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Abstract

Federated Learning (FL) enables collaborative model
training while preserving the privacy of raw data. A chal-
lenge in this framework is the fair and efficient valuation
of data, which is crucial for incentivizing clients to con-
tribute high-quality data in the FL task. In scenarios in-
volving numerous data clients within FL, it is often the
case that only a subset of clients and datasets are perti-
nent to a specific learning task, while others might have ei-
ther a negative or negligible impact on the model training
process. This paper introduces a novel privacy-preserving
method for evaluating client contributions and selecting rel-
evant datasets without a pre-specified training algorithm
in an FL task. Our proposed approach, FedBary, uti-
lizes Wasserstein distance within the federated context, of-
fering a new solution for data valuation in the FL frame-
work. This method ensures transparent data valuation and
efficient computation of the Wasserstein barycenter and re-
duces the dependence on validation datasets. Through ex-
tensive empirical experiments and theoretical analyses, we
demonstrate the advantages of this data valuation method
as a promising avenue for FL research. Codes are avail-
able at https://github.com/muzllee/MOTdata.

1. Introduction

Federated Learning (FL) has emerged as a privacy-
preserving approach for collaboratively training models
without sharingw data [21], in which the learning pro-
ceeds by iteratively exchanging model parameters between
the server and clients. The success of the trained model
hinges on the availability of large, high-quality, and rele-
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vant data [13]. Thus, it is crucial for the server to select
valuable clients in the FL training process to ensure better
model performance and explainability [33]. In the context
of cross-silo FL, there is a mutual interest among clients in
understanding the value of their own data as well as that
of others. If there are free riders or malicious actors in FL,
clients are unwilling to provide high-quality data to train the
local model. Thus, fair valuation of data quality and accu-
rate detection of noisy data become indispensable compo-
nents of federated training [20].

In the context of a data marketplace with numerous po-
tential clients, each possessing unique datasets, a central
server issuing a learning task must discern and select the
most valuable data clients for participation. This necessi-
tates a fair and accurate assessment of each client’s contri-
bution. Commonly, existing methods evaluate contributions
based on validation performance of the trained model, uti-
lizing the concept of Shapley value (SV) to measure each
client’s marginal contribution to an FL model. This method,
however, involves evaluating all possible subset combina-
tions, leading to a computational complexity of O(2%) for
N clients. Although efforts have been made to reduce the
complexity through approximations [8, 11, 20, 34], these
approaches may introduce biased evaluations and remain
impractical for large-scale settings. Moreover, approaches
based on validation performance are post-hoc, which assess
client contributions after model training. This approach is
problematic because some clients might be irrelevant to the
FL task, and subsets of noisy data might also be involved in
training without detection, leading to the waste of compu-
tational resources and poor model performance. Addition-
ally, this evaluation method is typically client-level, based
on model gradients, and does not delve into the granularity
of individual data points, leading to a lack of transparency
in the evaluation process.

12027



Consequently, alternative strategies have been explored
for evaluating clients and their data prior to model train-
ing. For instance, [35] proposed a pre-training approach
where small sizes of data samples are shared to achieve this.
Recently, Wasserstein distance [2, 13, 14] have been intro-
duced to evaluate data without specifying a learning algo-
rithm in advance. However, these approaches require ac-
cess to data samples, which may not be feasible in privacy-
sensitive settings. Moreover, they also rely on the validation
dataset for assessment. Given challenges inherent in previ-
ous works, our research is driven by following questions:
1) How to evaluate and select valuable data points with-
out sharing any raw data? Previous methods can reason-
ably assess clients’ contributions, there is a lack of a well-
established approach to achieving a comprehensive under-
standing of individual data point contributions in FL. This
limitation hinders transparency and the persuasive power
of evaluations. Furthermore, developing such an approach
would help the server select the most valuable data for
model training.

2) How to predict and evaluate data client contributions
without involving model training? Previous approaches in-
volve training federated models to evaluate validation per-
formance or utilize generative models to learn data distri-
butions [32]. These methods are often computationally in-
tensive and reliant on validation data. Addressing this, the
key challenge is to develop data valuation methods that do
not require direct training of federated models. Such an ad-
vancement is not merely beneficial but crucial, particularly
in FL scenarios characterized by complex model training
processes or where validation datasets are not readily avail-
able on the FL server.

3) How to evaluate data contributors in a large-scale set-
ting? As the number of clients increases, the complexity
of previous methods based on Shapley value (SV) grows
exponentially. Therefore, offering a lower-complexity data
valuation method that does not require full data access will
be fundamental for large-scale FL settings, especially those
involving more than 100 clients.

