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Abstract

Detecting human-object interaction (HOI) has long been
limited by the amount of supervised data available. Recent
approaches address this issue by pre-training according to
pseudo-labels, which align object regions with HOI triplets
parsed from image captions. However, pseudo-labeling is
tricky and noisy, making HOI pre-training a complex pro-
cess. Therefore, we propose an efficient disentangled pre-
training method for HOI detection (DP-HOI) to address this
problem. First, DP-HOI utilizes object detection and action
recognition datasets to pre-train the detection and interac-
tion decoder layers, respectively. Then, we arrange these
decoder layers so that the pre-training architecture is con-
sistent with the downstream HOI detection task. This facil-
itates efficient knowledge transfer. Specifically, the detec-
tion decoder identifies reliable human instances in each ac-
tion recognition dataset image, generates one correspond-
ing query, and feeds it into the interaction decoder for verb
classification. Next, we combine the human instance verb
predictions in the same image and impose image-level su-
pervision. The DP-HOI structure can be easily adapted to
the HOI detection task, enabling effective model parame-
ter initialization. Therefore, it significantly enhances the
performance of existing HOI detection models on a broad
range of rare categories. The code and pre-trained weight
are available at https://github.com/xingaoli/DP-HOI.

1. Introduction

Human-Object Interaction (HOI) detection involves simul-
taneous object detection and verb classification for every in-
teractive human-object pair in an image. It is a fundamental
scene and action understanding task with various potential
applications in robotics [1], image captioning [2, 3], image
retrieval [4, 8], and visual question answering [5]. The la-
beling costs for HOI detection datasets are higher than those
for image classification and object detection due to the in-
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Figure 1. CDN-S [44] mAP and convergence curves with the pre-
trained DETR weights [10] on MS-COCO [9] and our DP-HOI,
respectively. DN denotes the denoising strategy [11] is adopted to
speed up convergence. Experiments are conducted on the HICO-
DET dataset [6].

clusion of all meaningful ⟨human, verb, object⟩ triplets in
an image. Therefore, existing HOI detection datasets are
usually small, considerably affecting HOI detection perfor-
mance.

Current HOI detection models are usually based on de-
tection transformer (DETR) [10]. Since the DETR train-
ing is data hungry, most existing works [40, 41, 47, 52, 57,
60, 63] initialize their model according to pre-trained DETR
weights on object detection datasets (e.g., MS-COCO [9]).
This strategy is sub-optimal for HOI detection because
the pre-trained DETR model does not contain any action
knowledge. As a result, recent studies [71, 72] have adopted
large-scale pseudo-labeled scene graph data for HOI model
pre-training, which has shown significant potential.

However, the scene graph data pseudo-labeling process
is complex and the obtained pseudo-labels are error-prone.
In this paper, we observed that HOI detection can be de-
composed into two sub-tasks: interactive human-object pair
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detection and interaction classification. These sub-tasks are
closely related to the object detection and action recognition
tasks, respectively. The labeling of both object detection
and action recognition tasks is easier; therefore, they both
own large-scale labeled datasets ( e.g., Objects365 [83] and
Kinetics-700 [84]). Based on these observations, we pro-
pose utilizing these labeled datasets for pre-training HOI
detection models. However, these datasets are partially la-
beled (i.e., only objects or actions are labeled). Thus, they
cannot be directly utilized for training according to stan-
dard HOI detection architecture. Therefore, a tailored pre-
training architecture that is as close as possible to that of
the downstream HOI detection task is required for efficient
knowledge transfer.

In this study, we propose the disentangled pre-training
method for human-object interaction (DP-HOI). DP-HOI
conducts object detection and verb classification using two
parallel branches. The first branch contains a detection de-
coder trained with object detection datasets, according to
the standard DETR structure and training strategy [10, 11].
The second branch is trained using readily available action
recognition datasets.

Moreover, we design the verb classification branch to
mimic popular HOI detection structures [44, 47, 64]. This
branch contains a detection and interaction decoder. The
detection decoder shares parameters with the object detec-
tion branch and identifies all human instances in each train-
ing image from the action recognition datasets. Then, we
adopt each human instance’s output decoder embedding as
a reliable person query (RPQ) for the interaction decoder.
Each RPQ is responsible to search for the action cues of
the specified person and predict the person’s action. Since
there are only image-level action labels and there might be
several RPQs for each image, we introduce a verb-wise pre-
diction fusion (VPF) strategy to merge the RPQ prediction
results and impose supervision. In addition, we extend our
approach to video and image captioning data, which contain
significant action categories vital for pre-training purposes.

