
Density-Guided Semi-Supervised 3D Semantic Segmentation
with Dual-Space Hardness Sampling

Jianan Li1,2, Qiulei Dong∗,1,2,3
1School of Artificial Intelligence, University of Chinese Academy of Sciences,

2State Key Laboratory of Multimodal Artificial Intelligence Systems,
Institute of Automation, Chinese Academy of Sciences

3Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences
lijianan211@mails.ucas.ac.cn, qldong@nlpr.ac.cn

Abstract

Densely annotating the large-scale point clouds is labo-
rious. To alleviate the annotation burden, contrastive
learning has attracted increasing attention for tackling
semi-supervised 3D semantic segmentation. However,
existing point-to-point contrastive learning techniques in
literature are generally sensitive to outliers, resulting in
insufficient modeling of the point-wise representations. To
address this problem, we propose a method named DDSemi
for semi-supervised 3D semantic segmentation, where a
density-guided contrastive learning technique is explored.
This technique calculates the contrastive loss in a point-
to-anchor manner by estimating an anchor for each class
from the memory bank based on the finding that the cluster
centers tend to be located in dense regions. In this tech-
nique, an inter-contrast loss is derived from the perturbed
unlabeled point cloud pairs, while an intra-contrast loss is
derived from a single unlabeled point cloud. The derived
losses could enhance the discriminability of the features
and implicitly constrain the semantic consistency between
the perturbed unlabeled point cloud pairs. In addition,
we propose a dual-space hardness sampling strategy to
pay more attention to the hard samples located in sparse
regions of both the geometric space and feature space by
reweighting the point-wise intra-contrast loss. Experimen-
tal results on both indoor-scene and outdoor-scene datasets
demonstrate that the proposed method outperforms the
comparative state-of-the-art semi-supervised methods.

1. Introduction

3D semantic segmentation [13, 17, 23, 27, 30] is a funda-

mental task in computer vision and plays an essential role
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Figure 1. Illustration of the point-to-point contrast (top) and point-

to-anchor contrast (bottom). The circles represent the point fea-

tures and the diamonds represent the anchors. Different colors

denote different categories. The direction of the arrows shows the

force of pull or push in contrastive learning. The point-to-point

contrast is prone to be affected by the confusing points while the

point-to-anchor contrast is robust to them.

in scene understanding. Most of the existing 3D segmen-

tation models in literature are trained in a fully-supervised

manner, where the labor-intensive and time-consuming data

annotation is required. To address this issue, several semi-

supervised methods [11, 18, 20, 24, 36], weakly-supervised

methods [25, 26, 28, 43], and annotation-free methods

[5, 6, 39, 46] have been explored. Among them, semi-

supervised 3D semantic segmentation has drawn growing

interest, where the training data contains a small amount of

densely-labeled data and a large amount of unlabeled data.

A typical manner for handling the semi-supervised se-

mantic segmentation tasks [1, 18, 37, 48] is to apply con-

trastive learning to explore the information encapsulated in

the unlabeled data while preserving the nutrition in the lim-

ited densely-labeled data.

Originating from the classification task, contrastive

learning has become a prevailing technique in many vi-

sual tasks [7, 8, 12, 15]. However, as revealed in [32],
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there exists a supervision gap between the classification task

and the dense prediction tasks (e.g., the segmentation task).

Contrastive learning in the classification task tends to fo-

cus on the most representative part for learning a discrim-

inative representation, while the information contained in

a single element (e.g., pixel or point) may not be repre-

sentative enough for effective contrast in dense prediction

tasks. Moreover, as stated in [33], directly utilizing point-

to-point contrast usually results in insufficient modeling of

the point-wise representations, for some confusing points

may be sampled to construct the undesired pairs, as illus-

trated at the top part of Figure 1. The above issues motivate

us to investigate the following problem: How to find effica-

cious supervisory signals for contrastive learning in semi-

supervised 3D semantic segmentation?

To address this problem, we propose a method named

DDSemi for semi-supervised 3D semantic segmentation.

