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Figure 1. We introduce DistriFusion, a training-free algorithm to harness multiple GPUs to accelerate diffusion model inference without
sacrificing image quality. Naïve Patch (Figure 2(b)) suffers from the fragmentation issue due to the lack of patch interaction. Our
DistriFusion removes artifacts and avoids the communication overhead by reusing the features from the previous steps. Setting: SDXL
with 50-step Euler sampler, 1280× 1920 resolution. Latency is measured on A100s.

Abstract
Diffusion models have achieved great success in syn-

thesizing high-quality images. However, generating high-
resolution images with diffusion models is still challenging
due to the enormous computational costs, resulting in a pro-
hibitive latency for interactive applications. In this paper,
we propose DistriFusion to tackle this problem by leveraging
parallelism across multiple GPUs. Our method splits the
model input into multiple patches and assigns each patch to
a GPU. However, naïvely implementing such an algorithm
breaks the interaction between patches and loses fidelity,
while incorporating such an interaction will incur tremen-
dous communication overhead. To overcome this dilemma,
we observe the high similarity between the input from adja-
cent diffusion steps and propose displaced patch parallelism,
which takes advantage of the sequential nature of the dif-
fusion process by reusing the pre-computed feature maps
from the previous timestep to provide context for the current
step. Therefore, our method supports asynchronous commu-
nication, which can be pipelined by computation. Extensive
experiments show that our method can be applied to recent
Stable Diffusion XL with no quality degradation and achieve
up to a 6.1× speedup on eight A100 GPUs compared to one.

*indicates equal contributions.

1. Introduction
The advent of AI-generated content (AIGC) represents a

seismic shift in technological innovation. Tools like Adobe
Firefly, Midjourney and recent Sora showcase astonishing ca-
pabilities, producing compelling imagery and designs from
simple text prompts. These achievements are notably sup-
ported by the progression in diffusion models [13, 57]. The
emergence of large text-to-image models, including Stable
Diffusion [51], Imgen [53], eDiff-I [2], DALL·E [3, 45, 46]
and Emu [6], further expands the horizons of AI creativity.
Trained on diverse open-web data, these models can
generate photorealistic images from text descriptions alone.
Such technological revolution unlocks numerous synthesis
and editing applications for images and videos, placing new
demands on responsiveness: by interactively guiding and
refining the model output, users can achieve more person-
alized and precise results. Nonetheless, a critical challenge
remains – high resolution leading to large computation. For
example, the original Stable Diffusion [51] is limited to
generating 512 × 512 images. Later, SDXL [43] expands
the capabilities to 1024× 1024 images. More recently, Sora
further pushes the boundaries by enabling video generation
at 1080 × 1920 resolution. Despite these advancements,
the increased latency of generating high-resolution images

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. (a) Original diffusion model running on a single device.
(b) Naïvely splitting the image into 2 patches across 2 GPUs has
an evident seam at the boundary due to the absence of interaction
across patches. (c) DistriFusion employs synchronous communica-
tion for patch interaction at the first step. After that, we reuse the
activations from the previous step via asynchronous communica-
tion. In this way, the communication overhead can be hidden into
the computation pipeline.

presents a tremendous barrier to real-time applications.
Recent efforts to accelerate diffusion model inference

have mainly focused on two approaches: reducing sampling
steps [20, 32–34, 54, 58, 66, 69] and optimizing neural net-
work inference [23, 25, 26]. As computational resources
grow rapidly, leveraging multiple GPUs to speed up infer-
ence is appealing. For example, in natural language pro-
cessing (NLP), large language models have successfully
harnessed tensor parallelism across GPUs, significantly re-
ducing latency. However, for diffusion models, multiple
GPUs are usually only used for batch inference. When gen-
erating a single image, typically only one GPU is involved
(Figure 2(a)). Techniques like tensor parallelism are less
suitable for diffusion models due to the large activation size,
as communication costs outweigh savings from distributed
computation. Thus, even when multiple GPUs are available,
they cannot be effectively exploited to further accelerate
single-image generation. This motivates the development of
a method that can utilize multiple GPUs to speed up single-
image generation with diffusion models.