Furthermore, we demonstrate DP-HOI’s effectiveness
through comprehensive experiments on two popular bench-
marks (i.e., HICO-DET and V-COCO), observing that DP-
HOI consistently boosts the performance of state-of-the-art
HOI detection models. For example, as illustrated in Fig-
ure 1, DP-HOI promotes the performance of CDN-S with
denoising (DN) [11] by 3.02% mAP.

2. Related Work

2.1. Human-Object Interaction Detection

Existing HOI detection models can be divided into one- and
two-stage methods. Previous two-stage methods [14–25]
employ an off-the-shelf detector to execute object detec-
tion before predicting interactions. These methods intro-

duce additional features [14–18, 26–30, 37, 38] or external
knowledge [31, 32, 39] to promote the interaction classi-
fication accuracy. For example, Park et al. [37] propose
a pose-conditioned self-loop graph neural network to en-
hance interaction features, while Cao et al. [39] incorpo-
rates structured text knowledge to promote HOI detection
performance. Due to their multi-stage nature, the two-stage
methods generally have a slow inference process. To over-
come this problem, one-stage methods [33–36] were pro-
posed and they typically perform object detection and inter-
action classification in parallel.

Based on DETR’s success [10], recent studies have
focused on developing DETR-based HOI detection mod-
els, achieving significant performance improvement [40–
52]. This is mainly because the cross-attention operation
in transformer decoder layers flexibly extracts image-wide
context information for interaction classification. DETR-
based methods can be divided into two groups. The
first group directly utilizes the conventional DETR struc-
ture [40–44, 48, 52]. The second group increases the
power of DETR models and can be further divided into
two sub-categories: query-enhanced methods [53, 58, 59]
and structure-enhanced methods [47, 54–56, 61–65]. The
query-enhanced methods enhance HOI detection perfor-
mance with semantically clear queries. In contrast, the
structure-enhanced methods aim to develop customized
model architectures for HOI detection. Some studies [47,
64, 67–69] recently proposed improving HOI detection per-
formance by transferring knowledge from visual-linguistic
pre-trained models (e.g., CLIP [70]).

The above methods have achieved impressive perfor-
mances. However, they still initialize model parameters ac-
cording to a pre-trained DETR model using object detection
datasets. Therefore, their performance in interaction classi-
fication may still be sub-optimal.

2.2. Pre-training Methods for Detection Tasks

Pre-training and fine-tuning have become popular pipelines
for object detection. Due to the DETR architecture’s in-
crease in popularity for object detection, researchers have
started studying DETR-specialized pre-training methods.
For example, UP-DETR [73] utilizes a proxy task that uses
a randomly cropped image patch as the query and forces
the DETR model to predict the patch location in the image.
Moreover, DETReg [74] uses an unsupervised region pro-
posal generator to produce potential object-bounding boxes.
These boxes are used to pre-train the DETR model via the
bounding-box regression task.

Since the transformer training is data hungry [75] and
existing HOI detection datasets are usually small [6, 7],
DETR-based HOI detection models usually adopt pre-
trained DETR weights on object detection datasets. How-
ever, this strategy may be unsuitable, since HOI detection
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includes object detection and interaction classification. To
solve this problem, Yuan et al. [66] utilized manually la-
beled scene graph data for HOI detection pre-training. In
comparison, subsequent studies [71, 72] proposed various
pseudo-labeling approaches that associate image-level HOI
labels with object-bounding boxes, significantly expanding
the pre-training data scale.

In this paper, we separate the pre-training of the two
sub-tasks in HOI detection to bypass the tricky and noisy
pseudo-labeling process. In this way, both sub-tasks ben-
efit from clean labels. The experimental results indicate
that DP-HOI significantly improves HOI detection perfor-
mance.

3. Methods
In this section, we first briefly describe the research mo-
tivation and overall DP-HOI framework. Then, we intro-
duce its detection and verb classification branch structures
in Section 3.2 and Section 3.3, respectively. Moreover, in
Section 3.4, we broaden our approach to video-based ac-
tion and image-caption data. Finally, additional details are
provided in Section 3.5.

3.1. Overview

HOI detection can be divided into two sub-tasks: inter-
active human-object pair detection and interaction classi-
fication. These sub-tasks are closely related to the object
detection and action recognition tasks. These tasks have
large-scale labeled datasets because their annotation costs
are cheaper. Moreover, action recognition data can be sup-
plemented with image-caption data. Based on this obser-
vation, we proposed using the existing datasets for object
detection, verb classification and image captioning to pre-
train HOI detection models.