Inspired by the finding about clustering in [31] that the clus-

ter centers tend to be located in dense regions and data lo-

cated in sparser regions is less representative, we explore

a density-guided contrastive learning technique for the un-

labeled data. Specifically, we estimate an anchor for each

class by using the high-density features stored in a memory

bank. The anchors are regarded as the supervisory signals

for the point-to-anchor contrastive learning. Each point is

pulled closer to its corresponding anchor and pushed away

from other anchors during the contrastive learning process,

as illustrated at the bottom part of Figure 1.

In the explored density-guided contrastive learning tech-

nique, an inter-contrast loss and an intra-contrast loss are

designed. The inter-contrast loss utilizes the anchors esti-

mated from one perturbed point cloud and the features ex-

tracted from another perturbed point cloud for contrastive

learning and vice versa, based on the assumption that se-

mantic consistency should be maintained between the point

clouds under different perturbations. The intra-contrast loss

utilizes the anchors and features from the same point cloud

for contrastive learning. The proposed contrastive learn-

ing technique not only enhances the discriminability of the

features, but also implicitly constrains the semantic consis-

tency between the perturbed point cloud pairs. Moreover,

we propose a dual-space hardness sampling strategy for the

unlabeled data to mine hard points in both the geometric

space and feature space. The hard points are defined as the

points located in sparse regions and more attention is paid

to them by reweighting the point-wise intra-contrast loss.

In summary, our contributions are as follows:

• We propose a density-guided contrastive learning tech-

nique, where an inter-contrast loss and an intra-contrast

loss are designed in a point-to-anchor manner. This tech-

nique could provide some insights to the application of

contrastive learning in semi-supervised segmentation.

• We propose a dual-space hardness sampling strategy to

pay more attention to the hard points in both the geomet-

ric space and feature space. This strategy is also density-

guided and explicitly shrinks the sparse regions, which is

beneficial to the segmentation performances.

• By integrating the above contrastive learning technique

and hardness sampling strategy, we propose a method

for semi-supervised 3D semantic segmentation, named

DDSemi. The effectiveness of DDSemi is demonstrated

by the experimental results in Section 4.

2. Related Work
2.1. Fully-supervised 3D Semantic Segmentation

The existing methods for fully-supervised 3D semantic seg-

mentation could be roughly divided into three categories:

projection-based methods, voxel-based methods, and point-

based methods.

The projection-based methods [19, 29, 34, 42, 45] gener-

ally project the point clouds into the image plane and use the

2D Convolutional Neural Networks (CNNs) or transformer

blocks to extract features. Kong et al. [19] proposed a full-

cycle framework and scalable training strategy to process

the LiDAR point clouds from the range view.

The voxel-based methods [10, 14, 22, 44, 49] divide the

3D points into regular voxels and extract features from the

discrete voxels. Lai et al. [22] designed the radial window

self-attention and exponential splitting to mitigate the infor-

mation disconnection and limited receptive field issues.

The point-based methods [16, 21, 38, 40, 47] take the

raw point clouds as input and extract point-wise features for

segmentation. Lai et al. [21] proposed the stratified strategy

to enlarge the receptive field of the model and capture the

long-range contexts at a low computational cost.

2.2. Semi-supervised 3D Semantic Segmentation

As defined in [41], semi-supervised 3D semantic segmen-

tation [11, 18, 20, 24] aims at utilizing a small number

of densely-labeled point cloud frames and a large number

of unlabeled point cloud frames for model training, which

could alleviate the annotation burden to some extent.

Deng et al. [11] focused on indoor-scene segmentation

and proposed to optimize the pseudo labels for the unla-

beled point using the superpoints generated by geometry-

based and color-based region growing algorithms. Kong et
al. [20] focused on segmenting the outdoor-scene LiDAR

point clouds and proposed to leverage the spatial prior of

LiDAR point clouds to exploit the unlabeled data. Also

focusing on the outdoor-scene LiDAR point clouds, Li et
al. [24] utilized the reflectivity-prior descriptors to gener-

ate high-quality pseudo labels and made use of the unre-

liable pseudo-labels for learning more discriminative rep-

resentations. Jiang et al. [18] proposed the label-guided

point-to-point contrastive learning for the unlabeled points
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Figure 2. Architecture of the proposed DDSemi. It contains a labeled branch and an unlabeled branch. The weights of the backbone

networks, classifiers, and projectors in two branches are shared. Ŷu1 and Ŷu2 are the pseudo labels predicted by the classifiers. Pu1

and Pu2 are the anchors estimated from the memory banks. The DHS in the unlabeled branch denotes the proposed dual-space hardness

sampling strategy, which is elaborately introduced in Section 3.3.

to enhance the feature representation ability of the model.