Leveraging the advances in computational optimal trans-
port [25] and recent developments in the federated scenario
as in [28], we introduce FedBary as an innovative solution
to address the aforementioned challenges. To the best of our
knowledge, FedBary is the first established general privacy-
preserving framework to evaluate both client contribution
and individual data value within FL. We also provide an ef-
ficient algorithm for computing the Wasserstein barycenter,
to lift dependence on validation data. FedBary offers a more
transparent viewpoint for data evaluations in FL, which di-
rectly computes the distance among various data distribu-
tions, mitigating the fluctuations introduced by model train-
ing and testing. Furthermore, it demonstrates faster compu-
tations without sacrificing performance compared to tradi-

Methods Privacy W.itho.ut Without Noisvy
validation model detection
DataSV [8] v X X X
CGSV [42] v v X X
GTG-SV [20] v X X X
Lava [13] X X v v
Ours (FedBary) v v v v

Table 1. Overview of different approaches: we aim to handle both
client evaluation and data detection tasks, w/o validation data
tional approaches. We conduct extensive experiments and
theoretical analysis to show the promising applications of
this research. A comparison of representative state-of-the-
art approaches is shown in Table 1.

2. Related Work

Optimal Transport Application Optimal Transport (OT)
is a classical mathematical framework used to solve trans-
portation and distribution problems [37, 38], and it has been
used in the field of machine learning for different tasks, in-
cluding model aggregation and domain adaption [7]. Its
effectiveness has been proved empirically [4] and theoret-
ically [9, 29]. [2] showed that it can be used to measure
the distance between two datasets, providing a meaning-
ful comparison of datasets and correlating well with trans-
fer learning hardness . In order to get closer to a real sit-
uation, some research put their emphasis on multi-source
domain adaption (MSDA), where there are multiple source
domains and a robust model is required to perform well on
any target mixture distribution [9]. The results of recent
research showed that OT theory is capable of being used
as a tool to solve multi-source domain adaption problems
[23, 27, 30, 36, 40].

Data Valuation The topic of data quality valuation has be-
come popular and gained research interest in recent years
since the quality of data will have a direct impact on the
trained models, thus influencing downstream tasks. The
most popular underlying metric for data valuation algo-
rithms is the Shapley value [8, 11, 18], which calculates
the marginal contribution and measures the average change
in the predefined function when a particular data point is
removed. This function is commonly set as the perfor-
mance of a model trained on a subset of the training dataset.
Other papers following this method include KNNShapley
[10], Volume-based Shapely [43], BetaShapley [16], Data-
Banzhaf [39] and AME [19]. Alternative underlying meth-
ods are also explored to evaluate data contribution. For ex-
ample, gradient-based approaches like Influence Function
[6] are proposed to quantify the rate of changes for a utility
value when some data points are more weighted. [26] pro-
posed TracIn method to estimate training data influence by
tracing gradient descent. However, this method relies heav-
ily on the training algorithms of machine learning models.
[13] developed a proxy for the validation performance, and
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their method Lava can be used to evaluate data in a way
that is oblivious to the learning algorithms. Reinforcement
learning [44] and out-of-bag estimation [17] are also intro-
duced as tools to evaluate data values. A benchmark for data
valuation is provided in [12], which can be conveniently ac-
cessed by data users and publishers.

3. Technical Preliminary
3.1. Wasserstein Distance and Barycenter

We denote by P(X) the set of probability measures in X
and P,(X) the subset of measures in P(X) with finite
p-moment p > 1. For P € P,(X) and Q € P,(Y),
with distance function d(z,y), the p-Wasserstein distance
W, (P, Q) between the measures P and @ is defined as

W,(P,Q) = inf
»(P,Q) (wellII(IP,Q)

1
/ @(z,y)dn(z,y) (D)
XxXY

here II(P, Q) denotes the set of all joint distributions on
(X,Y) that are marginally distributed as P and (), and
W, (P, Q) quantifies the optimal expected cost of mapping
samples from P to (. When the infimum in (1) is at-
tained, any probability 7 that realizes the minimum is an
optimal transport plan. The notion of Wasserstein barycen-
ter can be viewed as the mean of probability distributions
P;,i € [1, N] in the Wasserstein space [1], defined as

Definition 1 Given P; with P; € P,(X),Vi € [1,N],
with positive constants {\;}I¥.| such that va Ai = 1, the
Wasserstein barycenter is the optimal Q* satisfying

N
Q" =argmin Y AW, (P;, Q). 2)
i=1
The problem of calculating the Wasserstein barycenter of
empirical measures P is proposed by [5] since we can
only access samples following distributions of correspond-
ing P; in common case. In addition, consider the infimal
convolution cost in the multi-source optimal transport the-
orey [24], p-Wasserstein distance with an N-ary distance
function d(z1, - - - , ) among all distributions P; is equiv-
alent to find the minimal of the total pairwise between @
and P, thatis W, (Py, - , P,) = ming Y0, W,(Q, P)),
which provides a viewpoint of the mixture distribution of
different source distributions and help measure the hetero-
geneity among them.