Our proposed DP-HOI framework is illustrated in Fig-
ure 2. During pre-training, each batch contains a set of
images from the object detection Dd={Xd

i ,y
d
i }

Nd
i=1 and

another set of images from action recognition datasets
Da={Xa

i ,y
a
i }

Na
i=1. Nd and Na denote the number of im-

ages. While the annotation yd
i contains object bounding

boxes and object categories, ya
i only contains the verb cat-

egories. First, a given image Xk
i (k ∈ {d, a}) was fed into

the CNN backbone in Figure 2. Then, the output feature
maps were flattened and injected with fixed sine positional
encoding. Finally, the feature maps were enhanced by the
self-attention operations in the transformer encoder.

Since yd
i and ya

i contain object and action labels only,
we utilized the enhanced Xd

i and Xa
i features in a disen-

tangled manner. In summary, there are two branches af-
ter the transformer encoder, i.e., one detection branch and
one verb classification branch. The enhanced Xd

i and Xa
i

features pass through the detection and verb classification
branches, respectively.

3.2. The Object Detection Branch

This branch contains a detection decoder. We denote the
features enhanced by the transformer encoder as Ve, the
learnable object queries as Qo = {Q0, Q1, ..., QN−1}, and
the initial decoder embeddings as o0. The output decoder
embeddings od can be represented as follows:

od = Dd(Qo,o0,Ve), (1)

where Dd(·) represents the detection decoder. Finally, od

was employed to predict object bounding boxes and cate-
gories using feed-forward networks (FFNs):

ŷbox = fh(od), (2)

ŷo = fo(od), (3)

where fh and fo denote two FFNs. Finally, we imposed
supervision on ŷbox and ŷo via bipartite matching [10].

3.3. The Verb Classification Branch

We designed the DP-HOI verb classification branch to max-
imize the pre-training efficacy according to the structure of
recently popular HOI detection models (e.g., CDN [44]). In
the experimentation section, we demonstrate that DP-HOI
significantly improves the performance of other HOI detec-
tion models.

The verb classification branch contains two sequential
decoders (i.e., a detection decoder and interaction decoder).
The same as [44, 47], the first decoder’s output embeddings
were utilized as the queries for the second one. The de-
tection decoder shares parameters with that in the object
detection branch. The two decoders are utilized for object
detection and verb classification, respectively.

A slight difference exists between our detection decoder
and that in the CDN [44] model. Specifically, the CDN
model’s detection decoder detects interactive human–object
pairs, enabling its interaction decoder to recognize the verb
categories of a specific human–object pair. In comparison,
our adopted pre-training datasets do not contain any inter-
active human–object pair annotations. Hence, we proposed
reducing the action recognition within a human–object pair
to identifying all the actions performed by a human in-
stance. Thus, we selected reliable human instances accord-
ing to the detection decoder’s predictions.
Reliable Person Queries. In this study, a human instance
was regarded as reliable if the detection decoder’s human
category prediction score was above the threshold T . RPQs
are the decoder embeddings in od that predict these reliable
instances for the interaction decoder. The collection of the
RPQs for one image is denoted as Qp. Each RPQ searches
for action-relevant cues using cross-attention on the specific
person within the interaction decoder:

oa = Da(Qp,o0,Ve), (4)

28193



C
N

N

�

�

Transform
er 

Encoder

 
 

 
 

 
 

 
 

Transform
er 

D
etection D

ecoder
Transform

er 
D

etection D
ecoder

Transform
er 

Interaction D
ecoder

 
 

 
 

 
 

 
 

 H
ead

 ��

 
 

 
 

 
 

 
 

 ��

frisbee
person

kick ball

 
 

 
 

Positional  Encodings

 ��

Reliable Person Queries ��

Object Queries

Verb Classification Branch

Object Detection Branch

Visual Feature Extractor

 
 

 
 

 
 

 ��

H
eads

Action Recognition Dataset

Object Detection Dataset

>T  
 

VPF

Parameter  Sharing

Figure 2. Our DP-HOI framework overview. It includes a CNN backbone, a transformer encoder, an object detection branch, and a
verb classification branch. The two branches are trained in a disentangled manner, with labeled databases for object detection and action
recognition, respectively. Each training image from the action recognition dataset first passes the detection decoder, identifies reliable
human instances, and generates reliable person queries (RPQs) for the interaction decoder. Then, each RPQ is responsible for searching for
relevant action cues for the specified human instance. Since we only have image-level action labels, we impose supervision on the fused
RPQs predictions.