Unlike existing method [18] that uses the point-to-point

contrast, we design the density-guided contrastive learning

technique to avoid the adverse effect caused by the unde-

sired pairs by conducting the point-to-anchor contrast learn-

ing. In addition, unlike existing methods [11, 18, 20, 24]

that treat all points equally, we propose the dual-space hard-

ness sampling strategy to put more emphasis on the hard
points located in sparse regions of both the geometric space

and feature space.

3. Methodology

3.1. Architecture

Figure 2 depicts the architecture of the proposed DDSemi.

As seen from this figure, it contains a labeled branch and an

unlabeled branch.

The labeled branch takes the labeled point clouds as in-

put. It consists of a backbone network for extracting fea-

tures from the input data, a classifier for supervised segmen-

tation, and a projector for mapping the extracted features to

a novel feature space, as shown at the top part of Figure 2.

The labeled branch is trained under the supervision of the

ground-truth labels via the cross-entropy loss Ll
CE .

The unlabeled branch takes the unlabeled point clouds as

input. It contains two streams, which share the same archi-

tecture but use two different augmentation techniques. Each

stream contains a backbone network, a classifier, a projec-

tor, and a memory bank, as shown at the bottom part of Fig-

ure 2. The memory bank is utilized to estimate a representa-

tive anchor for each class. It is initialized with the features

output by the projector in the labeled branch and updated

with the features output by its corresponding projector in

the unlabeled branch. The density-guided contrastive learn-

ing technique contains the inter-contrast losses Lu1
ter,Lu2

ter

and the intra-contrast losses Lu1
tra,Lu2

tra, which are calcu-

lated between the anchors and features output by the pro-

jectors. The dual-space hardness sampling strategy is used

for reweighting each point in the intra-contrast losses to pay

more attention to the hard points.

At the training stage, the labeled branch is first pre-

trained. Then, the labeled branch and the unlabeled branch

are trained jointly. At the inference stage, only the back-

bone network and classifier are used for segmentation.

3.2. Density-guided Contrastive Learning

To effectively exploit the unlabeled points, we propose the

density-guided contrastive learning technique that calcu-

lates the contrastive loss in a point-to-anchor manner.

In this technique, a category-wise memory bank is built

in each stream of the unlabeled branch to store high-quality

features. Then, an anchor is estimated for each class using

the features stored in the memory bank. The anchors are

utilized to construct the point-anchor pairs for contrastive

learning. This technique includes an inter-contrast loss

calculated between the perturbed point cloud pairs and an

intra-contrast calculated within the same point cloud. In

this subsection, we will introduce the above parts in detail.
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Figure 3. Illustration of the update process of the category-wise memory bank. Different colors represent different categories. The light

colors represent the global part and the corresponding dark colors represent the local part. We first progressively update the global features

with the local features in the last batch. Then we update the local features with the high-confidence features in the current batch.

Memory Bank Construction. Ideally, a memory bank

should contain the holistic information of the whole dataset

for estimating representative anchors and the distribution

of the features in the memory bank should be consistent

with that of the latest features output by the projector. To

this end, we construct a category-wise memory bank M =
{Mc}Cc=1 in each stream of the unlabeled branch, where C

denotes the number of classes and Mc stores a set of global

features from previous batches and a set of local features

from the current batch.

As mentioned in Section 3.1, the memory bank is initial-

ized with the features output by the projector in the labeled

branch. Then, the global and local features in the mem-

ory bank are updated respectively at each training iteration.