3.2. Geodesics and Interpolating Measure

This part hinges on the geometry of the Wasserstein dis-
tance and geodesics for applying in a federated manner [28].
We utilized the triangle inequality property of Wasserstein
distance and defined the concept of geodesics and the inter-
polating measure. We show the details of the definitions in
Appendix 7.

client X Server
Interpolating

e

’);(0 Data
~
’ p
] .
775:1) PP a
I}
’
’
' Y
-
%J’ n(pK) horse cat capybara

Figure 1. Client holds P and server holds @), the interpolating
measure <y aids to measure distance W, (P, Q). Local interpolat-
ing measures 7, and 1 are shared for calculation and detection.

Denote [ as the geodesics, then any point v on f is an
interpolating measure between distribution P and @), thus
formulating the equality:

WP(P7 Q) =

This provides insight for computing the Wasserstein dis-
tance in a federated manner: once we can approximate the
interpolating measure between two distributions, we can
measure the Wasserstein distance based on (3).

Wi (P, 31) + Wp (1, Q). 3)

4. Problem Formulation

Suppose there are N benign clients and each client ¢ holds
dataset D; = {(;;,¥i;)}7, with size m. Consider-
ing data heterogeneity, we assume D; is independently and
identically sampled from the different distribution P;, but
shares the same feature space X and label space )’ such
that X x YV = Z. Since we could not access the true dis-
tribution, in general, one can construct discrete measures
Pi(z,y) = 17 271 0, .y ,)» Where 4 is a Dirac func-
tion. Clients are supposed to collaboratively train a model,
and before training, the server wants to measure the contri-
bution and select relevant data to a target distribution Q). If
the server holds validation dataset Dg = {(4,;, Yq,5) } 7215
we assume is i.i.d to (). If the server does not have a val-
idation dataset, the target distribution is approximated by
Q. We use the Euclidean distance d(-, -) to measure feature
distance. For the label distance, we use the conditional fea-
ture space as P;(x|y,) = % with y, € YV [2].
In order to calculate the Wasserstein distance W, (P;, @),
for each client, there is an interpolating measure -y; to be
approximated. Therefore, ; will be initialized and shared
between the server and client ¢ for iteratively updating. Any
raw dataset D¢ and D;, Vi € [1, N] will not be shared.

In the following sections, we will first provide the tech-
nique to approximate Wasserstein barycenter in Section 4.1
for a better understanding of the evaluating procedure.
Then, we will investigate the application of Wasserstein
measure in scenarios with and without validation datasets
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in Section 4.2. Furthermore, we leverage the duality theo-
rem to detect noisy and irrelevant data points in Section 4.3.
Figure 1 shows the overall framework.

4.1. Federated Wasserstein Barycenter

Our goal is to approximate the Wasserstein barycenter in
Definition 1 among data distributions P;, Ps,--- , Py on
the server. Without loss of generality, we assume A\; = 1. In
order to make the update +;, the triangle inequality defined
in Property 1 is extended in the following way,

Wo(Pi, Q) < Wy (P, i) +Wo (i, Q)
Wh(Pi, i) = Wyp(Pi,np,) + Wy (e, i),

where 7p, is the interpolating measure between P; and ~;
computed by i-th client, and 7, is the interpolating mea-
sure between ~; and ) computed by the server. The inter-
polating measure between P; and ~; (same way to @) and
v;) could be approximated [28] based on

1
np, = m Zl 5(1—t);cj+tm(7r*Z/)j, )
j=

m

where 7* is the optimal transportation plan between P; and
Vi, ; is j-th sample from F;, and Z’ is the matrix of sam-
ples from ;. ¢ € [0, 1] is a hyperparameter.