where Da(·) represents the interaction decoder and oa de-
notes the output decoder embeddings from the interaction
decoder. Finally, oa is utilized for verb classification:

ŷa = fa(oa), (5)

where fa denotes an FFN and ŷa ∈ RNp×Ca . Np and
Ca represent the number of RPQs and the number of verb
classes, respectively.
Verb-wise Prediction Fusion. Although action recognition
datasets generally do not provide instance-level action an-
notations, a single image may contain multiple human in-
stances. Hence, we propose Verb-wise Prediction Fusion
(VPF) to fuse the prediction results in ŷa by conducting
max-pooling along its column dimension. In the experimen-
tation section, we demonstrated that VPF outperforms other
fusion strategies and effectively suppresses noisy RPQ pre-
dictions.

3.4. Extension to Video and Caption Data

Video Data. Existing action recognition datasets are usu-
ally video-based. To utilize these video-based datasets, we
randomly sampled Nf frames from each video and fed them
into our model to obtain RPQ prediction results, denoted by
{ŷa}Nf

. Then, we utilized the VPF method to fuse these
prediction results. Finally, we adopted focal loss [77] to
supervise the fused results according to the video label.
Image-Caption Data. Since action recognition datasets

are labeled according to fixed action categories, the ac-
tion semantics they contain are insufficient. As a re-
sult, contrastive learning was utilized, enabling the use of
image-caption data with robust action semantic informa-
tion for pre-training. First, we used a rule-based language
parser [80] to obtain HOI triplets ⟨human, verb, object⟩
for a given image-caption pair. Then, we fed each HOI-
triplet prompt (i.e., a photo of {human} {verb} {object})
into the CLIP text encoder to obtain its embedding.

Selecting negative samples during contrastive learning
significantly impacts model performance. In this paper, we
clustered all the HOI-triplet text embedding categories into
100 offline clusters. Then we sampled 10 HOI categories
from each cluster as negative samples for each correspond-
ing RPQ embedding. Next, we calculated the cosine simi-
larity between the RPQs’ decoder and text embeddings, se-
lecting the RPQ with the highest similarity score.

Finally, we compute the InfoNCE loss [85] separately in
two directions to obtain the image alignment loss Li2t and
the text alignment loss Lt2i. The average of these two loss
functions is used as the final loss Ls:

Ls =
1

2
(Li2t + Lt2i). (6)

3.5. Overall Loss Function

We adopted similar loss functions as existing object detec-
tion [10] and verb classification [40] studies. The overall
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DP-HOI loss function is represented as follows:

L = Ld + λvLv, (7)

Ld = λbLb + λgLg + λcLc, (8)

Lv = λaLa + λsLs, (9)

where Ld and Lv denote the object detection and verb clas-
sification branches’ loss functions, respectively. Lb, Lg , Lc,
La and Ls represent the losses, including L1 and GIOU [76]
for bounding box regression, cross-entropy for object clas-
sification, focal [77] and InfoNCE [85] for verb prediction,
respectively. In addition, λv is a weight that balances the
two branches’ losses. λb, λg , λc, λa and λs are set as 5, 2,
1, 1 and 1, respectively.

Moreover, we utilized multiple action recognition and
image-caption datasets for pre-training. Ca denotes the total
verb category number of all the action recognition datasets.
Since semantically overlapping verb categories may exist
between different datasets, we only activate the binary clas-
sifiers for the verb categories owned by the database that
each training sample belongs to. More pre-training details
are provided in the supplementary material.

4. Experiments
4.1. The Pre-training Datasets

As illustrated in Table 1, we adopted the MS-COCO [9] and
Objects365 [83] datasets for the object detection branch.
Then, we employed the action recognition and image-
caption datasets in the verb classification branch. First,
the action recognition datasets included Haa500 [13] and
Kinetics-700 [84]. Haa500 and Kinetics-700 are video-
based datasets; therefore, we sampled frames at regular in-
tervals during data processing. Considering the lower qual-
ity of video frames in Kinetics-700 compared to Haa500,
we treated each sampled frame from Haa500 as an individ-
ual supervision sample. Then, we applied video-level super-
vision to the frame sequences sampled from Kinetics-700.
Second, the image-caption datasets included Flickr30k [86]
and VG [12]. Aside from captions, Flickr30k and VG in-
clude additional annotation information; however, we only
used the caption annotations for our pre-training. We also
filtered the images from which caption HOI triplets could
not be extracted. The datasets and data processing methods
are detailed in the supplementary material.