Figure 3 illustrates the update process of the memory bank.

As seen from the right part of this figure, the global features

are updated progressively. For class c, we first randomly

select a local feature f l
c,j for the global feature fg

c,i. Then,

we calculate the cosine similarity βij between fg
c,i and f l

c,j .

Finally, the updated global feature f̂g
c,i is obtained by the

weighted sum of fg
c,i and f l

c,j . The above update process is

formulated as:

f̂g
c,i = (1− βi,j) · fg

c,i + βi,j · f l
c,j . (1)

As seen from the left part of Figure 3, the local features

are updated with high-confidence features from the current

batch in a Fist-In-First-Out (FIFO) manner.

Density-guided Anchor Estimation. Here, we develop

a density-guided anchor estimation strategy to estimate an

anchor for each class, based on the finding that the cluster

centers tend to be located in dense regions. As seen from

Figure 4, given a feature fc,i in Mc, we first search its k-

nearest neighbors Nf (fc,i) in Mc. Then, we leverage the

cosine similarities between fc,i and Nf (fc,i) to estimate the

density d(fc,i), which is formulated as:

d(fc,i) =
1

|Nf (fc,i)|
∑

fc,j∈Nf (fc,i)

fT
c,i · fc,j

‖fc,i‖ · ‖fc,j‖ , (2)

where ‖ · ‖ denotes the L2-Norm.

The anchor pc of class c is estimated by the features with

the top-K densities in its corresponding memory bank Mc:

pc =

∑
k∈Ωc

d(fc,k) · fc,k∑
k∈Ωc

d(fc,k)
, (3)

where Ωc denotes the index set of the features with the top-

K densities in Mc.

Density-guided Inter-contrast Loss. As seen from Fig-

ure 2, two different augmentation techniques are used for

the same unlabeled point cloud. Thus, the semantic in-

formation should be consistent between the perturbed un-

labeled point cloud pairs (e.g., the anchors and semantic

predictions), which means that the anchors from one per-

turbed point cloud could serve as the supervisory signals for

another perturbed point cloud, and vice versa. According

to this assumption, the following point-wise inter-contrast

losses are designed:

Lu1
e,i = − log

exp(fu1
i · pu2

ŷu1
i
/τ)

exp(
∑C

c=1 f
u1
i · pu2c /τ)

, (4)

Lu2
e,i = − log

exp(fu2
i · pu1

ŷu2
i
/τ)

exp(
∑C

c=1 f
u2
i · pu1c /τ)

, (5)

k-Nearest Neighbor Graph Density Ranking

Memory Bank
Top-K Densities

Figure 4. Illustration of the density-guided anchor estimation. The

density of each feature is calculated within the memory bank based

on its k-nearest neighbors. Only the features with the top-K den-

sities are used for estimating the anchors.
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where fu1
i and fu2

i denote the features output by their cor-

responding projectors in the unlabeled branch, pu1c and pu2c
denote the anchors of class c in Pu1 and Pu2 respectively,

ŷu1i and ŷu2i denote the pseudo labels of the i-th point in two

streams, and τ denotes the temperature hyper-parameter.

In addition, since the point-anchor pairs are constructed

based on the pseudo labels and inaccurate pseudo labels

may result in undesired contrast, we eliminate the points

with low-confidence predictions. Then, the inter-contrast

loss for the point cloud is derived by combing the point-

wise inter-contrast losses in Equation (4) and Equation (5):

Lu
ter =

N∑

i=1

�(wu1
i >γe)·Lu1

e,i

N∑

i=1

�(wu1
i >γe)

+

N∑

i=1

�(wu2
i >γe)·Lu2

e,i

N∑

i=1

�(wu2
i >γe)

, (6)

where N is the number of the unlabeled points, wu1
i and

wu2
i are the confidences output by their corresponding clas-

sifiers in the unlabeled branch, �(·) is the indicator function,

and γe is the confidence threshold in the inter-contrast loss.