A naïve approach would be to divide the image into
several patches, assigning each patch to a different device for

generation, as illustrated in Figure 2(b). This method allows
for independent and parallel operations across devices.
However, it suffers from a clearly visible seam at the
boundaries of each patch due to the absence of interaction
between the individual patches. However, introducing
interactions among patches to address this issue would incur
excessive synchronization costs again, offsetting the benefits
of parallel processing.

In this work, we present DistriFusion, a method that
enables running diffusion models across multiple devices
in parallel to reduce the latency of single-sample generation
without hurting image quality. As depicted in Figure 2(c),
our approach is also based on patch parallelism, which
divides the image into multiple patches, each assigned to
a different device. Our key observation is that the inputs
across adjacent denoising steps in diffusion models are
similar. Therefore, we adopt synchronous communication
solely for the first step. For the subsequent steps, we
reuse the pre-computed activations from the previous step
to provide global context and patch interactions for the
current step. We further co-design an inference framework
to implement our algorithm. Specifically, our framework
effectively hides the communication overhead within
the computation via asynchronous communication. It
also sparsely runs the convolutional and attention layers
exclusively on the assigned regions, thereby proportionally
reducing per-device computation. Our method, distinct
from data, tensor, or pipeline parallelism, introduces a new
parallelization opportunity: displaced patch parallelism.

DistriFusion only requires off-the-shelf pre-trained diffu-
sion models and is applicable to a majority of few-step sam-
plers. We benchmark it on a subset of COCO Captions [5].
Without loss of visual fidelity, it mirrors the performance
of the original Stable Diffusion XL (SDXL) [43] while
reducing the computation* proportionally to the number of
used devices. Furthermore, our framework also reduces the
latency of SDXL U-Net for generating a single image by up
to 1.8×, 3.4× and 6.1× with 2, 4, and 8 A100 GPUs, respec-
tively. When combined with batch splitting for classifier-free
guidance [12], we achieve in total 3.6× and 6.6× speedups
using 4 and 8 A100 GPUs for 3840× 3840 images, respec-
tively. See Figure 1 for some examples of our method.

2. Related Work

Diffusion models. Diffusion models have significantly trans-
formed the landscape of content generation [2, 13, 39, 43].
At its core, these models synthesize content through an
iterative denoising process. Although this iterative approach
yields unprecedented capabilities for content generation,
it requires substantially more computational resources and

*Following previous works, we measure the computational cost with the
number of Multiply-Accumulate operations (MACs). 1 MAC=2 FLOPs.
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results in slower generative speed. This issue intensifies
with the synthesis of high-dimensional data, such as high-
resolution [9, 14] or 360◦ images [71]. Researchers have
investigated various perspectives to accelerate the diffusion
model. The first line lies in designing more efficient denois-
ing processes. Rombach et al. [51] and Vahdat et al. [62]
propose to compress high-resolution images into low-
resolution latent representations and learn diffusion model in
latent space. Another line lies in improving sampling via de-
signing efficient training-free sampling algorithms. A large
category of works along this line is built upon the connection
between diffusion models and differential equations [59],
and leverage a well-established exponential integra-
tor [32, 69, 70] to reduce sampling steps while maintaining
numerical accuracy. The third strategy involves distilling
faster generative models from pre-trained diffusion models.
Despite significant progress made in this area, a quality gap
persists between these expedited generators and diffusion
models [19, 34, 54]. In addition to the above schemes, some
works investigate how to optimize the neural inference for
diffusion models [23, 25, 26]. In this work, we explore
a new paradigm for accelerating diffusion by leveraging
parallelism to the neural network on multiple devices.