4.2. The HOI Detection Datasets

HICO-DET. HICO-DET [6] is a popular dataset for HOI
detection. It consists of 47,776 images with more than
150,000 human-object pairs, 38,118 of which are used for
training and 9,658 for testing. This dataset contains the
same 80 object classes as MS-COCO [9] and 117 inter-
action classes. The combination of object and interaction

Table 1. Statistics of the adopted object detection, action recogni-
tion and image-caption datasets used for pre-training.

Types Datasets #Samples #Classes

Object Detection COCO 117266 80
Objects365 117266 365

Action Recognition Haa500 52644 500
Kinetics-700 117266 700

Image-Caption Flickr30k 25977 -
VG 54280 -

classes forms 600 HOI categories. Also, there are 138 HOI
categories with less than 10 training samples, which are de-
noted as “rare” categories. We conducted experiments using
the default(DT) mode and three zero-shot settings (i.e., UV,
RF-UC, and NF-UC). UV and UC represent unseen verb
and composition settings, respectively. RF means rare first,
and NF is non-rare first.
V-COCO. V-COCO [7] is a relatively small dataset, built on
the MS-COCO database [9]. It contains 10,346 images (i.e.,
5,400 for training and 4,946 for testing), covering the same
80 object categories as MS-COCO [9] and 26 interaction
categories. We use the mean average precision of Scenario
1 (AProle) [7] for evaluation.

4.3. Implementation Details

We adopted ResNet-50 as our backbone model. We uti-
lized the AdamW [78] optimizer to conduct experiments
with a batch size of 64 on 8 A800 GPUs for DP-HOI. In
each batch, the number of samples from the object detec-
tion and action recognition datasets is equal. The initial
learning rate was set to 1e-4 and multiplied by 0.1 after 180
epochs. The pre-training stage lasts for 200 epochs accord-
ing to the MS-COCO dataset. Regarding the Kinetics-700
samples, we resized the input video frames from their orig-
inal size to 256×256 pixels. Meanwhile, the other datasets’
input samples were resized to a minimum and maximum
of 800 pixels and 1,333 pixels on the short and long sides,
respectively. λv , T , and N were set to 1, 0.9, and 100, re-
spectively. Furthermore, we adopted the DN [11] strategy
to accelerate the pre-training stage, and the number of de-
tection and interaction decoder layers was set to 3. Please
refer to the supplementary material for more implementa-
tion details.

4.4. Comparisons with State-of-the-Art Methods

Comparisons on HICO-DET under default setting. We
directly applied the pre-trained DETR weights from DP-
HOI to existing popular methods.

As shown in Table 2, DP-HOI significantly enhances the
performance of one- and two-stage HOI detection methods.
When the pre-trained DP-HOI weights are applied to two-
stage methods, UPT [55] and PViC [38], consistent perfor-
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Table 2. Performance comparisons for HICO-DET. † means DN
was adopted in the fine-tuning stage. * denotes a data augmenta-
tion strategy [53] was employed.

Methods Backbone DT Mode
Full Rare Non-Rare

InteractNet [79] ResNet-50-FPN 9.94 7.16 10.77
GPNN[80] Res-DCN-152 13.11 9.34 14.23
iCAN [15] ResNet-50 14.84 10.45 16.15

No-Frills [14] ResNet-152 17.18 12.17 18.68
UnionDet [35] ResNet-50-FPN 17.58 11.72 19.33

DRG [81] ResNet-50-FPN 19.26 17.74 19.71
PD-Net [27] ResNet-152 20.81 15.90 22.28
PPDM [33] Hourglass-104 21.73 13.78 24.10
GGNet [34] Hourglass-104 23.47 16.48 25.60
HOTR [42] ResNet-50 23.46 16.21 25.62

HOI-Trans [43] ResNet-50 23.46 16.91 25.41
AS-Net [35] ResNet-50 28.87 24.25 30.25
QPIC [40] ResNet-50 29.07 21.85 31.23

CDN-S [44] ResNet-50 31.44 27.39 32.64
HQM(CDN-S) [59] ResNet-50 32.47 28.15 33.76
DOQ(CDN-S) [53] ResNet-50 33.28 29.19 34.50
GEN-VLKTs [47] ResNet-50 33.75 29.25 35.10

with our pre-trained model weights

UPT [55] ResNet-50 31.66 25.94 33.36
UPT + Ours ResNet-50 33.36 28.74 34.75
PViC [38] ResNet-50 34.69 32.14 35.45