Once ~; is an interpolating measure between P; and
Q. W, (P;, Q) equals the summation of four terms on the
right-hand side in (4) and could be further applied to ap-
proximate the barycenter when min Zf\;1 W, (P;, Q) is at-
tained. Therefore, we develop a K-round iterative opti-
mization procedure to approximate the interpolating mea-

sure /(¥ (k)

and né? ) Specifically, at each iteration k, the clients receive

(k=1)

and the Wasserstein barycenter Q(*) based on np,

current iterate -, and compute interpolating measure

(k—1)

( ) between P; and v, , and server computes interpo-

latlng measure 7, *) between each 7( ) and Q=1 Then

(k )

the server sends all 7, to clients, and i-th client computes
the next iterate fy(

i ) based on n(k) and ng ). The distance in
an iterative procedure is calculated based on (6) as follows,

Wy (P, Q) < Wy (P @) + Wy () 4 F 1)
W (1 5 W (S), Q) (6)

where fy-(k) is updated as [28] by

k) (k-1 k-1
7 € argmin Wy, 7" ) + W3 i),
(7
It is straightforward to see the distribution () is only in-
volved in WP(Q(k_l),ngi )) and thus we can easily up-
date barycenter Q*) simultaneously by transporting sam-
ples from ’yi(k) to the common distribution.

As for the pairwise z = (z,y), it is not easy to approx-
imate the interpolating measure with classification labels.
Based on the insight of [2, 28] , we utilize the point-wise
notion of distance in X x ) as

d((x,y), (@', y) 2 (d(z,2") + Wi(ay, a) 2,

Wg(away’): Hmy_my’H%‘f'sz_Zy’”%v (®)

where a, is conditional feature distribution P(z|y = /)
that follows the Gaussian distribution with mean m, and
covariance X, we can construct the augmentated represen-
tation of each dataset, that each pair (z,y) is a stacked vec-
tor & = [x;my; VCC(Z;/ *)]. Then with the stacked ma-
trix X and X’ , the data distance is calculated based on
W,(X, X') < Wp(X,7) + W,(7,X). We use X; and
)~(Q as the stacked vector for the samples from P; and Q.
Our algorithm is summarized in Algorithm 1.

4.2. Evaluate Client Contribution

When the server has a validation set Do = {245, Y45} 7215

then it can easily measure Wp(f(i, XQ) without the initial-
ization of Q(°) and update on Xg)(line 7 in Algorithm 1).
From [13], we know the validation loss of the trained model
is bounded by the distance between the training data and the
validation data. Thus, we can measure the contribution of
1-th using the reverse of Wasserstein distance l/\/p(f(i7 XQ)
without training a federated model. A smaller distance leads
to better performance on the validation data Dg and can be
considered more valuable.

Algorithm 1 FedBary

Input: Local data distribution P; with 5(1, initialisation of
Q9 with support X( ) and ’y(o) 1=1,- N. (No ini-
tialisation of X(Q) with validation set, use fixed XQ )

1: for k=1to K do _
2: Clients compute distance W,(X 1,71(16 1))

Wh(Xi,nW)) + W, <n§fwf Y

3: Clients send Wp( l(k 1)) and *yi(k_l) to server.
4: Server computes distance W, (f((k*l),'yi(k*l)) =
WX ™ nG)) + W) 1" by

Server sends 7]223 to z-th client

(k)

5

6: Client ¢ updates 7, (k )
7

8

(k)

based on 7" and 7,

Server updates X(Q) (If without Va11dat10n set)
: end for _
Output: X", 7™, 0 W, (X5, X))

However, if there is no validation dataset Dy, the intiali-
sation of Q(©) with Xg)) should follow the same dimension

of constructed matrix Xi using D;. Some work [22, 31]
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discuss that the target distribution (the model truj{fy learns) is
the mixture of local distributions, i.e., Uy = > =1 AP for
some A € An, Ay = {p € [0,+0)V : (p,1y ) = 1},
which is equivalent to the A\-weighted Euclidean barycen-
ter of the distribution P, --- , Py. In this paper, instead
of the Euclidean barycenter, we opt for the Wasserstein
barycenter \Wp(U, P;) as the target distribution to evalu-
ate the distance for two main reasons. Firstly, the Wasser-
stein barycenter is superior in capturing complex geometric
structures. Secondly, employing a similar approach to ap-
proximate the Federated Euclidean barycenter poses a risk
of data exposure. This risk arises from the inherent simplic-
ity of the weighted averaging process. Due to some fluctua-
tions and the different sampling schemes in the various FL
algorithms, coefficients A may vary and cause a mismatch
between the assumed distribution and the true distribution.
Thereby it is beneficial to consider any possible A for robust
evaluations. We encourage more exploration of the choice
of A for the future work.

