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Abstract

Previous advances in vehicle re-identification (ReID)
are mostly reported under favorable lighting conditions,
while cross-day-and-night performance is neglected, which
greatly hinders the development of related traffic intelli-
gence applications. This work instead develops a novel
Day-Night Dual-domain Modulation (DNDM) vehicle re-
identification framework for day-night cross-domain traf-
fic scenarios. Specifically, a unique night-domain glare
suppression module is provided to attenuate the headlight
glare from raw nighttime vehicle images. To enhance ve-
hicle features under low-light environments, we propose a
dual-domain structure enhancement module in the feature
extractor, which enhances geometric structures between ap-
pearance features. To alleviate day-night domain discrep-
ancies, we develop a cross-domain class awareness mod-
ule that facilitates the interaction between appearance and
structure features in both domains. In this work, we ad-
dress the Day-Night cross-domain ReID (DN-ReID) prob-
lem and provide a new cross-domain dataset named DN-
Wild, including day and night images of 2,286 identities,
giving in total 85,945 daytime images and 54,952 nighttime
images. Furthermore, we also take into account the mat-
ter of balance between day and night samples, and provide
a dataset called DN-348. Exhaustive experiments demon-
strate the robustness of the proposed framework in the DN-
ReID problem. The code and benchmark are released at
https://github.com/chenjingong/DN-ReID.

1. Introduction

Vehicle re-identification (ReID) is an important and ad-
vanced research topic in computer vision. It has great poten-
tial in multiple applications, such as intelligent transporta-
tion, urban surveillance, and social security. This is mainly
because vehicles play a vital role as the primary objects of
interest in urban surveillance scenarios. ReID aims to iden-
tify vehicle images of interest from the gallery captured by
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Figure 1. Comparison of different ReID frameworks: (1) the most
common single-modality visible domain ReID framework; (2) the
cross-modality visible-infrared ReID framework; (3) the day-night
cross-domain ReID framework.

non-overlapping surveillance cameras. The main solution
for ReID entails training a Convolutional Neural Network
(CNN) [9, 10]. This allows samples of the same identity
from different cameras to learn a consistent feature repre-
sentation, as illustrated in Fig. 1 (a). Driven by large-scale
datasets [17, 20, 22, 33] and the blossom of CNN, emerg-
ing re-identification methods [14, 21, 26, 42] keep setting
state-of-the-art (SOTA) results in recent years.

Despite the advancements, the majority of vehicle re-
identification (ReID) benchmarks and methods mainly con-
centrate on day-to-day matching, which is the common
single-modality visible domain Re-ID problem. In numer-
ous nighttime surveillance and low-light settings, thermal
(near)-infrared cameras have the ability to capture the vi-
sual appearances of targets. This raises significant cross-
modality visible-infrared ReID problems, such as visible-
infrared person re-identification (VI-ReID) [27, 34]. The
VI-ReID framework is typically formulated by learning
modality-shared or invariant features to bridge the modal-
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Table 1. Publicly available benchmark datasets for person/vehicle
re-identification (ReID). The term ’D-N proportion’ refers to the
proportion of identities with both day and night samples. ’D-N
balance’ signifies the equal distribution of training samples be-
tween day and night.