Parallelism. Existing work has explored various parallelism
strategies to accelerate the training and inference of large lan-
guage models (LLMs), including data, pipeline [15, 27, 36],
tensor [17, 37, 67, 68, 74], and zero-redundancy paral-
lelism [44, 47, 48, 73]. Tensor parallelism, in particular,
has been widely adopted for accelerating LLMs [28], which
are characterized by their substantial model sizes, whereas
their activation sizes are relatively small. In such scenarios,
the communication overhead introduced by tensor paral-
lelism is relatively minor compared to the substantial latency
benefits brought by increased memory bandwidth. However,
the situation differs for diffusion models, which are gener-
ally smaller than LLMs but are often bottlenecked by the
large activation size due to the spatial dimensions, especially
when generating high-resolution content. The communica-
tion overhead from tensor parallelism becomes a significant
factor, overshadowing the actual computation time. As a
result, only data parallelism has been used thus far for dif-
fusion model serving, which provides no latency improve-
ments. The only exception is ParaDiGMS [56], which uses
Picard iteration to run multiple steps in parallel. However,
this sampler tends to waste much computation, and the gen-
erated results exhibit significant deviation from the original
diffusion model. Our method is based on patch parallelism,
which distributes the computation across multiple devices
by splitting the input into small patches. Compared to tensor
parallelism, such a scheme has superior independence and
reduced communication demands. Additionally, it favors
the use of AllGather over AllReduce for data interac-
tion, significantly lowering overhead (see Section 5.3 for the

full comparisons). Drawing inspiration from the success of
asynchronous communication in parallel computing [63], we
further reuse the features from the previous step as context
for current step to overlap communication and computation,
called displaced patch parallelism. This represents the first
parallelism strategy tailored to the sequential characteristics
of diffusion models while avoiding the heavy communication
costs of traditional techniques like tensor parallelism.

Sparse computation. Sparse computation has been exten-
sively researched in various domains, including weight [10,
16, 21, 31], input [50, 60, 61] and activation [7, 18, 23, 24,
40, 49, 49, 55]. In the activation domain, to facilitate on-
hardware speedups, several studies propose to use structured
sparsity. SBNet [49] employs a spatial mask to sparsify acti-
vations for accelerating 3D object detection. This mask can
be derived either from prior problem knowledge or an auxil-
iary network. In the context of image generation, SIGE [23]
leverages the highly structured sparsity of user edits, selec-
tively performing computation at the edited regions to speed
up GANs [8] and diffusion models. MCUNetV2[29] adopts
a patch-based inference to reduce memory usage for image
classification and detection. In our work, we also partition
the input into patches, each processed by a different device.
However, we focus on reducing the latency by parallelism
for image generation instead. Each device will solely process
the assigned regions to reduce the per-device computation.

3. Background
To generate a high-quality image, a diffusion model often

trains a noise-prediction neural model (e.g., U-Net [52])
ϵθ. Starting from pure Gaussian noise xT ∼ N (0, I), it
involves tens to hundreds of iterative denoising steps to get
the final clean image x0, where T is the total number of
steps. Specifically, given the noisy image xt at time step t,
the model ϵθ takes xt, t and an additional condition c (e.g.,
text) as inputs to predict the corresponding noise ϵt within
xt. At each denoising step, xt−1 can be derived from the
following equation:

xt−1 = Update(xt, t, ϵt), ϵt = ϵθ(xt, t, c). (1)

Here, ‘Update’ refers to a sampler-specific function that typ-
ically includes element-wise additions and multiplications.
Therefore, the primary source of latency in this process is
the forward passes through model ϵθ. For example, Stable
Diffusion XL [43] requires 6,763 GMACs per step to gen-
erate a 1024 × 1024 image. This computational demand
escalates more than quadratically with increasing resolution,
making the latency for generating a single high-resolution
image impractically high for real-world applications. Fur-
thermore, given that xt−1 depends on xt, parallel computa-
tion of ϵt and ϵt−1 is challenging. Hence, even with multi-
ple idle GPUs, accelerating the generation of a single high-
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resolution image remains tricky. Recently, Shih et al. intro-
duced ParaDiGMS [56], employing Picard iterations to paral-
lelize the denoising steps in a data-parallel manner. However,
ParaDiGMS wastes the computation on speculative guesses
that fail quality thresholds. It also relies on a large total
step count T to exploit multi-GPU data parallelism, limiting
its potential applications. Another conventional method is
sharding the model on multiple devices and using tensor
parallelism for inference. However, this method suffers from
intolerable communication costs, making it impractical for
real-world applications. Beyond these two schemes, are
there alternative strategies for distributing workloads across
multiple GPU devices so that single-image generation can
also enjoy the free-lunch speedups from multiple devices?