4.3. Datum Detection

Inspired from [13], by leveraging the duality theo-
rem, we could derive the dual problem W,(P;,Q) :=
max (¢ gecoz)2( f, Pi ) + ( g,Q ) of the primal prob-
lem in (1), where CY(Z) is the set of all continuous func-
tions, f,g € R™*! are dual variables. Strong duality the-
orem says if 7* and (f*, ¢g*) are optimal variables of the
corresponding primal and dual problem respectively, then
we have W, (7*) = W,(f*, ¢*). We applied this theorem
into our scenario, when +y; is the interpolating measure be-
tween P; and @), we have two separate dual problems for
Wy (P;, ;) and Wy (y;, Q), where

Wo(P:,Q) = max (fF)+{g.%)
+ max  (h,v)+(j5,Q). (9

(h.)€CO(2)?

Therefore, we can get Op W, (P;, Q) = Op,Wp(P;,vi) =
(f*)T, which is the gradient of the distance w.r.t. the dis-
tribution P;. We could measure the quality of each datum
using the calibrated gradient as follows,

OW, (P, i)
OP;(z;)

fr
=fi - m]— 1
j€{17""m}\l

) (10)

which represents the rate of change in W, (P;, ;) w.r.t. the
given datum z; in D;.

Interpretation This value is interpreted as the contribution
of a specific datum to the distance since it determines the
shifting direction based on whether it is positive or nega-
tive. If the value is positive /negative, shifting more proba-
bility mass to that datum will result in an increase/decrease
of the distance between the local distribution and the inter-
polating measure, further resulting in an increase/decrease

Iy 1.0
400 A
c-access data AASUAN 09
x\ *\ \\
c-gamma AN 0.8
ceta 300 SRR g
& i RS 07&
—-*- r-accessdata § RN 'z
o N\, N |9
-%- r-gamma G200 \:‘:\“ 068
-%- r-eta s [a)
N LT T oS
—%= r-servergamma g £ 8 =g
—%- r-servereta BY 0.4
-
*

0.1 0.3 0.5 0.7 0.9 0.95
Noise Portion

Figure 2. We compare 5 different approaches for shuffled data
detections: gamma corresponds to OW, (P;, ;); eta corresponds
to OW, (P, mq,); access data corresponds to W, (F;, Q) (ac-
cess both datasets). Noise Portion represents the actual noisy
data ratio in a dataset, count (c-) indicates the number of de-
tected negative calibrated gradient values; Detection ratio (r-)
measures detection accuracy: (F#detected noisy data / #noisy
data); servergamma (gray) and servereta (purple) lines corre-
sponds to 8WP(77P¢ ) 77Qi) and OW, (nPw Q)

of the distance between the local and the target distribution.
Accurate detections Since ~; is the approximated interpo-
lating measure sampling from both P; and (), then any func-
tion involved ~; in (9) also provides gradient information
of P;. However, with fixed @, the interpolating measure
will shift only if P; is changed, and in our empirical explo-
ration in Figure 2, since the server shares 7, to the client,
OW,(P;, ng, ) detects better than OW,,(P;, ;).

4.4. Theoretical Analysis

In this section, we will provide the theoretical insights to
justify our approach. The convergence guarantee and com-
plexity analysis are similar to [28] based on the computation
of Wasserstein distance in a Federated scenario.
Convergence Guarantee First we will show that Algorithm
1 has a convergence guarantee.

Theorem 1 Let P; be the distribution of i-th client, where
i € [1, N], and Q) be the Wasserstein barycenter at iter-
ation k, ka), ngjk), ng _) be the interpolating measures com-

[ i

puted in the Algorithm 1. Define

N
AR =37 Wy (P + W@, 2], an

%

then, the sequence (A(k)) is non-increasing and converges
N
to Zi:l Wp(Pia Q)

We refer the proof to Appendix 8 and also conduct toy ex-
periments to verify it later.

Complexity Analysis FedBary algorithm computes 3 OT
plans per iteration for evaluating one client, 2 for the client
and 1 for the server. If there are IV clients, the server to-
tally calculates N x K OT plans. Each OT plan’s com-
plexity is based on the network simplex algorithm, which
operates at O(2m3log(2m)) if balanced. Any interpolat-
ing measure between two distributions is supported by at
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most 2m + 1 points. Based on the approximation for the
interpolating measure in (5), the overall computation cost
is O(BNK(Sm? + S?)log(m + S)) with the support size
S for %(k). In Figure 6 in the Appendix, we could obverse
different .S will not affect the contribution topology. Thus,
we could reduce the complexity with small S. In real ap-
plications, FedBary might be appropriate, especially when
N is large since the complexity is linear with N. To show
FedBary could be applied at scale, we compare the elapsed
time for evaluating with different IV and .S in Table 2.
Performance Bound Without any downstream training
data detections, the Wasserstein distance W, (P;, Q) can
be simply used as the proxy for the validation performance
when Dg is available. If Dg is not available on the server,
we assume that D¢ can be drawn i.i.d from the Wasserstein
barycenter () approximated by Algorithm 1.