Benchmark ID images D-N proportion D-N balance

person

VIPER [7] 632 1,264 0% no
iLIDS [44] 119 476 0% no

CUHK01 [16] 972 1,942 0% no
Market1501 [43] 1,501 32,668 0% no

DukeMTMC-ReID [29] 1,404 36,411 0% no
RegDB [27] 412 8,240 0% no

SYSU-MM01 [34] 491 303,357 0% no

vehicle

VeRi-776 [20] 776 49,357 0% no
CityFlow-ReID [33] 666 229,680 0% no

VERI-Wild [22] 30,671 416,314 1.8% no
VERI-Wild 2.0 [1] 42,790 825,042 31.6% no

DNWild 2,286 140,897 100% no
DN348 348 34,077 100% yes

ity gap, as shown in Fig. 1 (b). However, thermal (near)-
infrared cameras have not been extensively utilized in ve-
hicle ReID scenarios. There are several main reasons: 1.
Thermal-infrared cameras are costly and possess limited
resolution, which makes their utilization challenging in traf-
fic situations. 2. Near-infrared cameras rely on emitted
near-infrared light and can be easily influenced by vehicle
headlights, street lights, and building lights in traffic sit-
uations. Given the reasons mentioned above, researchers
cannot convert the day-to-night matching problem to the
visible-to-infrared matching problem, as is done in person
ReID. To facilitate the retrieval of nighttime images, we
propose to utilize the setting of day-night cross-domain ve-
hicle re-identification (DN-ReID). DN-ReID aims to iden-
tify visible images from the nighttime (daytime) gallery that
belong to the same identity as the given daytime (night-
time) probe, as shown in Fig. 1 (c). Compared to the com-
mon single-modality visible domain ReID, DN-ReID en-
counters challenges arising from headlight glare and low-
light environments. Moreover, viewpoint change, camera
change, and occlusion problems which lead to large intra-
class discrepancies in common ReID also bring difficulties
to DN-ReID. Despite the practical significance of DN-ReID
in real-world applications, there is currently a lack of re-
search on this topic, making it an open issue that requires
further exploration.

To support further research on DN-ReID problem, we
provide a new dataset named DN-Wild. DN-Wild is col-
lected from the testing set of VERI-Wild 2.0 dataset [1].
The DN-Wild training set consists of 70,981 daytime im-
ages and 35,384 nighttime images distributed over 1574
identities, while the query and gallery set is composed of
14,964 daytime images and 19,568 nighttime images from
712 identities for evaluation, respectively. Compared to
other commonly used ReID datasets, as shown in Table 1,
DN-Wild includes day-night vehicle image pairs for each
identity. This allows users to evaluate the performance of
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Figure 2. Image distribution and image examples in the DN-Wild
and DN-348 datasets.

day-night cross-domain scenarios. However, DN-Wild ex-
hibits more noticeable sample imbalances, as depicted in
Fig. 2 (a). The majority of classes have only a restricted
number of nighttime (daytime) samples, whereas there is
an abundance of daytime (nighttime) samples. To this
phenomenon, we propose a new sample-balanced dataset,
named DN-348. DN-348 is captured across four full months
(from May to September) with a city-scale surveillance
camera system covering an area of more than 400 km2. The
DN-348 training set comprises 200 identities with 9,962
daytime images and 10,022 nighttime images, while the
query and gallery set is composed of 10,121 daytime images
and 3972 nighttime images from 148 identities for evalua-
tion, respectively. There are approximately 50 daytime im-
ages and 50 nighttime images per vehicle in the DN-348
training set, as shown in Fig. 2 (b). In general, DN-Wild and
DN-348 exhibit different data sizes and distributions, thus
offering the diverse evaluation for future DN-ReID meth-
ods.

To provide a robust baseline algorithm, we propose a
Day-Night Dual-domain Modulation (DNDM) network to
consider the difficulties posed by headlight glare, low-light
environments, and domain discrepancies. Inspired by the
visual prompts [2, 19], we construct a night-domain glare
suppression module and employ the highlighted area as vi-
sual prompts to effectively reduce headlight glare. Then,
we present a dual-domain structure enhancement module
that utilizes local feature gradients to learn geometric struc-
tures, which are resistant to interference from low-light
environments. Additionally, we introduce a cross-domain
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class awareness module that utilizes the class activation
maps to interact with the day-night cross-domain features.
To minimize disparities in appearance and structural fea-
tures between the two domains, we expand the dual-domain
structure enhancement module and the cross-domain class
awareness module to multiple stages within the backbone
network.

Overall, The contributions of this paper can be summa-
rized as follows.
• We provide two standardized benchmark datasets, DN-

Wild and DN-348, to facilitate the study of DN-ReID.
These benchmark datasets will be freely accessible to the
public for academic research.

• We propose the Day-Night Dual-domain Modulation
(DNDM) framework, which integrates the training of
glare suppression, structure enhancement, and class
awareness to dynamically modulate day-night cross-
domain vehicle features.

• Comprehensive experiments conducted on our challeng-
ing benchmark datasets, DN-348 and DN-Wild, validate
the superior performance and potential of our DNDM for
day-night cross-domain vehicle ReID problem.

2. Related Work
We briefly review the related work in the following two
folds, i.e., vehicle re-identification and visible-infrared
cross-modality person ReID (VI-ReID).