PViC + Ours ResNet-50 35.77 32.26 36.81
CDN-S† [44] ResNet-50 31.98 28.61 32.99

CDN-S†+Ours ResNet-50 35.00 32.38 35.78
CDN-S†+CCS∗+Ours ResNet-50 35.38 34.61 35.61

HOICLIP [64] ResNet-50 34.69 31.12 35.74
HOICLIP+Ours ResNet-50 36.56 34.36 37.22

comparison with pre-training methods

OpenCat (754k) [72] ResNet-101 32.68 28.42 33.75
RLIP (225k) [66] ResNet-50 32.84 26.85 34.63

RLIPv2 (1,967k) [71] ResNet-50 35.38 29.61 37.10
CDN-S†+CCS∗+Ours (484k) ResNet-50 35.38 34.61 35.61

HOICLIP+Ours (484k) ResNet-50 36.56 34.36 37.22

mance gains of 1.70% and 1.08% mAP were observed in
DT mode for the full categories, respectively. Furthermore,
applying pre-trained DP-HOI weights to one-stage meth-
ods, CDN-S† [44] and HOICLIP [64], yielded consistent
performance improvements of 3.02% and 1.87% mAP, re-
spectively. Notably, we observed remarkable performance
improvements on the rare HOI categories. For example,
compared with DOQ [53], which also adopts CCS as the
data augmentation method, the performance of CDN-S† on
the rare categories was promoted by 5.42% mAP, reach-
ing 34.61% mAP. These improvements demonstrated DP-
HOI’s efficiency and universality.

Moreover, compared with other HOI pre-training meth-
ods, DP-HOI outperforms OpenCat [72] and RLIP [66].
Its performance was similar to RLIPv2 [71] with less pre-
training data. RLIPv2 introduces a complex scheme to ob-
tain pseudo-labeled scene graph data from object detection
datasets and adopts 1,967k images for pre-training. In con-
trast, DP-HOI adopts a concise pre-training strategy that
effectively leverages action semantic information from ac-
tion recognition and image-caption datasets. It also yields
similar results with less data for the simple baseline CDN-

Table 3. Performance comparisons with state-of-the-art methods
for zero-shot HOI detection on HICO-DET. UV and UC indicate
unseen verb and composition settings, respectively. RF is short for
rare first. NF is non-rare first.

Methods Type Unseen Seen Full

GEN-VLKTs [47] UV 20.96 30.23 28.74
EoID [68] UV 22.71 30.73 29.61

OpenCat [72] UV 19.48 29.02 27.43
HOICLIP [64] UV 24.30 32.19 31.09

HOICLIP+Ours UV 26.30 34.49 33.34
GEN-VLKTs [47] RF-UC 21.36 32.91 30.56

EoID [68] RF-UC 22.04 31.39 29.52
OpenCat [72] RF-UC 21.46 33.86 31.38
RLIPv2 [71] RF-UC 21.45 35.85 32.97

HOICLIP [64] RF-UC 25.53 34.85 32.99
HOICLIP+Ours RF-UC 30.49 36.17 35.03

GEN-VLKTs [47] NF-UC 25.05 23.38 23.71
EoID [68] NF-UC 26.77 26.66 26.69

OpenCat [72] NF-UC 23.25 28.04 27.08
RLIPv2 [71] NF-UC 22.81 29.52 28.18

HOICLIP [64] NF-UC 26.39 28.10 27.75
HOICLIP+Ours NF-UC 28.87 29.98 29.76

S†+CCS∗. With a stronger baseline HOICLIP [64], DP-
HOI outperforms RLIPv2, especially on the rare HOI cate-
gories.
Comparisons on HICO-DET under zero-shot settings.
To further demonstrate DP-HOI’s effectiveness, we con-
ducted experiments using various zero-shot settings, includ-
ing UV, RF-UC, and NF-UC.

As illustrated in Table 3, DP-HOI achieved competitive
performance across all three zero-shot settings. It outper-
forms state-of-the-art methods under the UV, RF-UC and
NF-UC settings, reaching 26.30%, 30.49%, and 28.87%
mAP in the unseen categories, respectively. In contrast to
HOICLIP [64], we observed consistent performance gains
of 2.00%, 4.96% and 2.48% mAP for unseen categories un-
der the UV, RF-UC and NF-UC settings.
Comparisons on V-COCO. Table 4 displays the V-COCO
comparisons. We observed that DP-HOI consistently en-
hances the model’s performance on the V-COCO dataset,
reaching 63.2%, 64.8%, and 66.6% mAP in the AProle

for QPIC [40], CDN-S [44], and GENs [47], respectively.
GENs+Ours method outperforms other HOI pre-training
approaches with 484k samples. These results demonstrate
that DP-HOI provides superior pre-trained weights for HOI
detection models.