Theorem 2 ([13]) Denote f; : X — {0,1}V, f, : X —
{0,1}V as the labeling functions for training and valida-
tion data. where V is the number of different labels. Let
f: X — {0,1}V be the model trained on training data.
Let P;(-ly,) and Q(:|y,) be the corresponding conditional
distributions given label y,. Assume that the model f is e-
Lipschitz and the loss function £ : {0,1}V x [0,1]V — R*
is k-Lipschitz in both inputs. Define distance function d be-
tween (x;,y;) and (zq,yq) as (8). Under a certain cross-
Lipschitzness assumption for f; and f,, we have

Eonqa) [£(fo(2), f(2))] (12)
< Eonp (@) [L(fi(2), f(2))] + kW, (P, Q) + O(eV)

The proof is outlined in Appendix 9. This theorem indi-
cates validation loss is linearly changed with the W,,(P;, Q)
if the training loss (first term on rhs) is small enough.
Privacy Guarantee In our setting, privacy is guaranteed
from two aspects: (1) Raw training samples cannot be re-
constructed. (2) Generating data with similar appearance
is not feasible. The reasons behind this are: Firstly, the
stacked vector does not replicate the original data structure.
Secondly, hyperparameter ¢ for approximating the interpo-
lating measure, the OT plan between Xi and ~;, and OT
plan between 7, and 7p, are only known to the client ¢
himself. Therefore, it is challenging for attackers who need
to know all the information to infer raw datasets.

5. Experiments

We demonstrate the computation of the Wasserstein
barycenter among three Gaussian distributions from the em-
pirical perspective to make Theorem 1 more convincing.
For each distribution, we sample 100 data points from 2D
Gaussian distributions with distinct means but the same co-
variance matrix. We set ¢ = 0.5 for interpolating the mea-
sure, as approximated in Section 5. To assess the accuracy

N ExactFed GTG MR DataSV Ours (S = 100/500)

5 3lm 333 5m 25m Im /2m
10 3h20m 7m 40m 2h30m 2m / 4m
50 - - - - 14m /30m
100 - E - 21m / 1h

Table 2. Evaluation time with different size of N: For ExactFed,
GTG and MR, we only consider the evaluation time after model
training; Evaluation time of FedBary increases linearly with V.

B 4 E
F + ba +
S P e

gaussiant
gaussian2

gaussian3

approximate barycenter
true barycenter
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*
3

Figure 3. Approximated and true Wasserstein barycenter of 3
Gaussian distributions: 3-th epoch and 10-th epoch (overlapping).

of our computations, we compare the results obtained using
FedBary with the barycenter approximation with data ac-
cess as outlined in the work by [5]. In our study, we quan-
tified the disparity between the barycenter estimated within
FL and the barycenter derived from accessible data by com-
puting the squared errors for each position and subsequently
aggregating all differences. Remarkably, our experimental
results demonstrated a swift convergence, typically within a
mere 10 iterations in Figure 3.

5.1. Clients Evaluation

Datasets We used the CIFAR-10 dataset in this section
for experiments (more dataset experiments are shown in
Appendix), and followed the data settings in [20]. We
simulate N = 5 clients and randomly sample data for
each client with 5 cases: (1) Same Distribution and Same
Sizey(2) Different Distributions and Same Size;(3) Same
Distribution and Different Sizes; (4) Noisy Labels and
Same Size;(5) Noisy Features and Same Size. Refer Ap-
pendix 10.1 for details.

With Validation data When the validation data is avail-
able, our algorithm can be directly used to compute the
distance between data from each client and the validation
data, which is usually stored on the server side in real-
ity. Thus, the shorter distance implies the better contri-
bution from client data. We compared our method with
other data valuation metrics. Baselines are GTG-Shapley
with its variants (GTG-Ti/ GTG-Tib) [20], FedShapley [41],
MR/OR [34], DataSV [8] and exact calculation exactFed.