2.1. Vehicle Re-identification

The task of vehicle ReID has gained significant attention
in recent years due to its widespread application in video
surveillance and social security [10, 12, 42]. Liu et al. [17]
introduce the VeRi-776 benchmark dataset and propose a
deep relative distance learning approach for the vehicle
ReID task. Lou et al. [22] introduce the VERI-Wild dataset
for the vehicle ReID community in the wild, and design a
feature distance adversary scheme to generate hard nega-
tive samples. Bai et al. [1] extend the VERI-Wild dataset
and introduce the VERI-Wild 2.0 dataset. However, the
majority of day-night sample pairs exist in the testing set
of the VERI-Wild 2.0 dataset [1], making it unsuitable for
addressing the day-night cross-domain problem.

In vehicle ReID, Zhou et al. [47] utilize a viewpoint-
aware attentive multi-view inference model to acquire
multi-view vehicle features. Lou et al. [23] incorporate
an adversarial learning network into the vehicle ReID task
to address the challenge of hard negative cross-view and
same-view images. To learn part-based features for vehi-
cle ReID, He et al. [8] integrate a detection branch to learn
part-regularized features. Zhao et al. [42] propose a hetero-
geneous relational complement network that utilizes cross-
level features and region-specific features as complements
to enhance high-level features. Li et al. [15] propose a

framework for vehicle ReID that utilizes knowledge vectors
to guide the training of a transformer model. Shen et al. [30]
propose a graph interactive transformer method to explore
the interaction between local features and global features
for vehicle ReID. While these methods have made signifi-
cant advancements in solving the ReID problem, they fail to
consider the potential relationships between vehicle images
taken during the day and night.

2.2. Visible-Infrared Cross-modality Person Re-ID

In recent years, there has been a rise in the popularity of
visible-infrared cross-modality person ReID (VI-ReID) [6,
35, 41]. Nguyen et al. [27] propose the RegDB (visible vs
thermal-infrared) dataset, which consists of visible-infrared
image pairs. This dataset is widely used for VI-ReID, but
it is important to note that it was captured by only one
visible-infrared camera. Wu et al. [34] introduce the SYSU-
MM01 (visible vs near-infrared) dataset and propose a deep
zero-padding network for matching visible-infrared images.
Zhang et al. [40] propose a low-light visible-infrared cross-
modality LLCM (visible vs near-infrared) dataset to aid in
the research of VI-ReID for practical applications. While
current VI-ReID datasets have started to address practical
applications in low-light environments, they are not suitable
for the vehicle ReID task.

In VI-ReID, Ye et al. [38] design an attention general-
ized mean pooling with weighted triplet loss method for
VI-ReID. Liu et al. [18] propose a memory-augmented uni-
directional metric learning method to learn cross-modality
metrics. Sun et al. [31] propose a dense contrastive learn-
ing framework that promotes pixel-to-pixel dense alignment
for visible-infrared image pairs. Jiang et al. [11] design
a cross-modality transformer that aims to jointly explore
a modality-level alignment module and an instance-level
module for VI-ReID. Lu et al. [24] propose a named pro-
gressive modality-shared transformer to mitigate the ad-
verse impact of modality gap. Yu et al. [39] design a
modality unifying network, which can dynamically model
the modality-specific and modality-shared representations
to alleviate both cross-modality and intra-modality varia-
tions. Although these methods consider the intra-modality
variations and cross-modality variations, they fail to address
the challenges presented by headlight glare and low-light
environments in nighttime vehicle images.

3. Method
3.1. Model Architecture

Fig. 3 provides an overview of the proposed Day-Night
Dual-domain Modulation (DNDM) framework, which uti-
lizes the ResNet-50 [9] as its backbone network. The back-
bone network is used to extract vehicle appearance feature
tensors from both daytime and nighttime images at multi-
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Figure 3. Pipeline of Day-Night Dual-domain Modulation (DNDM) framework. The whole network consists of a backbone network,
a Night-domain Glare Suppression (NGS) module, a Dual-domain Structure Enhancement module (DSE), and a Cross-domain Class
Awareness (CCA) module. The backbone network specifically employs ResNet-50 for vehicle appearance representation, using both
cross-entropy loss and triplet loss for supervision. The NGS module uses a glare mask and a trainable projection vector to extract nighttime
features while suppressing glare. The DSE module learns the structural representation by utilizing feature gradients within local windows.
The CCA module improves the visual and structural representation by exchanging the class activation maps from the day and night domains.