4. Method

The key idea of DistriFusion is to parallelize computation
across devices by splitting the image into patches. Naïvely,
this can be done by either (1) independently computing
patches and stitching them together, or (2) synchronously
communicating intermediate activations between patches.
However, the first approach leads to visible discrepancies at
the boundaries of each patch due to the absence of interaction
between them (see Figure 1 and Figure 2(b)). The second
approach, on the other hand, incurs excessive communica-
tion overheads, negating the benefits of parallel processing.
To address these challenges, we propose a novel parallelism
paradigm, displaced patch parallelism, which leverages the
sequential nature of diffusion models to overlap communica-
tion and computation. Our key insight is reusing slightly out-
dated, or ‘stale’ activations from the previous diffusion step
to facilitate interactions between patches, which we describe
as activation displacement. This is based on the observation
that the inputs for consecutive denoising steps are relatively
similar. Consequently, computing each patch’s activation
at a layer does not rely on other patches’ fresh activations,
allowing communication to be hidden within subsequent lay-
ers’ computation. We will next provide a detailed breakdown
of each aspect of our algorithm and system design.

Displaced patch parallelism. As shown in Figure 3, when
predicting ϵθ(xt) (we omit the inputs of timestep t and con-
dition c here for simplicity), we first split xt into multiple
patches x(1)

t ,x
(2)
t , . . . ,x

(N)
t , where N is the number of de-

vices. For example, we use N = 2 in Figure 3. Each device
has a replicate of the model ϵθ and will process a single
patch independently, in parallel.

For a given layer l, let’s consider the input activation
patch on the i-th device, denoted as Al,(i)

t . This patch is first
scattered into the stale activations from the previous step,
Al

t+1, at its corresponding spatial location (the method for
obtaining Al

t+1 will be discussed later). Here, Al
t+1 is in full

spatial shape. In the Scatter output, only the 1
N regions

where A
l,(i)
t is placed are fresh and require recomputation.

We then selectively apply the layer operation Fl (linear,
convolution, or attention) to these fresh areas, thereby gener-
ating the output for the corresponding regions. This process
is repeated for each layer. Finally, the outputs from all layers
are synchronized together to approximate ϵθ(xt). Through
this methodology, each device is responsible for only 1

N of
the total computations, enabling efficient parallelization.

There still remains a problem of how to obtain the stale
activations from the previous step. As shown in Figure 3, at
each timestep t, when device i acquires Al,(i)

t , it will then
broadcast the activations to all other devices and perform the
AllGather operation. Modern GPUs often support asyn-
chronous communication and computation, which means
that this AllGather process does not block ongoing com-
putations. By the time we reach layer l in the next timestep,
each device should have already received a replicate of Al

t.
Such an approach effectively hides communication over-
heads within the computation phase, as shown in Figure 4.
However, there is an exception: the very first step (i.e., xT ).
In this scenario, each device simply executes the standard
synchronous communication and caches the intermediate
activations for the next step.

Sparse operations. For each layer l, we modify the original
operator Fl to enable sparse computation selectively on the
fresh areas. Specifically, if Fl is a convolution, linear, or
cross-attention layer, we apply the operator exclusively to
the newly refreshed regions, rather than the full feature map.
This can be achieved by extracting the fresh sections from
the scatter output and feeding them into Fl. For layers
where Fl is a self-attention layer, we transform it into a
cross-attention layer, similar to SIGE [23]. In this setting,
only the query tokens from the fresh areas are preserved on
the device, while the key and value tokens still encompass
the entire feature map (the scatter output). Thus, the
computational cost for Fl is exactly proportional to the size
of the fresh area.

