object.

Compared with these methods, our approach clarifies
the sounding object-driven diffusion generation paradigm
for the first time, which organically combines sounding ob-
ject localization with binaural audio generation. We sig-
nificantly surpass existing methods on numerous metrics
and show that combining visual sounding object localiza-
tion and binaural audio generation is a win-win situation.

3. Methodology
3.1. Problem Definition

Given randomly sampled mono audio Am of length L with
positive image sequences Vp, and negative image sequences
Vn, the goal of locating-and-upmixing model is to generate
binaural audio Ab = (Alb, A

r
b) associated with audiovisual

information.
Mono audio is obtained by mixing the left channel au-

dio and right channel audio, while the differential audio is
obtained by subtracting:

Am = Alb +Arb , Ad = Alb −Arb . (1)

Then, our model generates differential audio guided by the

localized sounding objects:

Âd = U(L(Am, Vp, Vn), Am, Vp), (2)

where L and U represent the localization and upmixing
models, respectively. Next, the generated binaural audio is:

Âlb =
Am + Âd

2
, Ârb =

Am − Âd
2

. (3)

The mono audio can be replaced by the generated binaural
audio, and Eq. (2) can be reformulated as:

Âd = U(L(Âlb, Â
r
b , Vp, Vn), Am, Vp). (4)

The localization and generation procedures of our model
can be illustrated in Fig. 2.

3.2. Visual Sounding Object Localization Model

In this section, we describe the data sampling, object-scene
awareness module, and semantic-spatial mining module of
the visual sounding object localization procedure in detail,
as illustrated in Fig. 3.
Data Sampling: Given several videos {(Vi, Albi, Arbi)}Ni=1

consisting of image sequences Vi and corresponding bin-
aural audio tracks (Albi, A

r
bi). The set of positive and neg-

ative samples can be expressed as {(Vi, Vj , Ami)|Ami =
Albi + Arbi, i 6= j; i, j ∈ N}. For simplicity, we use Vp to
represent Vi, and Vn to represent Vj .
Object-Scene Awareness Module: We argue that guidance
information is typically embodied in the audiovisual cor-
relation of the sounding object during binaural audio gen-
eration. Therefore, the OSA module is introduced to re-
fine complex visual scenes into concrete sounding objects.
Specifically, we use pre-trained ResNet-18 [10] and VG-
Gish [11] to extract visual and audio features, respectively.
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The positive visual features fpv and the negative visual fea-
tures fnv are combined with audio features fma to obtain
positive-negative sample pairs. Then, the visual object fea-
ture f ′pv and the pseudo-visual object feature f ′nv can be
obtained through:

f ′pv = fpv · σ
(
(fpv)

> · fma
)
, (5)

and
f ′nv = fnv · σ

(
(fnv)

> · fma
)
. (6)

Next, the distance between positive and negative sample
pairs is obtained by

(d+, d
obj
− ) = (

∥∥f ′pv − fma ∥∥2
, ‖f ′nv − fma ‖2). (7)

Then, the object-level loss can be expressed as:

lobjloc =
∥∥∥(D+, D

obj
− )− (0, 1)

∥∥∥
2
, (8)

where, D± = exp(d±)
exp(d+)+exp(d−) . Here, we refer to visual

sounding object localization on negative samples as pseudo-
visual localization, which allows the model to localize the
wrong objects and introduce larger losses. It is similar to
trial-and-error learning in reinforcement learning. Further-
more, in addition to the objects in the negative visual sample
being irrelevant to the sound, the entire scene is also irrele-
vant to the sound. Therefore, we globally average pool the
spatial visual features fnv to obtain the global visual feature
fnvg . The distance between positive and negative sample
pairs is obtained by

(d+, d
sce
− ) = (

∥∥f ′pv − fma ∥∥2
, ‖fnvg − fma ‖2). (9)

Then, the scene-level loss can be expressed as:

lsceloc =
∥∥(D+, D

sce
− )− (0, 1)

∥∥
2
. (10)

Finally, the total loss of visual sounding object localization
in the mono case is:

lloc = lobjloc + lsceloc . (11)

Semantic-Spatial Mining Module: To simultaneously
mine the semantic and spatial information contained in bin-
aural audio, we propose a semantic-spatial mining module.
Firstly, we add the left channel features f la and right channel
features fra to get the audio features fma in the OSA mod-
ule. Then, the viusal object features f ′pv in Eq. (5) can be
reformulated as:

f ′pv = fpv · σ((fpv)
> · fma

+(fpv)
> · Concat[f la, f

r
a ]).

(12)

The distance between positive and negative sample pairs is
obtained by

(d+, d
spa
− ) = (

∥∥f ′pv − Concat[f la, f
r
a ]
∥∥

2
,∥∥f ′pv − Concat[fra , f

l
a]
∥∥

2
).