ple stages. To enhance the learning of normal regions and
mitigate glare in nighttime image, we propose the Night-
domain Glare Suppression (NGS) module. Subsequently,
the Dual-domain Structure Enhancement (DSE) module is
introduced to aggregate gradients from local windows and
capture diverse structural representations. To facilitate in-
teraction between day-night cross-domain features under
the same identity, we design a Cross-domain Class Aware-
ness (CCA) module that follows the DSE module. The
collaboration between the DSE and CCA modules aims to
enhance appearance and structural representation, enabling
their effective utilization across various stages of the back-
bone network.

3.2. Baseline

Day-night cross-domain vehicle re-identification (DN-
ReID) aims to retrieve vehicles of interest in both daytime
and nighttime environments. Given a pair of vehicle im-
ages I = {(IDay, INight), y}, where IDay and INight

are the input daytime and nighttime vehicle images respec-
tively, and y is the associated vehicle identity label. The
corresponding multi-stage feature tensors encoded by the

backbone network are denoted as Tm
s ∈ RHs×W s×Cs

,
s ∈ {0, 1, 2, 3, 4}, m ∈ {Day,Night}. Following the
ResNet-50 [9] backbone as shown in Fig. 3 (a), we use
a global average pooling (GAP) layer to obtain the corre-
sponding feature vector fm = GAP (Tm

4 ). The network is
then optimized with respect to a cross-entropy loss Lce and
a triplet loss Ltri. The cross-entropy loss is formulated as:

Lce = −ylog(Softmax(FCclass(f
m))), (1)

where FCclass denotes a fully connected layer that predicts
the result of classification, Softmax denotes the softmax
function that gets the normalized probability. It is worth
noting that fDay and fNight share the same FCclass layer.
The triplet loss is formulated as:

Ltri = max(0, dpij +margin− dnik), (2)

where (i, j, k) represents a hard triplet within each training
batch. For daytime anchor sample i, j is from the corre-
sponding nighttime positive set, and k is from the daytime
negative set. For nighttime anchor sample i, j is from corre-
sponding daytime positive set, and k is from the nighttime
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negative set. dpij/d
n
ik represents the pairwise distance of a

positive/negative sample pair, and margin = 0.3 denotes
the triplet distance margin.

Although the above backbone network can extract vehi-
cle features, it does not effectively tackle the challenges pre-
sented by headlight glare, low-light environments, and do-
main discrepancies. To alleviate the challenges existing in
DN-ReID, we introduce the Night-domain Glare Suppres-
sion (NGS) module, Dual-domain Structure Enhancement
module (DSE), and Cross-domain Class Awareness (CCA)
module in the following subsections.

3.3. Night-domain Glare Suppression (NGS)

Drawing upon the concept of visual prompts as highlighted
in the studies [2, 19], the integration of visual cues can be
crucial in identifying the exact details of a task. We pro-
pose a Night-domain Glare Suppression (NGS) module that
utilizes glare prompts to guide attention towards glare-free
regions and reduce the effects of headlight glare. Given a
nighttime vehicle image INight, we initially adopt the con-
volutional block to obtain the feature tensor TNight

0 :

TNight
0 = Mxp2×2(ReLU(BN(conv7×7(I

Night)))),
(3)

where conv7×7 represents a 7× 7 convolutional operation,
BN denotes the batch normalize operation, ReLU denotes
the rectified linear unit, and Mxp2×2 denotes a 2 × 2 max
pooling operation.

Meanwhile, we convert the nighttime vehicle image
INight to a grayscale image IG = rgb2gray(INight).
Then, we apply a brightness threshold of 220 to identify
the highlighted pixels in the night image. After identify-
ing the highlighted pixels, we combine the adjacent pixels
into regions while discarding regions with fewer pixels. Fi-
nally, we obtain a binary mask MG from the initial night
image, where 1 represents the pixels affected by glare and 0
represents the pixels unaffected by glare. The binary mask
is included as input in the glare suppression module and is
modulated with the feature tensor TNight

0 . Specifically, we
concatenate feature tensor TNight

0 ∈ RH0×W 0×C0

with the
binary mask MG ∈ RH0×W 0×1, and then we feed them to
a learnable projection vector V ∈ R(C0+1)×1. Mathemati-
cally,

MNight
0 = Sigmoid(concat(TNight

0 ,MG)V ), (4)

where MNight
0 ∈ RH0×W 0×1 represents the learned do-

main suppression mask, and Sigmoid refers to the sigmoid
function.