Corrected asynchronous GroupNorm. Diffusion models
often adopt group normalization (GN) [38, 64] layers in
the network. These layers normalize across the spatial
dimension, necessitating the aggregation of activations to
restore their full spatial shape. In Section 5.3, we discover
that either normalizing only the fresh patches or reusing
stale features degrades image quality. However, aggregating
all the normalization statistics will incur considerable
overhead due to the synchronous communication. To solve
this dilemma, we additionally introduce a correction term to
the stale statistics. Specifically, for each device i at a given
step t, every GN layer can compute the group-wise mean of
its fresh patch A

(i)
t , denoted as E[A(i)

t ]. For simplicity, we
omit the layer index l here. It also has cached the local mean
E[A(i)

t+1] and aggregated global mean E[At+1] from the
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Figure 3. Overview of DistriFusion. For simplicity, we omit the inputs of t and c, and use N = 2 devices as an example. Superscripts (1) and
(2) represent the first and the second patch, respectively. Stale activations from the previous step are darkened. At each step t, we first split
the input xt into N patches x(1)

t , . . . ,x
(N)
t . For each layer l and device i, upon getting the input activation patches Al,(i)

t , two operations
then process asynchronously: First, on device i, Al,(i)

t is scattered back into the stale activation Al
t+1 from the previous step. The output

of this Scatter operation is then fed into the sparse operator Fl (linear, convolution, or attention layers), which performs computations
exclusively on the fresh regions and produces the corresponding output. Meanwhile, an AllGather operation is performed over Al,(i)

t

to prepare the full activation Al
t for the next step. We repeat this procedure for each layer. The final outputs are then aggregated together

to approximate ϵθ(xt), which is used to compute xt−1. The timeline visualization of each device for predicting ϵθ(xt) is shown in Figure 4.

…

Device 
1-N

Comm.

Scatter Scatter ScatterSparse Op F1 Sparse Op F2 Sparse Op FL

AllGather AllGather AllGather

Layer 1 Layer 2 Layer L

Figure 4. Timeline visualization on each device when predicting
ϵθ(xt). Comm. means communication, which is asynchronous
with computation. The AllGather overhead is fully hidden
within the computation.

previous step. Then the approximated global mean E[At]
for current step on device i can be computed as

E[At] ≈ E[At+1]︸ ︷︷ ︸
stale global mean

+(E[A(i)
t ]− E[A(i)

t+1])︸ ︷︷ ︸
correction

. (2)

We use the same technique to approximate E[(At)
2], then

the variance can be approximated as E[(At)
2] − E[At]

2.
We then use these approximated statistics for the GN layer
and in the meantime aggregate the local mean and variance
to compute the precise ones using asynchronous communi-
cation. Thus, the communication cost can also be pipelined
into the computation. We empirically find this method yields
comparable results to the direct synchronous aggregation.
However, there are some rare cases where the approximated
variance is negative. For these negative variance groups, we
will fall back to use the local variance of the fresh patch.

Warm-up steps. As observed in eDiff-I [2] and FastCom-
poser [65], the behavior of diffusion synthesis undergoes
qualitative changes throughout the denoising process.
Specifically, the initial steps of sampling predominantly
shape the low-frequency aspects of the image, such as spatial
layout and overall semantics. As the sampling progresses,

the focus shifts to recovering local high-frequency details.
Therefore, to boost image quality, especially in samplers
with a reduced number of steps, we adopt warm-up steps. In-
stead of directly employing displaced patch parallelism after
the first step, we continue with several iterations of the stan-
dard synchronous patch parallelism as a preliminary phase,
or warm-up. As detailed in Section 5.3, this integration of
warm-up steps significantly improves performance.

5. Experiments
We first describe our experiment setups, including our

benchmark datasets, baselines, and evaluation protocols.
Then we present our main results regarding both quality and
efficiency. Finally, we further show some ablation studies to
verify each design choice.

5.1. Setups

Models. As our method only requires off-the-shelf pre-
trained diffusion models, we mainly conduct experiments on
the state-of-the-art public text-to-image model Stable Dif-
fusion XL (SDXL) [43]. SDXL first compresses an image
to an 8× smaller latent representation using a pre-trained
auto-encoder and then applies a diffusion model in this latent
space. It also incorporates multiple cross-attention layers to
facilitate text conditioning. Compared to the original Stable
Diffusion [51], SDXL adopts significantly more attention
layers, resulting in a more computationally intensive model.