Density-guided Intra-contrast Loss. The intra-contrast

loss is calculated between the features and anchors from the

same point cloud, which is explored to tighten the feature

distribution. Similar to Equation (4) and Equation (5), the

point-wise intra-contrast losses are formulated as:

Lu1
a,i = − log

exp(fu1
i · pu1

ŷu1
i
/τ)

exp(
∑C

c=1 f
u1
i · pu1c /τ)

, (7)

Lu2
a,i = − log

exp(fu2
i · pu2

ŷu2
i
/τ)

exp(
∑C

c=1 f
u2
i · pu2c /τ)

. (8)

Likewise, the points with low-confidence predictions are

also eliminated here for reliable contrast.

3.3. Dual-space Hardness Sampling

The aforementioned density-guided contrastive learning

technique focuses on the high-density points in the feature

space but neglects the low-density points. To make use

of the low-density points effectively, we propose the dual-

space hardness sampling strategy that takes the structural in-

formation of the point clouds into account by mining hard
points in both the geometric space and feature space.

Considering the uneven densities of the point clouds, we

define the hard points in the geometric space as the points

located in sparse regions, due to the paucity of spatial ad-

jacency information. The geometric density of each point

is calculated according to its local structural information.

Specifically, given the Cartesian coordinates of an unlabeled

point xu
i , its geometric density dg(x

u
i ) is calculated based

on the number of its neighbors within a certain radius R:

dg(x
u
i ) =

|Ng(x
u
i , R)| − min

j∈Xu
|Ng(x

u
j , R)|

max
j∈Xu

|Ng(xu
j , R)| − min

j∈Xu
|Ng(xu

j , R)| , (9)

where Ng(·, R) is the neighbor set of a given point within

the radius R and Xu denotes the set of the unlabeled points.

Based on the finding in [31], we define the hard points

in the feature space as the points whose features are located

in sparse regions. And the density of each point feature is

calculated in a point-to-memory fashion. Specifically, given

a feature fi with its pseudo label ŷi, we search its k-nearest

neighbors Nf (fi) in its corresponding memory bank Mŷi
,

and its density d(fi) is calculated according to Equation (2).

Considering that the hard points are less representative,

more emphasis needs to be put on them. Thus, we devise a

density-based weighting function as follows:

ri =
max(1− α

2 · [dg(xu
i ) + d(fi)], ε)

1
N

∑N
j=1 max(1− α

2 · [dg(xu
i ) + d(fi)], ε)

, (10)

where α and ε are two predetermined hyper-parameters.

As seen from Equation (10), points with lower densities

will obtain larger weights and these weights are integrated

into the intra-contrast loss. Finally, the intra-contrast loss

for the point cloud is derived by combining the point-wise

intra-contrast losses in Equation (7) and Equation (8):

Lu
tra =

N∑

i=1
�(wu1

i >γa)·ri·Lu1
a,i

N∑

i=1

�(wu1
i >γa)

+

N∑

i=1
�(wu2

i >γa)·ri·Lu2
a,i

N∑

i=1

�(wu2
i >γa)

, (11)

where γa is the confidence threshold in Lu
tra.

3.4. Total Loss

As seen from Figure 2, the labeled branch is trained with the

cross-entropy loss Ll
CE and the unlabeled branch is trained

with the density-guided contrastive losses Lu
ter and Lu

tra.

The total loss is the weighted sum of the above losses:

Ltotal = Ll
CE + λterLu

ter + λtraLu
tra, (12)

where λter and λtra are the weights of Lu
ter and Lu

tra.

4. Experiments
4.1. Datasets and Evaluation Metric

The following outdoor-scene and indoor-scene datasets are

used for evaluating the proposed DDSemi:

• SemanticKITTI [3] is a large-scale 3D outdoor driving-

scene LiDAR dataset consisting of 22 sequences, among

which 10 sequences are used for training, 1 sequence is

used for validation, and 11 sequences are used for testing.

• nuScenes [4] is a large-scale 3D outdoor driving-scene

LiDAR dataset, which contains 1000 scenes. According

to the official splitting, 850 scenes are used for training

and validation, and 150 scenes are utilized for testing.