In addition to the nighttime image, our NGS module
is also guided by the daytime image. The basic idea is
to utilize a dummy mask, zeros(MG), to prompt the dif-
ference between the glare-unaffected daytime feature and

glare-affected nighttime feature:

MDay
0 = Sigmoid(concat(TDay

0 , zeros(MG))V ), (5)

where zeros(·) represents the operation of setting all ele-
ments to 0. In the process of projection, one of the inputs
is the concatenation of TNight

0 and MG. Another input is
a glare-unaffected daytime feature tensor, TNight

0 , concate-
nated with a dummy all-zero mask zeros(MG). Based on
the domain suppression mask Mm

0 ,m ∈ {Day,Night},
the final suppression procedure can be formulated as:

T
m

0 = Tm
0 − αMm

0 ⊙ Tm
0 , (6)

where T
m

0 ,m ∈ {Day,Night} denotes the daytime/ night-
time feature after the glare suppression operation, α = 0.5
is a hyperparameter used to balance the original feature
and the weakened feature. Fig. 3 (b) shows the result of
our NGS module, illustrating the successful separation of
glare regions. After performing the aforementioned oper-
ations, we feed Tm into the backbone network to acquire
the corresponding feature tensors Tm

s ∈ RHs×W s×Cs

, s ∈
{1, 2, 3, 4}.

3.4. Dual-domain Structure Enhancement (DSE)

The common vehicle re-identification network mainly fo-
cuses on extracting vehicle appearance features. However,
the appearance features are easily influenced by low-light
environments. To improve the feature consistency of day-
night vehicle image pairs, we introduce a Dual-domain
Structure Enhancement (DSE) module. The main idea of
the DSE module is to extract the structural information
from the appearance features through pixel-wise gradient.
Specifically, the DSE module processes the intermediate
feature map Tm

s and calculates the pixel-wise non-negative
local gradient G ∈ RHs×W s×Cs×N×N for each pixel posi-
tion x and its surrounding region of size N ×N :

G(x, c, d) = max (0, Tm
s (x+ d, c)− Tm

s (x, c)) (7)

where c ∈ [1, Cs] represents the index of the channel di-
mension and d ∈ [−dn, dn]× [−dn, dn] denotes the neigh-
bor position in the surrounding region of each pixel x. The
size of the region is N ×N , with dn = (N − 1)/2. More-
over, we propose a feature weighting operation that incor-
porates detailed local gradients into a concise structural de-
scriptor, enabling the simultaneous learning of geometric
structures from both domains:

S(x, c, d) =
G(x, c, d)

1 +
∑

d G(x, c, d)
Tm
s (x+ d, c),

S(x, c) =
∑
d

S(x, c, d),
(8)

where S ∈ RHs×W s×Cs

has the same spatial and chan-
nel size as the original feature tensor Tm

s . The gradient-
guided feature weighting operation aggregates the neighbor
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features into structural features, thereby reducing its spa-
tial dimension from N × N to 1 × 1. This transformation
converts the raw local gradient G into the structural descrip-
tor S. In simpler terms, the structural descriptor is derived
from the weighted appearance descriptor. Then, we utilize
the structural descriptor as an additional input for the ap-
pearance descriptor:

T
m

s = Tm
s + βS, (9)

where T
m

s ,m ∈ {Day,Night} denotes the daytime/ night-
time feature after the structure enhancement operation, the
hyperparameter β = 0.25 is used to balance the original
feature and the enhanced feature.

3.5. Cross-domain Class Awareness (CCA)

In our network, we first use ResNet-50 to extract appear-
ance features from day-night cross-domain vehicle images.
Then, we apply a glare suppression module to reduce the
impact of glare in nighttime images. Furthermore, we in-
troduce a structure enhancement module to improve the ap-
pearance features. However, these modules fail to consider
the discrepancies between the day and night domains.