4.5. The Experiment Using Different Datasets

We conducted experiments using various pre-training data
combinations to explore their impact on the datasets, as il-
lustrated in Table 5. COCO indicates pre-training with only
the MS-COCO dataset, which is regarded as the baseline.
ALL signifies pre-training with the 484k data shown in Ta-
ble 1.
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Table 4. Performance comparisons for V-COCO. GENs indicates
that CLIP distillation was removed from GEN-VLKTs.

Methods Backbone AProle

InteractNet [79] ResNet-50-FPN 40.0
DRG [81] ResNet-50-FPN 51.0

PD-Net [27] ResNet-152 52.6
IDN [82] ResNet-50-FPN 53.3

GGNet [34] Hourglass-104 54.7
HOTR [42] ResNet-50 55.2

HOI-Trans [43] ResNet-101 52.9
AS-Net [41] ResNet-50 53.9

IF [57] ResNet-50 63.0
PartMap [63] ResNet-50 63.0

DOQ(QPIC) [53] ResNet-50 63.5
HQM(QPIC) [59] ResNet-50 63.6

with our pre-trained model weights

QPIC [40] ResNet-50 58.8
QPIC+Ours ResNet-50 63.2
CDN-S [44] ResNet-50 61.7

CDN-S+Ours ResNet-50 64.8
GENs+VLKT [47] ResNet-50 62.4

GENs+Ours ResNet-50 66.6
comparisons with pre-training methods

OpenCat (754k) [72] ResNet-50 61.9
RLIP (225k) [66] ResNet-101 61.9

RLIPv2 (1,967k) [71] ResNet-50 65.9
GENs+Ours (484k) ResNet-50 66.6

Initially, we extended pre-training data from the Haa500,
Kinetics-700, and Flickr30k datasets independently, reach-
ing 1.34%, 1.36% and 1.33% improvement on full cate-
gories. These results demonstrate that using various action
dataset types (e.g., action image, action video and image-
caption dataset) could be beneficial for DP-HOI. Further-
more, we observed consistent performance improvements
when integrating diverse action datasets. With the 484k
pre-training data, the DP-HOI outperforms the baseline by
3.02%, 3.77%, and 2.79% mAP on the full, rare, and non-
rare HOI categories, respectively. These experimental re-
sults demonstrate DP-HOI’s scalability and effectiveness.
Moreover, we encountered an intriguing observation: in-
tegrating image-caption data led to a remarkable improve-
ment on the non-rare categories. This could be attributed
to the diverse range of action classes in the image-caption
dataset.

4.6. The Ablation Study

We conducted pre-training using the COCO and Kinetics-
700 datasets in the ablation study. Then, we fine-tuned the
HICO-DET database with the CDN-S model [44] adopted
through DN [11]. The detailed experimental results are
summarized in Table 6. COCO indicates pre-training with
only the MS-COCO dataset, which is regarded as the base-
line. K700 represents the 117k Kinetics-700 data in Table 1.
The Effectiveness of DP-HOI. As illustrated in Table 6,

Table 5. Performance comparisons using different pre-training
datasets.

Datasets Full Rare Non-Rare

COCO 31.98 28.61 32.99

+Haa500 33.32 30.18 34.26
+Kinetics-700 33.34 29.89 34.37

+Flickr30k 33.31 30.76 34.08
+Haa500, Flickr30k 34.06 30.89 35.01

+Flickr30k, VG 33.77 31.54 34.43

ALL 35.00 32.38 35.78

Table 6. Ablation study on each key DP-HOI component.

Components mAP
Methods COCO K700 VPF RPQ Full Rare Non-Rare

Baseline ✓ - - - 31.98 28.61 32.99

Incremental
✓ ✓ - - 32.69 28.64 33.90
✓ ✓ ✓ - 32.93 28.87 34.14
✓ ✓ - ✓ 33.07 28.96 34.30

Ours ✓ ✓ ✓ ✓ 33.34 29.89 34.37

DP-HOI significantly outperforms the baseline by 1.36%,
1.28%, and 1.38% mAP in DT mode for the full, rare, and
non-rare HOI categories, respectively.
The Effectiveness of VPF. ‘max-pooling’ was proposed
to fuse the RPQ prediction results. As shown in Table 6,
when VPF was removed, the HICO-DET full category per-
formance declined by 0.27% mAP. Since the people in the
video frames may not have performed any action, directly
imposing supervision on each RPQ without fusion is unrea-
sonable.
The Effectiveness of RPQ. RPQ was employed to iden-
tify human instances from the detection decoder and gen-
erate person-specific queries for the subsequent interaction
decoder. This strategy enabled the model to focus on the ac-
tion cues for each specific person. When RPQ was removed
and all detection decoder embeddings were fed into the in-
teraction decoder, the HOI detection performance decreased
by 0.41% mAP. The above experimental results verify that
query selection for the interaction decoder is essential in
DP-HOI.