(13)
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Figure 3. (a) In the mono case, the OSA module locates the sound-
ing object based on audiovisual semantics. (b) In the binaural case,
the SSM module further improves the localization of sounding ob-
jects by mining spatial information.

The spatial-level loss can be expressed as:

lspaloc =
∥∥(D+, D

spa
− )− (0, 1)

∥∥
2
. (14)

Finally, Eq. (11) can be reformulated in the binaural case
as:

l∗loc = lobjloc + lsceloc + lspaloc . (15)

3.3. Object-Aware Upmix Model

The detailed structure of binaural upmix model is illustrated
in Fig. 4. It is built on the diffusion model and is mutu-
ally facilitated with the visual sounding object localization
model through our cyclic learning strategy. We make two
layers of 1D convolution to extract waveform features, the
output features are concatenated with visual features and
localized object features and then fused through a convolu-
tional layer. In this section, x is used to represent Ad for
simplicity.
Diffusion Procedure: Define the waveform distribution as
q(x0), and sample x0 ∼ q(x0). The diffusion procedure is
a fixed-parameter Markov chain, which converts x0 into the
latent xT in T steps:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1). (16)

At each stage t ∈ [1, T ] of diffusion, in accordance with a
variance schedule β = {β1, . . . , βT }, a smidgeon of Gaus-
sian noise ε ∼ N (0, I) is added to xt−1 to produce xt:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtε). (17)

Next, q(xt|x0) can be computed by:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)ε), (18)

where ᾱt :=
∏t
s=1 αs, αt := 1− βt.
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Figure 4. Illustration of binaural upmix model. Conv and FC rep-
resent 1D convolutional and fully connected layers, respectively.

Fusion Procedure: The fusion procedure integrates wave-
form features, visual features, and sounding object features
to provide guidance information for the reverse procedure.
The length of the waveform feature fw extracted by 1D di-
mensional convolution layers is L. The visual features fpv
are repeated L times after channel reduction and flattening
to obtain new visual features frv. Then, the sounding object
features f ′pv are also repeatedL times to obtain new features
f ′rv. Finally, the guidance information g is obtained by fus-
ing these features through a convolutional layer:

g = Conv(Concat[fw, frv, f
′
rv]) (19)

Reverse Procedure: The reverse procedure is a Markov
chain with learnable parameters θ from Gaussian noise
p(xT ) ∼ N (0, I) to clean waveform x0. We approximate
the reverse distribution q(xt−1|xt) by a neural network of
parameters θ with guidance information g:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t, g), σ2
t I), (20)

where the variance σ2
t is predefined as 1−ᾱt−1

1−ᾱt
βt. Then, the

full reverse procedure can be described as:

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt, g). (21)

Training: To learn θ, we minimize a variational bound:

Eq(x0)[− log pθ(x0)] ≥
Eq(x0,x1,...,xT )[log q(x1:T |x0)− log pθ(x0:T )] =: L.

(22)
Then, we optimize a random term of L through:

Lt−1 = Eq[
1

2σ2
t

‖µ̃t(xt, x0)− µθ(xt, t, g)‖2] + C, (23)

where C is a constant. Eq. (18) can be re-parameterized as:

xt(x0, ε) =
√
ᾱtx0 +

√
1− ᾱtε, (24)

and the parameterization is chosen:

µθ(xt, t, g) =
1
√
αt

(xt −
βt√

1− ᾱt
εθ(xt, t, g)), (25)

Eq. (23) can be simplified to:

Ex0,ε,t‖ε− εθ(
√
ᾱtx0 +

√
1− ᾱtε, t, g)‖2. (26)

Finally, the outputs of the model is εθ(·).

4. Experiments
4.1. Datasets

We implement experiments on two commonly used binau-
ral audio generation datasets. FAIR-Play dataset [6] is a
binaural audio dataset recorded indoors through a dummy
head and contains corresponding vision. The dataset con-
tains 1871 videos and provides 10 different splits. We com-
pute the average of 10 splits as the final result. YT-Music
dataset [30] is comprised of 397 music videos with differ-
ent durations collected from YouTube. This dataset contains
360° videos of indoor and outdoor scenes. We follow [6] to
transform first-order ambisonic audios into binaural audios.

4.2. Baselines and Metrics

We compare our approach with several state-of-
the-art methods, including weakly semi-supervised
method: L2BNet[33], autoencoder-based method:
MONO2BINAURAL [6], multi-tasking-based meth-
ods: APNet [50] and Sep-stereo [50], attention-based
methods: Main network [47] and Complete network [47],
GAN-based method: SAGM [23]. Mono-Mono represents
fake binaural audio created by channel duplication of
mono audio. We use STFT Distance, Envelope (ENV)
Distance, Wave L2 (WAV×10−3), Amplitude L2 (AMP),
Phase L2 (PHA) [34], and Signal-to-Noise Ratio (SNR) to
comprehensively measure the quality of synthetic binaural
audio for all methods. See supp. for details.