To tackle the day-night domain gap, we introduce a
Cross-domain Class Awareness (CCA) module for the DN-
ReID problem. Given day-night cross-domain vehicle fea-
tures T

m

s ∈ RHs×W s×Cs

, s ∈ {1, 2, 3, 4}. We convert it
into its projection Pm

s ∈ RHs×W s×C4

using a convolu-
tional layer. This adjustment is to match the number of fea-
ture channels with the input size of the fully connected layer
FCclass as described in formula 1. Mathematically,

Pm
s = BN(conv1×1(T

m

s )), (10)

where conv1×1 represents a 1 × 1 convolutional opera-
tion, and BN represents a batch normalization operation.
Inspired by the class activation mapping (CAM) opera-
tion [46], which can highlight the class-specific discrimi-
native regions. We introduce the projection Pm

s to calculate
the class activation maps for daytime and nighttime images:

Am
i |C

′

i=1 = Sigmoid(FCclass(P
m
s )), (11)

where C ′ represents the total number of classes in the train-
ing set. The class activation maps for the y-th class are de-
noted as ADay

y and ANight
y , where y represents the vehicle

identity label. The sigmoid function is used to normalize
the CAMs.

To facilitate the interaction between day-night cross-
domain features, we suggest exchanging class awareness
information between day and night samples:

P
Day

s = PDay
s ⊙ANight

y ,

P
Night

s = PNight
s ⊙ADay

y ,
(12)

where ⊙ represents element-wise multiplication. It is im-
portant to note that this exchange process only occurs dur-
ing the training phase, and the class activation maps are not
exchanged during the test phase. To ensure that P

m

s and
T

m

s have the same number of channels, we incorporate the
operation of conv1×1+BN+ReLU into our CCA module.
The resulting feature can be expressed as:

Tm = T
m

s +ReLU(BN(conv1×1(P
m

s ))). (13)

Overall loss. We utilize the widely adopted ResNet-50
as the backbone network. We integrate the proposed Night-
domain Glare Suppression (NGS) module before the first
block. Additionally, we incorporate the Dual-domain Struc-
ture Enhancement (DSE) module and the Cross-domain
Class Awareness (CCA) module after each of the four con-
volution blocks (refer to Fig. 3). The entire network is
trained in an end-to-end manner. The overall loss function
is as follows:

L = Lce + Ltri. (14)

4. Experiments
We adopt the Cumulative Match Curve (CMC) with Rank-
k matching accuracy and mean Average Precision (mAP)
as the evaluation metrics. The red and blue respectively
represent the first and second results.

4.1. Implementation details

In our experiments, we adopt ResNet-50 [9] pretrained
on ImageNet [3] without the last spatial down-sampling
layer as the backbone model followed by [32]. We use
the Adam [13] optimizer with the initial learning rate of
1.0 × 10−2. We apply a warmup [5] approach to initial-
ize the network, gradually raising the learning rate from
1.0 × 10−2 to 1.0 × 10−1 over 10 epochs. Afterward, we
maintain the learning rate at 1.0 × 10−1 from the 10-th to
the 20-th epoch. The learning rate then further decays to
1.0×10−3 at the 20-th epoch and to 1.0×10−4 at the 50-th
epoch, and this continues until a total of 80 epochs are com-
pleted. The training protocol follows the ReID strong base-
line (BOT [25]) using random cropping and erasing [45] for
data augmentation. In our implementation, all the input im-
ages are resized to 256×256. The size of the window region
is N × N = 5 × 5 in the DSE module. The dimension of
final features is 2048. We set eight IDs, and eight (four day-
time + four nighttime) instances with the batch size of 64 in
the training for the two datasets. We run our experiments on
one NVIDIA GeForce RTX A6000 GPU with 48GB RAM.

4.2. Comparison to State-of-the-art Methods

Evaluation Results on DN-348. Table 2 reports the per-
formance comparison of our DNDM against the state-of-
the-art methods on the DN-348 dataset. From which we
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Table 2. Comparison results of our method against the state-of-the-art methods on DN-348 and DN-Wild dataset.