• S3DIS [2] is a 3D indoor-scene dataset, which contains

13 object classes and 6 areas. Following the common split

[18], we utilize Area 5 as the validation set and adopt the

other five areas as the training set.
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Method
SemanticKITTI [3] nuScenes [4]

1% 10% 20% 50% 1% 10% 20% 50%

MeanTeacher [35] 45.4 57.1 59.2 60.0 51.6 66.0 67.1 71.7

CBST [50] 48.8 58.3 59.4 59.7 53.0 66.5 69.6 71.6

CPS [9] 46.7 58.7 59.6 60.5 52.9 66.3 70.0 72.5

LaserMix (Range View) [20] 43.4 58.8 59.4 61.4 49.5 68.2 70.6 73.0

LaserMix (Voxel) [20] 50.6 60.0 61.9 62.3 55.3 69.9 71.8 73.2

GPC [18] 54.1 62.0 62.5 62.8 - - - -

LiM3D [24] 58.4 62.2 63.1 63.6 - - - -

DDSemi 59.3 65.1 66.3 67.0 58.1 70.2 74.0 76.5

Table 1. Comparative results on the SemanticKITTI [3] and nuScenes [4] datasets with varying labeled ratios. All mIoU scores are given

in percentage (%). The best results are in bold and the second best results are marked with underlines.

As done in previous works [20, 24], we use the mIoU

(mean Intersection over Union) as the evaluation metric.

4.2. Implementation Details

We follow the basic experimental settings of LaserMix [20]

and GPC [18] for evaluating the proposed DDSemi on the

outdoor-scene and indoor-scene datasets. We store 500 fea-

tures per class in the memory bank, with the global part and

the local part accounting for half respectively. The k in k-

nearest neighbors and K in anchor estimation are set to 8

and 16. The hyper-parameters γe, γa, τ , α, ε, λter, and

λtra are set to 0.9, 0.75, 1, 0.9, 0.1, 0.1, and 1. More details

are introduced in the supplementary material.

4.3. Comparative Evaluation

We first evaluate the proposed DDSemi on the outdoor-

scene datasets (SemanticKITTI [3] and nuScenes [4]) in

comparison to the state-of-the-art (SoTA) methods (GPC

[18], LaserMix [20], and LiM3D [24]) that are specially de-

signed for semi-supervised 3D semantic segmentation. We

also extend some classic semi-supervised learning methods

in the 2D domain to 3D segmentation for further compari-

son, including MeanTeacher [35], CBST [50], and CPS [9].

As done in [20], we set the labeled ratio of the outdoor-

scene datasets as {1%, 10%, 20%, 50%}, and the corre-

sponding results are reported in Table 1. As seen from this

Method
S3DIS [2]

5% 10% 20% 30% 40%

MeanTeacher [35] 46.3 53.3 60.1 61.5 62.6

CBST [50] 48.7 54.0 60.3 61.8 62.9

CPS [9] 48.5 54.4 60.9 62.0 63.4

SSS-Net [11] - 51.1 55.5 - -

GPC [18] 53.0 57.7 63.5 64.9 65.0

DDSemi 63.2 66.8 70.3 70.5 70.8

Table 2. Comparative results on the S3DIS dataset [2].

table, the proposed DDSemi outperforms the comparative

methods on both two datasets.

We also evaluate the proposed DDSemi on the indoor-

scene dataset (S3DIS [2]), where the extended 2D meth-

ods (MeanTeacher, CBST, and CPS) and the SoTA meth-

ods (SSS-Net [11] and GPC) in semi-supervised 3D indoor-

scene segmentation are compared. Note that LaserMix and

LiM3D are specially designed for LiDAR point cloud seg-

mentation, which leverage the spatial cues and the reflectiv-

ity of LiDAR point clouds respectively, whereas the point

clouds in the S3DIS dataset are reconstructed from multi-

view RGB-D images. Thus, LaserMix and LiM3D are not

compared in the indoor-scene experiments.