Datasets. We use the HuggingFace version of COCO
Captions 2014 [5] dataset to benchmark our method. This
dataset contains human-generated captions for images
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Figure 5. Qualitative results. FID is computed against the ground-truth images. Our DistriFusion can reduce the latency according to the
number of used devices while preserving visual fidelity.

from Microsoft Common Objects in COntext (COCO)
dataset [30]. For evaluation, we randomly sample a subset
from the validation set, which contains 5K images with one
caption per image.

Baselines. We compare our DistriFusion against the follow-
ing baselines in terms of both quality and efficiency:
• Naïve Patch. At each iteration, the input is divided row-

wise or column-wise alternately. These patches are then
processed independently by the model, without any in-
teraction between them. The outputs are subsequently
concatenated together.

• ParaDiGMS [56] is a technique to accelerate pre-trained
diffusion models by denoising multiple steps in parallel. It
uses Picard iterations to guess the solution of future steps
and iteratively refines it until convergence. We use a batch
size 8 for ParaDiGMS to align with Table 4 in the original
paper [56]. We empirically find this setting yields the best
performance in both quality and latency.

Metrics. Following previous works [22, 23, 35, 41], we
evaluate the image quality with standard metrics: Peak Sig-
nal Noise Ratio (PSNR, higher is better), LPIPS (lower is
better) [72], and Fréchet Inception Distance (FID, lower is
better) [11]†. We employ PSNR to quantify the minor nu-
merical differences between the outputs of the benchmarked

†We use TorchMetrics to calculate PSNR and LPIPS, and use Clean-
FID [42] to calculate FID.

method and the original diffusion model outputs. LPIPS
is used to evaluate perceptual similarity. Additionally, the
FID score is used to measure the distributional differences
between the outputs of the method and either the original
outputs or the ground-truth images.

Implementation details. By default, we adopt the 50-step
DDIM sampler [58] with classifier-free guidance scale 5 to
generate 1024 × 1024 images, unless otherwise specified.
In addition to the first step, we perform another 4-step
synchronous patch parallelism, serving as a warm-up phase.
Please refer to Section 5.1 in our arXiv version for the
latency measurement details.

5.2. Main Results

Quality results. In Figure 5, we show some qualitative
visual results and report some quantitative evaluation in
Table 1. with G.T. means computing the metric with the
ground-truth COCO [30] images, whereas w/ Orig. refers
to computing the metrics with the outputs from the original
model. For PSNR, we report only the w/ Orig. setting, as
the w/ G.T. comparison is not informative due to significant
numerical differences between the generated outputs and the
ground-truth images.

As shown in Table 1, ParaDiGMS [56] expends consid-
erable computational resources on guessing future denoising
steps, resulting in a much higher total MACs. Besides, it
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#Steps #Devices Method PSNR (↑)
LPIPS (↓) FID (↓)

MACs (T)
Latency

w/ G.T. w/ Orig. w/ Orig. w/ G.T. Value (s) Speedup

1 Original – 0.797 – 24.0 – 338 5.02 –

2
Naïve Patch 28.2 0.812 0.596 33.6 29.4 322 2.83 1.8×

Ours 31.9 0.797 0.146 24.2 4.86 338 3.35 1.5×

50 4
Naïve Patch 27.9 0.853 0.753 125 133 318 1.74 2.9×

Ours 31.0 0.798 0.183 24.2 5.76 338 2.26 2.2×

Naïve Patch 27.8 0.892 0.857 252 259 324 1.27 4.0×

8 ParaDiGMS 29.3 0.800 0.320 25.1 10.8 657 1.80 2.8×

Ours 30.5 0.799 0.211 24.4 6.46 338 1.77 2.8×

Table 1. Quantitative evaluation. MACs measures cumulative computation across all devices for the whole denoising process for generating
a single 1024× 1024 image. w/ G.T. means calculating the metrics with the ground-truth images, while w/ Orig. means with the original
model’s samples. For PSNR, we report the w/ Orig. setting. Our method mirrors the results of the original model across all metrics while
maintaining the total MACs. It also reduces the latency on NVIDIA A100 GPUs in proportion to the number of used devices.
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Figure 6. Measured total latency of DistriFusion with the 50-step
DDIM sampler [58] for generating a single image across different
resolutions on NVIDIA A100 GPUs. When scaling up the res-
olution, the GPU devices are better utilized. Remarkably, when
generating 3840× 3840 images, DistriFusion achieves 1.8×, 3.4×
and 6.1× speedups with 2, 4, and 8 A100s, respectively.