Methods
DN-348 DN-Wild

Day-to-Night Night-to-Day Day-to-Night Night-to-Day
Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP

BOT [25] 0.663 0.805 0.449 0.777 0.904 0.453 0.503 0.979 0.399 0.471 0.936 0.398
DDAG [36] 0.666 0.803 0.440 0.753 0.903 0.423 0.495 0.980 0.361 0.487 0.951 0.352
LbA [28] 0.680 0.828 0.449 0.766 0.897 0.429 0.472 0.936 0.263 0.417 0.871 0.254
AGW [38] 0.681 0.821 0.465 0.731 0.894 0.443 0.483 0.960 0.387 0.491 0.963 0.386
CAJ [37] 0.660 0.819 0.464 0.739 0.884 0.453 0.499 0.981 0.392 0.487 0.955 0.385
DCL [31] 0.675 0.813 0.443 0.789 0.920 0.428 0.499 0.979 0.348 0.472 0.943 0.342
PMT [24] 0.663 0.820 0.470 0.760 0.907 0.461 0.491 0.955 0.327 0.444 0.902 0.337
Baseline 0.674 0.826 0.456 0.723 0.889 0.439 0.492 0.965 0.395 0.485 0.951 0.349
DNDM 0.707 0.842 0.475 0.803 0.926 0.462 0.512 0.987 0.405 0.495 0.955 0.400

can see, the state-of-the-art VI-ReID methods have not
achieved significant performance improvements compared
to the ReID strong baseline BOT [25]. The reason is that
these methods fail to address challenges presented by head-
light glare and low-light environments in nighttime vehicle
images. For the Day-to-Night setting, our approach signif-
icantly beats the VI-ReID methods as 70.7%, 84.2%, and
47.5% on the Rank-1, Rank-5, and mAP respectively. For
the Night-to-Day setting, our approach significantly beats
the VI-ReID methods as 80.3%, 92.6%, and 46.2% on the
Rank-1, Rank-5, and mAP respectively. Compared with
the baseline, our proposed DNDM significantly improves
Rank-1, Rank-5 and mAP by 8.0%, 3.7%, and 2.3% respec-
tively. This shows the promising achievement by employing
night-domain glare suppression and dual-domain structure
enhancement to improve the feature learning of nighttime
vehicle images. In conclusion, these findings emphasize
that DN-ReID is a challenging task with the potential to
match vehicle images at night.
Evaluation Results on DN-Wild. Table 2 shows the com-
parison results on DN-Wild dataset on two different test-
ing sets. In general, our proposed DNDM achieves promis-
ing performance compared to state-of-the-art methods. For
the Day-to-Night setting, our approach significantly beats
the ReID strong baseline BOT [25] by 51.2%, 98.7% and
40.5% on the Rank-1, Rank-5, and mAP respectively. For
the Night-to-Day setting, compared with BOT [25], our pro-
posed DNDM significantly improves Rank-1, Rank-5, and
mAP by 2.4%, 1.9%, and 0.2% respectively. This shows
the promising achievement by the training of glare suppres-
sion, structure enhancement, and class awareness to learn
day-night cross-domain features. From Table 2, PMT [24]
does not show the same competitiveness on the DN-Wild
dataset as it does on the DN-348 dataset. It means that con-
sidering the domain gap is not sufficient for the DN-Wild,
which suffers from drastic sample imbalance. Furthermore,
it can be observed that our method outperforms the mAP of
baseline model, which indicates the robust generalization

ability of the proposed model in large-scale datasets.

4.3. Ablation Study

Settings DN-348
Day-to-Night Night-to-Day

NGS DSE CCA R-1 mAP R-1 mAP
0.674 0.456 0.723 0.439

✓ 0.690 0.467 0.777 0.455
✓ 0.681 0.461 0.745 0.455

✓ 0.684 0.463 0.765 0.453
✓ ✓ 0.699 0.469 0.800 0.460
✓ ✓ ✓ 0.707 0.475 0.803 0.462

Table 3. Ablation study on DN-348 dataset.