As done in [18], we set the labeled ratio of the indoor-

scene dataset as {5%, 10%, 20%, 30%, 40%}. The corre-

sponding results reported in Table 2 show that the proposed

DDSemi achieves the best performances, which are consis-

tent with the results in the outdoor-scene experiments and

Ground Truth

Ground Truth

Ground Truth GPC

LaserMix

LiM3D

DDSemi

DDSemi

DDSemi

Figure 5. Visualization of the semantic segmentation results on

the SemanticKITTI [3] (top), nuScenes [4] (middle), and S3DIS

[2] (bottom) datasets by our proposed DDSemi and the second-

best methods. All models are trained with 10% labeled data and

the highlighted areas are marked with blue boxes.
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further verify the effectiveness of our method.

Moreover, we visualize the segmentation results of the

proposed DDSemi and the second-best methods on the three

datasets in Figure 5. As seen from this figure, DDSemi out-

performs its second-best counterparts, which shows the ef-

fectiveness of DDSemi from the qualitative perspective.

4.4. Ablation Studies

We conduct ablation studies on SemanticKITTI [3] to verify

the effectiveness of each key element in DDSemi.

Effectiveness of the involved components. In the pro-

posed DDSemi, the labeled data is trained with the cross-

entropy loss Ll
CE , and the unlabeled data is trained with the

inter-contrast loss Lu
ter and intra-contrast loss Lu

tra. The

dual-space hardness sampling (DHS) strategy is adopted to

reweight each point in Lu
tra, which includes the hard point

mining in both the geometric space and feature space. We

progressively add these components into training to verify

their effectiveness. The experiments are conducted with

10% labeled data and the results are reported in Table 3.

The results in the first two rows of Table 3 indicate that

the proposed inter-contrast loss is beneficial to mine extra

information from the unlabeled data by constraining the se-

mantic consistency between the perturbed point cloud pairs.

The result in the third row of Table 3 shows that the intra-

contrast loss could further improve the segmentation perfor-

mance. The results in the last three rows of Table 3 demon-

strate the effectiveness of the proposed DHS strategy from

the quantitative perspective. To further verify the effective-

ness of the DHS strategy, we visualize the features in Fig-

ure 6. As seen from this figure, the proposed DHS strategy

is beneficial to the compactness of the intra-class feature

distribution and the separation of the inter-class feature dis-

tribution, leading to better performances.

Effect of the contrastive learning strategy. To eval-

uate the effect of the contrastive learning strategy, we

change the proposed point-to-anchor strategy to the point-

to-point strategy, and the corresponding results are reported

in Table 4. As seen from this table, the model trained

Ll
CE Lu

ter Lu
tra

DHS
mIoU (%)

GS FS

� 56.1

� � 59.7

� � � 61.3

� � � � 61.9

� � � � 63.8

� � � � � 65.1

Table 3. Ablation studies of the involved elements in the proposed

method. DHS denotes dual-space hardness sampling. GS and FS

stand for the geometric space and feature space respectively.

w/o DHS w/ DHS

Figure 6. Visualization of the features sampled from the S3DIS

dataset [2]. 200 features are sampled for each category. DHS de-

notes the dual-space hardness sampling strategy. Different colors

represent different categories.

with the point-to-anchor strategy achieves better perfor-

mance, which demonstrates the effectiveness of the pro-

posed density-guided point-to-anchor contrastive learning

technique.

Effect of the update strategy of the memory bank.
As mentioned in Section 3.2, the memory bank stores the

global and local features, which are updated in a progres-

sive manner and in a FIFO manner respectively. We eval-

uate the effect of the update strategy by replacing it with a

pure progressive strategy and a pure FIFO strategy. The cor-

responding results reported in Table 5 show that our strat-

egy achieves the best performance. This is mainly because

the progressive strategy only focuses on holistic informa-

tion and neglects the latest feature distribution. The FIFO

strategy only focuses on the features in the current batch and

overlooks the overall information of each class. Our strat-

egy combines the advantages of these two complementary

strategies, which leads to better performance.