4.7. Comparisons With DP-HOI Variants

The Comparisons With VPF Variants. We compared the
VPF’s performance with two of its variants. The experi-
mental results are displayed in Table 7. The first variant is
denoted as “w/o fusion”, indicating that we imposed super-
vision on each confident RPQ. As a result, it displayed a
performance lower than VPF by 0.27%, 0.93%, and 0.07%
mAP in DT mode for the full, rare, and non-rare HOI cat-
egories, respectively. We estimate that conducting max-
pooling on all RPQ predictions enables VPF to suppress
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Table 7. Performance comparisons with the DP-HOI VPF Opera-
tion in the HICO-DET DT mode.

Methods Full Rare Non-Rare

w/o fusion 33.07 28.96 34.30
avg-pooling 32.76 28.40 34.06
max-pooling 33.34 29.89 34.37

noisy predictions by non-confident RPQs.
Second, “avg-pooling” means that we average all the

RPQ prediction results and imposed supervision. Table 7
shows that this setting in the full HOI categories decreases
by 0.58% mAP. This may be because this setting implicitly
forces all RPQs to make confident predictions according to
the annotations.

Table 8. Performance comparisons with different parameter ini-
tializations. † means DN was adopted during the fine-tuning stage.

Methods w/o decoder w/o interaction decoder full

CDN-S† 31.06 31.98 31.39
CDN-S† + Ours 33.10 34.16 35.00

The Comparisons with Various Model Initializations.
As illustrated in Table 8, we compared the performance
of three model initialization strategies using the CDN-S†

model: (a) without the decoder, initializing the backbone
and encoder; (b) without the interaction decoder, initializ-
ing the backbone, encoder and detection decoder; (c) full,
initializing the backbone, encoder, detection and interac-
tion decoder. CDN-S† adopts the model pre-trained using
the MS-COCO dataset. We also utilized the pre-trained de-
tection decoder to initialize the CDN-S† detection and in-
teraction decoders in the (c) setting.

As illustrated in Table 8, DP-HOI outperforms the base-
line by 2.04%, 2.18% and 3.61% mAP in the (a), (b) and
(c) settings, respectively. Moreover, when we only initial-
ized our pre-trained model’s backbone and encoder, the per-
formance reached 33.10% mAP, outperforming the origi-
nal pre-trained model with any of the three initialization
strategies. These results demonstrate that DP-HOI incorpo-
rates action-related features in the backbone and encoder,
enhancing our pre-trained model’s applicability across var-
ious HOI models.

4.8. The DP-HOI Visualizations

As illustrated in Figure 3, we visualized the attention maps
for the last detection (i.e., the first row) and interaction de-
coder layers (i.e., the second row) of the most confident
human query according to the RPQ. We observed that the
detection attention maps accurately localize the person’s
boundaries. Likewise, the interaction attention maps accu-

Figure 3. Visualization of the attention maps in the decoder layers.
The two rows represent results for the detection and interaction
decoders, respectively.

rately localize the interaction regions. Therefore, with the
disentangled supervision signals, the two decoders use dif-
ferent features for object detection and interaction classifi-
cation.

5. Conclusions and Limitations
In this paper, we addressed the pre-training problem for
DETR-based HOI detection models. Specifically, we pro-
posed a disentangled pre-training framework that effec-
tively explores readily available and large-scale object de-
tection, action recognition and image-caption datasets. Our
pre-training architecture is consistent with the downstream
HOI detection task, facilitating efficient knowledge trans-
fer. In addition, we conducted comprehensive experiments
on two popular HOI detection benchmarks. The experimen-
tal results demonstrated our methods’ superiority. A pos-
sible limitation of this study is that it requires GPUs with
relatively large memories for pre-training. In the future,
we will explore more efficient pre-training strategies, that
can include more object detection, action recognition and
image-caption datasets, further enhancing the pre-training
stage.
Broader Impacts. DP-HOI significantly improves the per-
formance of HOI detection models. It could impact human-
centric vision applications such as driver monitoring and
health care systems. To the best of our knowledge, this
study does not have any obvious negative social impacts.
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