Effectiveness of each component. To verify the unique
contributions of each module in our model, we implement
the ablation study of several variants of our method on the
DN-348 dataset. As shown in Table 3, the NGS, DSE, and
CCA modules all show significant improvements. Specif-
ically, on the DN-348 dataset, with only the NGS module
activated, we observe Rank-1 performance of 69.0%, which
further escalates to 69.9% when both the NGS and DSE
modules are enabled. When the CCA module is combined
with the NGS and DSE modules, the Rank-1 performance
on DN-348 reaches 70.7%. These results validate the con-
sistent performance improvement attributed to these three
modules both individually and jointly.
The influence of which stage of ResNet-50 to plug the
DSE module and CCA module. The DSE and CCA
modules can be inserted into the backbone network at any
stage. In our experiments, we utilize ResNet-50 as the
backbone network, consisting of four stages. We analyze
the impact of integrating the DSE and CCA modules at
different stages of ResNet-50 in our experiments. In Ta-
ble 4, it is evident that there is a clear improvement as our
modules are integrated deeper into the stages of ResNet-
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Methods
DN-348

Day-to-Night Night-to-Day
R-1 mAP R-1 mAP

Baseline 0.674 0.456 0.723 0.439
+ stage 1 0.696 0.470 0.784 0.454
+ stage (1+2) 0.696 0.473 0.785 0.459
+ stage (1+2+3) 0.699 0.475 0.799 0.459
+ stage (1+2+3+4) 0.707 0.475 0.803 0.462

Table 4. The influence of which stage of ResNet-50 to plug the
DSE module and CCA module.
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Figure 4. Parameter analysis (in %). The coefficients α and β are
linked to the NGS and DSE modules, respectively.

50. In the DN-348 dataset, the Rank-1 score has increased
steadily from 69.6% at the initial stage to 70.7% by the
fourth stage. Simultaneously, the mAP performance has
advanced from 47.0% following the initial stage to 47.5%
after the fourth stage. It verifies the effectiveness of our day-
night dual-domain modulation framework, which learns
day-night cross-domain information on multiple stages to
boost DN-ReID.

4.4. Other analysis

Parameter analysis. To evaluate the influence of the two
hyperparameters, we give quantitative comparisons and re-
port the results in Fig. 4. Different values of α and β sig-
nificantly influence the performance of the NGS and DSE
modules. As observed, the optimal performance is achieved
with α and β values set to 0.5 and 0.25, respectively.
Visualization study. To further analyze the effectiveness of
our DNDM, we conduct experiments on the DN-348 dataset
to calculate the frequency of inter-identity and intra-identity
distances. Fig. 5 (a, b) display the distance distributions
acquired by the baseline and the proposed DNDM, respec-
tively. Comparing Fig. 5 (b) with Fig. 5 (a), we can ob-
serve that δ1 < δ2. This indicates that the inter-identity and
intra-identity distances are significantly separated using the
proposed method. Moreover, we visualize the feature distri-
bution of 20 vehicles in a 2D feature space using the T-SNE
method [4]. In Fig. 5 (c, d), it is evident that the proposed
DNDM markedly reduces the distances between day-night
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Figure 5. (a-b) The distributions of the two types of distances be-
tween the day-night cross-domain features. The intra-identity and
inter-identity distances are represented by blue and green color,
respectively. (c-d) The T-SNE distribution [4] shows 20 vehicles
from the DN-348 testing set. Samples of the same color are from
the same vehicle. The ”dot” and ”cross” markers represent images
from the daytime and nighttime domains, respectively.

images of the same identity and successfully minimizes the
domain discrepancy.

5. Conclusion
To our best knowledge, this is the first work to address
the day-night cross-domain vehicle ReID (DN-ReID) prob-
lem. We have contributed two new DN-ReID datasets,
along with an innovative DN-ReID approach. Compared to
day-to-day vehicle ReID, DN-ReID faces challenges posed
by headlight glare, low-light environments, and domain
discrepancies. Therefore, we propose a Day-Night Dual-
domain Modulation (DNDM) network that combines the
learning of glare suppression, structure enhancement, and
class awareness to dynamically modulate day-night cross-
domain vehicle features. Extensive experiments demon-
strate the promising performance of the proposed method.
In addition, drawing from our research, we emphasize sev-
eral crucial findings for DN-ReID. First, annotating vehicle
images at night presents a challenge. Second, enhancing
features in nighttime vehicle images is proven to be effec-
tive. Finally, it is worthwhile to consider the capability of
day-night cross-domain data for identifying the same ID.
In the future, we will enhance the aforementioned compo-
nents to advance the state-of-the-art of DN-ReID and ex-
plore label-free DN-ReID.
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