4.3. Implementation Details

We utilize 1s clips of 10s mono audio and a center frame
that matched it to train our model. The binaural audios are
resampled to 16kHz, while the input frames are randomly
cropped to 448×224. The input with a batch size of 12 is
fed into the model, and Adam is used to optimize it. The
learning rate of localization model is set as 10−5, while that
of the generation model is set to 2 × 10−4. The model ter-
minates training when the training epochs reache 3000. In
inference stage, we employ a sliding window of 0.1s to gen-
erate the binaural audio.

4.4. Object-aware Binaural Generation

Quantitative Results. We compare our model with other
baseline models in Table 1. The proposed model signifi-
cantly outperforms other baseline models on multiple met-
rics for both datasets. The audio generated by our method
is superior to existing methods in terms of the spectrum

26673



Method FAIR-Play Dataset YT-Music Dataset

STFT↓ ENV↓ WAV↓ AMP↓ PHA↓ SNR↑ STFT↓ ENV↓ WAV↓ AMP↓ PHA↓ SNR↑
Mono-Mono 1.155 0.153 7.666 0.267 0.592 5.735 1.853 0.184 7.729 0.287 0.622 3.890
L2BNet [33] 1.028 0.148 - - - - 1.816 0.189 - - - -

MONO2BINAURAL [6] 0.959 0.141 6.496 0.252 0.591 6.232 1.346 0.179 6.337 0.246 0.528 5.008
APNet [50] 0.889 0.136 5.758 0.247 0.585 6.972 1.070 0.148 5.805 0.241 0.521 5.542

Sep-stereo [50] 0.879 0.135 6.526 0.256 0.590 6.422 1.051 0.145 6.323 0.272 0.547 4.779
Main network [47] 0.867 0.135 5.750 0.246 0.583 6.985 1.036 0.144 5.944 0.240 0.514 5.573

Complete network [47] 0.856 0.134 5.787 0.247 0.584 6.959 1.023 0.142 6.313 0.261 0.563 4.873
SAGM [23] 0.851 0.134 5.684 0.243 0.570 7.044 0.875 0.126 5.792 0.240 0.510 5.601

Ours 0.787 0.128 5.244 0.234 0.568 7.546 0.856 0.124 5.774 0.228 0.503 5.711

Table 1. Quantitative results of our method on FAIR-Play and YT-Music datasets.

MONO2BINAURAL APNet SAGM Ours GTFrame

Figure 5. Qualitative results for audio differential spectrograms. The first row represents single-source binaural audio, and rows 2∼5
represent multi-source binaural audio.

(STFT), waveform (WAV) and signal quality (SNR), which
shows that the proposed method can generate more realis-
tic binaural audio. Binaural aduio localization is dependent
on differences in sound amplitude and phase. The proposed
method has the best performance on AMP and PHA. There-
fore, our method has better spatial and localization perfor-
mance. In general, the audio generated by our approach is
closer to the recorded binaural audio in terms of data struc-
ture and spatial effect.

Qualitative Results. Fig. 5 and Fig. 6 show the qualitative
results of binaural audio generation. In Fig. 5, we can see
that the spectrogram generated by our approach is closer to
the ground truth than other methods. In the case of a single
sound source, SAGM seems to be on par with the proposed
method. However, SAGM, like other methods, shows frag-

ile time-frequency structure under multiple sound sources.
The proposed method has as significant a time-frequency
structure as the ground truth. In Fig. 6, we visualize the
envelope curve of the binaural signal. It can be seen that
our approach is more comparable to the warping of the real
waveform envelope. Therefore, the audio generated by our
approach has a more realistic spatial sense.

4.5. Visual Sounding Object Localization

Quantitative and Qualitative Results. Table 2, Fig. 7,
and Fig. 8 show the quantitative and qualitative results of
the localization model. In Table 2, we report the audiovisual
distance and classification accuracy on the entire testset. As
can be observed, the proposed localization method can au-
tomatically associate sounds and objects and demonstrate
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Figure 6. Qualitative results of binaural waveform envelopes. The left and right columns represent the left and right channels, respectively.

Method Distance↓ Accuracy(%)↑

Object-mismatch 0.065 91.2
Scene-mismatch 0.001 99.9

Object-Scene-mismatch 0.028 96.1

Table 2. The quantitative results of the sounding object localiza-
tion model on FAIR-Play dataset.