Effect of the size of the memory bank. We define the

size of the memory bank as the number of stored features

per class. To investigate its effect, we evaluate the proposed

method with the size set as {50, 100, 500, 1000, 5000}. Fig-

ure 7a shows the corresponding results. As seen from this

figure, a larger size improves the performance of the model

Strategy 1% 10% 20% 50%

Point-to-point 55.6 63.1 64.0 64.8

Point-to-anchor 59.3 65.1 66.3 67.0

Table 4. Ablation studies of the contrastive learning strategy.

Strategy 1% 10% 20% 50%

Progressive 58.7 64.3 65.5 66.3

FIFO 58.8 64.5 65.7 66.2

Ours 59.3 65.1 66.3 67.0

Table 5. Ablation studies of the update strategy.
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(a) The size of the memory bank. (b) K in anchor estimation. (c) k in k-nearest neighbors.

Figure 7. Ablation studies of the size of the memory bank, K in anchor estimation, and k in k-nearest neighbors, which are the number of

per-class features stored in the memory bank, the number of features used for anchor estimation, and the number of neighbors respectively.

at first (e.g., from 50 to 500), because a stronger capacity

enables the memory bank to give a more comprehensive de-

scription for each class. When the size increases to a certain

level (e.g., 1000, 5000), the model is generally insensitive to

it. Because the memory bank is utilized to estimate anchors

from the features with the top-K densities, and thus only

those high-density features could make a difference in the

performance. Moreover, a large size brings more storage

cost and computational cost when calculating the densities.

Hence, we set the size as 500 here.

Effect of the estimation strategy of the anchors. We

utilize the features with the top-K densities to estimate the

anchors. To verify the effectiveness of our density-based es-

timation strategy, we change it with a random strategy and

a confidence-based strategy. The random strategy utilizes

the mean of K randomly selected features in the memory

bank to estimate the anchors. The confidence-based strat-

egy utilizes the weighted mean of the features with the top-

K confidences to estimate the anchors. The corresponding

results are reported in Table 6. As seen from this table,

our density-based strategy achieves the best performances,

which proves the validity of the assumption in [31] and

demonstrates the superiority of our strategy.

Effect of K in anchor estimation. K denotes the num-

ber of features utilized for the anchor estimation. Here, we

evaluate the proposed method with K = {4, 8, 16, 64, 128}
and show the results in Figure 7b. As seen from this fig-

ure, the K that is too small or too large may lead to per-

formance degradation. This is mainly because a smaller K
ensures the reliability of the features used for anchor esti-

mation, while less information is contained in the anchors.

Strategy 1% 10% 20% 50%

Random 58.2 64.0 64.9 65.8

Confidence-based 58.4 64.3 65.1 66.0

Ours 59.3 65.1 66.3 67.0

Table 6. Ablation studies of the estimation strategy of the anchors.

A larger K indicates that the anchors contain information

from more features, but features with lower densities may

not be reliable enough for a valid estimation. Therefore, we

set K = 16 with the best performances.

Effect of k in k-nearest neighbors. k denotes the num-

ber of neighbors and affects the calculation of density. Here,

we evaluate the proposed method with k = {2, 4, 8, 16, 32}
and depict the results in Figure 7c. As seen from this figure,

when k is too small (e.g., 2 or 4), the performances drop

evidently, due to the insufficient perception of the vicinity

of each point. The performances are relatively stable when

k = {8, 16, 32}. A larger k facilitates a more holistic per-

ception of the local region of each point, but the computa-

tional cost increases accordingly. Thus, we set k = 8 for a

trade-off between the accuracy and computational cost.

5. Conclusion

In this work, we propose a method for semi-supervised 3D

semantic segmentation, named DDSemi. In DDSemi, a

density-guided contrastive learning technique is explored,

which calculates the contrastive loss in a point-to-anchor

manner. This technique contains an inter-contrast loss de-

rived from the perturbed point cloud pairs and an intra-

contrast loss derived from a single point cloud. In addi-

tion, a dual-space hardness sampling strategy is proposed

to pay more attention to the hard points located in sparse

regions of both the geometric space and feature space by

reweighting the point-wise intra-contrast loss. Experimen-

tal results on three public datasets demonstrate that the pro-

posed DDSemi outperforms the comparative methods.
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