also suffers from some performance degradation. In contrast,
our method simply distributes workloads across multiple
GPUs, maintaining a constant total computation. The Naïve
Patch baseline, while lower in total MACs, lacks the crucial
inter-patch interaction, leading to fragmented outputs. This
limitation significantly impacts image quality, as reflected
across all evaluation metrics. Our DistriFusion can well
preserve interaction. Even when using 8 devices, it achieves
comparable PSNR, LPIPS, and FID scores comparable to
those of the original model.

Speedups. Compared to the theoretical computation reduc-
tion, on-hardware acceleration is more critical for real-world
applications. To demonstrate the effectiveness of our method,
we also report the end-to-end latency in Table 1 on 8 NVIDIA
A100 GPUs. In the 50-step setting, ParaDiGMS achieves an
identical speedup of 2.8× to our method at the cost of com-
promised image quality (see Figure 5). In our arXiv version,
we also show the speedups on more commonly used 25-step
setting. ParaDiGMS only has a marginal 1.3× speedup due
to excessive wasted guesses, which is also reported in Shih
et al. [56]. However, our method can still mirror the original
quality and accelerate the model by 2.7×.

Method
1024 × 1024 2048 × 2048 3840 × 3840

Comm. Latency Comm. Latency Comm. Latency

Original – 5.02s – 23.7s – 140s

Sync. TP 1.33G 3.61s 5.33G 11.7s 18.7G 46.3s
Sync. PP 0.42G 2.21s 1.48G 5.62s 5.38G 24.7s
DistriFusion (Ours) 0.42G 1.77s 1.48G 4.81s 5.38G 22.9s

No Comm. – 1.48s – 4.14s – 21.3s

Table 2. Communication cost comparisons with 8 A100s across
different resolutions. Sync. TP/PP: Synchronous tensor/patch
parallelism. No Comm.: An ideal no communication PP. Comm.
measures the total communication amount. PP only requires less
than 1

3
communication amounts compared to TP. Our DistriFusion

further reduces the communication overhead by 50 ∼ 60%.

When generating 1024× 1024 images, our speedups are
limited by the low GPU utilization of SDXL. To maximize
device usage, we further scale the resolution to 2048× 2048
and 3840 × 3840 in Figure 6. At these larger resolutions,
the GPU devices are better utilized. Specifically, for
3840 × 3840 images, DistriFusion reduces the latency by
1.8×, 3.4× and 6.1× with 2, 4 and 8 A100s, respectively.
Note that these results are benchmarked with PyTorch.
With more advanced compilers, such as TVM [4] and
TensorRT [1], we anticipate even higher GPU utilization and
consequently more pronounced speedups from DistriFusion,
as observed in SIGE [23]. In practical use, the batch size
often doubles due to classifier-free guidance [12]. We
can first split the batch and then apply DistriFusion to
each batch separately. This approach further improves the
total speedups to 3.6× and 6.6× with 4 and 8 A100s for
generating a single 3840× 3840 image, respectively.

5.3. Ablation Study

Compare to tensor parallelism. In Table 2, we bench-
mark our latency with synchronous tensor parallelism (Sync.
TP) and synchronous patch parallelism (Sync. PP), and re-
port the corresponding communication amounts. Compared
to TP, PP has better independence, which eliminates the
need for communication within cross-attention and linear
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Original
Latency: 1.01s

Ours (w/o Warm-up)
LPIPS: 0.404

Latency: 0.374s

Ours (1-Step Warm-up)
LPIPS: 0.288

Latency: 0.388s

Ours (2-Step Warm-up)
LPIPS: 0.196

Latency: 0.400s

Prompt: A small boat in the blue and green water.

Prompt: A motorcylce sits on the pavement on a cloudy day.