We visualize all cases in Figure 4 to show the percentage
of contribution when the number of clients equals 5 under
different valuation metrics. The X-axis is the contribution
score(%), and the y-axis are valuation approaches. Each

12032



Case 2

GTG-Ti
GTG-Tib
OR

MR
GTG-sV
exactFed

Valuation metrics

FedBary

»

°
o ¥

+H-

0.17

018 019 020 021 022
Single Client SV or Reverse of Distance / Total

Case 3

0.07 0.12 0.17 0.22 027 0.32

Single Client SV or Reverse of Distance / Total
Case 4

GTG-Ti

OR

MR
GTG-SV
exactFed

Valuation metrics

FedBary

GTGTib{ * * rE *

+

H+

0.08

012 016 020 024 028
Single Client SV or Reverse of Distance / Total

Case 5

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Single Client SV or Reverse of Distance / Total

GTG-Ti
GTG-Tib
OR

MR

120

=
o
o

£ 80

60

client-1
client-2
client-3
= client-4

GTG-SV
exactFed
FedBary

cl c5 40

‘ me client-noisy

Valuation metrics
o
3
of
2
Wasserstein distance

. 20
Sy B R R B
0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0 1 2 3
Single Client SV or Reverse of Distance / Total Epoch

Figure 4. Scatter plots: percentage of contribution for 5 clients
under different valuation metrics (Casel~5); Histogram: dis-
tance between the local distribution and the Wasserstein barycen-
ter when validation set is not available.

marker stands for the score of a client. We measured the
percentage of contribution by dividing each client’s Shap-
ley value or inverse of distance by the total. The exactFed
provides the original Shapley value, which can be consid-
ered as ground truth to some extent. For case 1, the re-
sult of our distance metric shows that the contributions for
all 5 clients are almost equal, with each of them occupying
around 20%, which is a signal that this metric outperforms
others since the datasets are i.i.d with the same size. For
case 2, FedBary could differentiate distributions and follow
similar contribution scores with exactFed and MR. For case
3, with the same distribution, the size of data samples will
have a trivial influence on the contribution, which shows
the robustness to replications of FedBary, while other ap-
proaches GTG-Ti,GTG-Tib, GTG-SV are sensitive to the
data size. We can also find MR, which is shown to be
more accurate than other SV approaches for evaluations,
achieves similar performance with ours and exactFed in this
setting. If noise exists in labels of data (case 4), we can
expect that the higher the percentage of noisy labels, the
smaller the contribution score is. Some metrics like GTG-
SV will show clear discretization among clients with differ-
ent percentages of noisy labels. Most of them range from
2% to 38%. However, the exactFed is not that dispersed,
as the SVs among different clients are close. FedBary fol-
lows this trend and delivers a result similar to exactFed
and MR, showing its ability to differentiate the mislabeled
data. For case 5, FedBary outperforms other approximated
approaches since they will have an inverse evaluation for

the clients: with a larger proportion of noise, the contribu-
tion score is larger. FedBary is sensitive to feature noise
and could capture the right ordering of client contributions:
with a larger proportion of noise, the contribution score is
smaller. Overall, FedBary provides better evaluations.
Without Validation data Wasserstein barycenter could
assist in identifying irrelevant clients (distribution that
is far from others) or distribution with noisy data
points. Although there is another attempt by calculating
W, (P;, P;),t1 # j [28] to measure the data heterogeneity,
such procedure needs to compute (1;7 ) OT plans in each it-
eration, causing high computational cost. We simulate the
scenario where there are 4 clients with i.i.d distributions
and the 5-th client with noisy data, i.e., with noisy fea-
tures in case (5) above. Then we approximate the Wasser-
stein barycenter with support X among these clients and
measure the distance Wp(f(i, XQ). We plot the result in
Figure 4, in which we could find that the 1/\/1[,(5(57 XQ) is
larger than other distances, leading to the conclusion that
this dataset is relatively irrelevant.

5.2. Noisy Feature/Mislabeled Data Detection

As aforementioned, our approach represents the first at-
tempt in FL to perform noisy data detections without shar-
ing any data samples. To gauge the accuracy and effective-
ness of our algorithm, we conducted comparative evalua-
tions with existing approaches that could access the dataset.
Baselines here are Lava, LOO and KNNShapley.