Audio representation type Distance↓ Accuracy(%)↑

{Am} 0.028 96.1
{Ad} 0.028 96.2

{Al, Ar} w/o SSM 0.024 96.7
{Al, Ar} w/ SSM 0.020 97.4

Table 3. Quantitative results for the types of sounds received by
the cyclic framework. In the third row, fm

a = f l
a + fr

a .

excellent sounding object localization. It is worth mention-
ing that our method achieves nearly 100% accuracy when
only counting scene loss lsceloc . This shows that our method
can clearly distinguish potential sounding regions from the
background. The two row in Fig. 7 intuitively shows the
visualization results using scene loss lsceloc . Furthermore, we
combine object loss lobjloc and scene loss lsceloc (Full) to achieve
coarse-to-fine sounding object localization from potential
sounding regions. Fig. 8 shows the sounding object local-
ization and tracking performance of the SSM module. In
the second row, the SSM module achieves excellent local-
ization performance by jointly mining semantic and spatial
information of binaural audio. In addition, this method has
good sounding object tracking performance (the third row).
Cyclic Audio Representation. In order to observe the im-
pact of different audio representations on sounding object

Method STFT↓ ENV↓ WAV↓
Audio-Only 1.078 0.148 7.195
Visual-Only 0.786 0.128 5.244

Object-Only 0.828 0.131 5.525
Scene-Only 0.792 0.129 5.283

Visual+Object 0.785 0.128 5.235
Visual+Scene 0.783 0.128 5.212

Ours 0.779 0.128 5.200

Table 4. The ablation results of our approach on the split1 seg-
mentation of FAIR-Play dataset.

localization, we use mono audio, differential audio, and bin-
aural audio as the input of the cyclic framework. {Am}
refers to the mixture of left and right channel audio without
spatial information. {Ad} represents differential audio be-
tween left channel audio and right channel audio. {Al, Ar}
w/o SSM refers to binaural audio without SSM module.
{Al, Ar} w/ SSM is binaural audio with SSM module. Ta-
ble 3 shows the sounding object localization performance
under different audio representations. It can be seen that
mono audio performs the worst because it relies solely on
sound semantic information for localization. Since binau-
ral audio contains both semantic and spatial information, it
has better localization performance. In binaural audio, the
proposed SSM module achieves the best localization per-
formance by further mining spatial information.

4.6. Ablation Results

The ablation results of our approach are shown in Table 4.
Audio-Only means only mono audio without visual guid-
ance. It can be seen that visual modality is crucial for binau-
ral audio generation. Visual-Only means using the entire vi-
sual as guidance without object localization. Object/Scene-
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Figure 7. Qualitative results of the OSA module. lobjloc and lsceloc complement each other to achieve better sound source localization.
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Figure 8. Qualitative and tracking results of the SSM module. The spatial information mined by the SSM module from binaural audio
further improves the localization results. At the same time, the proposed method can track moving sounding objects.

Only indicates using localized sounding objects as guid-
ance. It can be seen that the results using only localized
sounding objects as guidance are worse than using only full
vision. The reason is that the localization model may lo-
cate the misplaced object and cause the failure of gener-
ation. Scene-Only (lsceloc ) is better than Object-Only (lobjloc )
because it provides more accurate object information. Vi-
sual+Object/Scene represents the fusion of full vision with
localized sounding objects. Full vision contains the spatial
position information of objects, which can provide supple-
mentary information when localization is insufficient. At
the same time, localized sounding objects provide clear
object information and avoid interference from irrelevant
backgrounds. Therefore, the fusion of localized sounding
objects and full vision is necessary. It can be seen that in-
tegrated visual guidance is superior to full visual guidance
and localized sounding object guidance. This demonstrates
the effectiveness of our approach and components.

5. Conclusion
In this paper, we combine visual sounding object localiza-
tion with binaural audio generation and propose a cyclic
learning framework. We introduce visual sounding objects
to provide explicit object drivers for binaural audio gen-
eration. At the same time, the spatial information con-

tained in binaural audio further improves localization per-
formance. Furthermore, we propose a novel localization
model that achieves good audiovisual correlation and lo-
calization through joint learning. We demonstrate that
our method realizes state-of-the-art synthesis quality under
multiple metrics on benchmark datasets, and both tasks ben-
efit from each other through our cyclic learning.
Limitations and Future Work. Currently, our procedure
is limited by unsupervised sounding object localization.
Sounding object localization improves the performance of
the generation model. However, it has to be admitted that
the unsupervised method inevitably brings about the loss of
object information. Therefore, it is prospective to extend
our approach to supervisory scenarios. Apart from that, it is
natural to extend our method to bounding box-based object
localization. Besides, to alleviate the superstition problem
of unsupervised methods, it is also promising to extend our
method to semi-supervision.
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