Figure 7. Qualitative results on the 10-step DPM-Solver [32, 33]
with different warm-up steps. LPIPS is computed against the
samples from the original SDXL over the entire COCO [5] dataset.
Naïve DistriFusion without warm-up steps has evident quality
degradation. Adding a 2-step warm-up significantly improves the
performance while avoiding high latency rise.

layers. For convolutional layers, communication is only
required at the patch boundaries, which represent a min-
imal portion of the entire tensor. Moreover, PP utilizes
AllGather over AllReduce, leading to lower commu-
nication demands and no additional use of computing re-
sources. Therefore, PP requires 60% fewer communication
amounts and is 1.6 ∼ 2.1× faster than TP, making it a more
efficient approach for deploying diffusion models. We also
include a theoretical PP baseline without any communication
(No Comm.) to demonstrate the communication overhead
in Sync. PP and DistriFusion. Compared to Sync. PP,
DistriFusion further cuts such overhead by over 50%. The
remaining overhead mainly comes from our current usage
of NVIDIA Collective Communication Library (NCCL) for
asynchronous communication. NCCL kernels use SMs (the
computing resources on GPUs), which will slow down the
overlapped computation. Using remote memory access can
bypass this issue and close the performance gap.

Few-step sampling and warm-up steps. Our approach
hinges on the observation that adjacent denoising steps
share similar inputs, i.e., xt ≈ xt−1. However, as we
increase the step size and thereby reduce the number
of steps, the approximation error escalates, potentially
compromising the effectiveness of our method. In Figure 7,
we present results using 10-step DPM-Solver [32, 33]. The
10-step configuration is the threshold for the training-free
samplers to maintain the image quality. Under this setting,
naïve DistriFusion without warm-up struggles to preserve
the image quality. However, incorporating an additional
two-step warm-up significantly recovers the performance
with only slightly increased latency.

GroupNorm. As discussed in Section 4, calculating accu-
rate group normalization (GN) statistics is crucial for pre-
serving image quality. In Figure 8, we compare four different

Original
Latency: 5.02s

Separate GN
LPIPS: 0.317
Latency: 1.64s

Stale GN
LPIPS: 0.247
Latency: 1.76s

Sync. GN
LPIPS: 0.207
Latency: 1.85s

Ours
LPIPS: 0.211

Latency: 1.77s

Prompt: A kitchen with a microwave, stove, cutlery and fruits.

Prompt: An old clock reading two twenty on a gloomy day.

Figure 8. Qualitative results of different GN schemes with 8 A100s.
LPIPS is computed against the original samples over the whole
COCO [5] dataset. Separate GN only utilizes the statistics from the
on-device patch. Stale GN reuses the stale statistics. They suffer
from quality degradation. Sync. GN synchronizes data to ensure
accurate statistics at the cost of extra overhead. Our corrected
asynchronous GN, by correcting stale statistics, avoids the need for
synchronization and effectively restores quality.

GN schemes. The first approach Separate GN uses statistics
from the on-device fresh patch. This approach delivers the
best speed at the cost of lower image fidelity. This compro-
mise is particularly severe for large numbers of used devices,
due to insufficient patch size for precise statistics estimation.
The second scheme Stale GN computes statistics using stale
activations. However, this method also faces quality degrada-
tion, because of the different distributions between stale and
fresh activations, often resulting in images with a fog-like
noise effect. The third approach Sync. GN use synchronized
communication to aggregate accurate statistics. Though
achieving the best image quality, it suffers from large syn-
chronization overhead. Our method uses a correction term to
close the distribution gap between the stale and fresh statis-
tics. It achieves image quality on par with Sync. GN but
without incurring synchronous communication overhead.

6. Conclusion & Discussion

In this paper, we introduce DistriFusion to accelerate
diffusion models with multiple GPUs for parallelism. Our
method divides images into patches, assigning each to a
separate GPU. We reuse the pre-computed activations from
previous steps to maintain patch interactions. On Stable
Diffusion XL, our method achieves up to a 6.1× speedup on
8 NVIDIA A100s. This advancement not only enhances the
efficiency of AI-generated content creation but also sets a
new benchmark for future research in parallel computing for
AI applications.
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