We follow the experiment setting in [12], where we con-
sider two types of synthetic noise: 1) label noise where we
randomly assign the label that is different from the original
label of the data points with a predefined proportion; 2) fea-
ture noise where we add standard Gaussian random noises
to the original features. Here we randomly choose the pro-
portion ppeise % of the training dataset to perturb. Here we
consider three different levels pyoise € {5,15,30}%. We
plot noisy feature detections (p = 10) with corresponding
point removal experiments on CIFAR10 dataset in Figure 5.
The point removal experiment is performed with the fol-
lowing steps: removing data points from the entire train-
ing dataset in descending order of gradient values. Follow-
ing the similar example in [12], we use a logistic regres-
sion model with feature embeddings for this classification
task. This process can be used to show the validation per-
formance before and after removing training noisy points
identified by FedBary. Specifically, once every more 5%
of datum is removed, we ft the model with the remaining
dataset and evaluate its test accuracy on the holdout dataset.
We visualize the accuracy w.r.t. fraction of removed valu-
able datasets on the right side (b for noisy feature samples,
d for mislabeled samples).  As for noisy feature detec-
tion (a,b), our proposed approach is sensitive to noises in
features based on the calibrated gradient, leading to supe-
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Figure 5. Detection results on CIFAR10: Corrupt feature sam-
ples detections and point Removal Comparison (a,b): FedBary
and Lava are superior; Mislabeled samples detections and point
Removal Comparison (c,d): FedBary performs similarly to Lava
and conducts relatively accurate detections;
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rior performance in noisy features. The detection line of
Lava is overlapping with ours thus we do not plot it (note
that in Lava raw data should be accessed). We also validate
our statement in (e): Notably, the number of the positive
gradient in OW,, (P;, 11¢) is the same as the number of noisy
data, representing our approach detects all noisy data with-
out other clean data, which convincing its effectiveness. In
(b) we could find Lava could detect valuable points that af-
fect the model performance most while FedBary is runner-
up with privacy guarantee. For the label detection (c,d), we
observe the Wasserstein distances change trivially with dif-
ferent portions of label noise, thus making the detections
relatively poor. However, FedBary performs similarly with
approaches that could access data, indicating our approach
does not sacrifice the performance of the benchmark. In
(d), Lava performs slightly better, while KNNShapley gets
stuck when about 55% of the dataset is removed. LOO is
relatively random in the experiment. Overall, we could say
FedBary indeed provides valuable information as removing
high negative values will lead to lower accuracy. It is wor-
thy to note that, for corrupt feature detections, FedBary per-
forms 100% success rate (only noisy data points and all of
them have positive calibrated gradients) in various datasets,
showing its generalization ability.

Boost FLL Model We also simulate an FL setting, where
5000 training samples are divided randomly and assigned to
5 clients, in which there are 500 noisy data in total. There
are 1000 validation data and 1000 testing data held by the
server. Our evaluation approach proceeds as follows: before
training a federated model, the server calculates the Wasser-
stein distance using validation data with the local samples
and filters noisy samples; the filtered new training data are
used to collaboratively train a federated model. We com-

Duplication
Data Size Whole Dataset One datum
5000 39.14 40.94
2 x 5000 39.23 40.96
3 x 5000 39.18 40.99

Table 3. Distance behavior under duplications
pared various datasets, and the aggregated algorithm is Fe-
dAVG [21]. Our approach could help detect noisy data and
boost FL model performance in Table 4 in Appendix 11.4.

5.3. Duplication Robustness

One concern in real-world data marketplaces revolves
around the ease of data duplication, which does not intro-
duce any new information. [13, 43] have emphasized the
importance of a metric that can withstand data duplication.
It is also likely that the client identifies the datum with the
highest contribution and duplicates it in an attempt to max-
imize profit. FedBary is formulated in terms of distribu-
tions and automatically disregards duplicate sets. We con-
ducted the experiment using CIFAR 10, where we simulated
5000 training data and 5000 validation data. We repeated
the training set up to three times, and the distance remained
unchanged. We also duplicate a single datum with a large
negative gradient value in 10 multiple times for evaluation,
while the result shows it would increase the distance due to
the resulting imbalance in the training distribution caused
by copying that particular point. We show the result in Ta-
ble 3. We also discuss the time robustness in Appendix 11.2.

6. Conclusion

We propose Wasserstein distance in the FL context as a
new metric for client evaluation and data detection. Com-
pared to previous approaches, Our approach, FedBary,
offers a more transparent and robust framework, substan-
tiated through both theoretical and empirical analyses. In
addition, it is designed to be applicable in real-world data
marketplaces, enabling the data client evaluation before the
FL training process. This facilitates the selection of only
the most relevant clients and data points for the FL training
process, thereby optimizing computational efficiency and
enhancing model performance. We posit that such a met-
ric holds considerable promise not only for the purpose of
client evaluation but also as a cornerstone for developing in-
centive mechanisms within FL systems. While FedBary
marks a significant advancement in this field, there remain
several open questions and avenues for further research,
which we have detailed in Appendix 11.5.
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