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Abstract

Large language models (LLMs)-based image captioning
has the capability of describing objects not explicitly ob-
served in training data; yet novel objects occur frequently,
necessitating the requirement of sustaining up-to-date ob-
ject knowledge for open-world comprehension. Instead of
relying on large amounts of data and/or scaling up net-
work parameters, we introduce a highly effective retrieval-
augmented image captioning method that prompts LLMs
with object names retrieved from External Visual–name
memory (EVCAP). We build ever-changing object knowl-
edge memory using objects’ visuals and names, enabling us
to (i) update the memory at a minimal cost and (ii) effort-
lessly augment LLMs with retrieved object names by uti-
lizing a lightweight and fast-to-train model. Our model,
which was trained only on the COCO dataset, can adapt
to out-of-domain without requiring additional fine-tuning
or re-training. Our experiments conducted on benchmarks
and synthetic commonsense-violating data show that EV-
CAP, with only 3.97M trainable parameters, exhibits su-
perior performance compared to other methods based on
frozen pre-trained LLMs. Its performance is also competi-
tive to specialist SOTAs that require extensive training.

1. Introduction
Advanced image captioning based on large language mod-
els (LLMs) [3, 8, 9, 25] has focused on the approach using
big-scale models trained on ever-increasingly large-scale
datasets, which is no longer viable. This is because the com-
putational cost to train the models increases exponentially
and, more importantly, updating training data is almost im-
possible to keep pace with the growth of novel objects in
our daily lives. Sustaining ever-changing object knowledge
with a reasonable cost is a pressing concern in LLMs-based
models to truly unlock open-world comprehension.

Retrieval-augmented image captioning [20, 35] is

*Equal contributions. Code is available at https://jiaxuan-li.github.io/EVCap.

● GT: A person wearing ice skates on a wood floor.
● SmallCap: A person riding a skateboard on top of a 
wooden floor. ✕
● BLIP-2: A person is skating on an ice rink. ✕
● EVCap: A pair of ice skates on top of a wooden floor. ✓
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Figure 1. Overall comparison of our EVCAP and SOTAs. (Upper)
Generated captions by SmallCap, BLIP-2, and our EVCAP for a
commonsense-violating image from the WHOOPS dataset. × and
✓ indicate incorrect and correct predictions, respectively. Incor-
rect objects in captions are highlighted in red , while correct ones
are in blue . SmallCap and BLIP-2 give incorrect predictions for
“ice skates” and “wood floor”, respectively, while our EVCAP

utilizes an external visual–name memory to enhance attention to
objects within the image, leading to superior performance for im-
age captioning. (Lower) Comparison of the number of trainable
parameters, CIDEr score on COCO and NoCaps datasets. The
size of each circle reflects the log number of trainable parameters.
EVCAP (3.97M) has less trainable parameters than others while
achieving comparable results with SOTAs at scale.

emerging as an alternative since it considerably reduces
training costs in both time and data while producing en-
couraging results. Nonetheless, with their huge datastore,
it is obvious that LLMs would imitate the given texts, lim-
iting their ability to describe open-world objects properly.
For instance, SmallCap [35] considers the words “skate-
board” and “wooden floor” to be a pair regardless of vi-
sual appearances containing a commonsense-violating pair
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of “ice skates” and “wood floor” (Fig. 1, upper). Addition-
ally, prompting the LLMs given a lot of retrieved texts be-
comes cumbersome, requiring more trainable parameters.
Fig. 1 (lower) shows that the CIDEr scores obtained by a
lightweight SmallCap [35] with 43M trainable parameters
are far away from those obtained by a heavy REVEAL [20]
with 2.1B trainable parameters. Beyond that, due to the
frequent occurrence of new objects, access to their sample
texts is not always feasible, making the memory utilized
in [20, 35] difficult to grow. We thus aim to streamline the
external memory used in previous work [20, 35] by storing
a sufficiently small amount of object information. And, of
course, not only does the model not stereotype the example
sentences, but the number of trainable parameters would be
reduced drastically as a result of the causation (Fig. 1).

We follow [13, 40] to construct a key-value memory
where the key is represented by object’s features, and the
value corresponds to object’s name. Unlike [13, 40], which
rely on object definition as the key, our method leverages
the visual appearance of the object as the key because of the
abundance of object images readily available on the inter-
net. We propose an external visual–name memory tailored
for ease of expansion and cost-effectiveness in upholding
up-to-date object information. We present a highly ef-
fective retrieval-augmented LLMs-based image captioning
method, called EVCAP, that prompts frozen LLMs with ob-
ject names retrieved from our proposed memory for open-
world comprehension. EVCAP contains a frozen image en-
coder ViT [14] and Q-Former [25] with trainable image
query tokens for object retrieval, an attentive fusion mod-
ule, a trainable linear layer for mapping between vision and
language latent spaces, and a frozen LLM decoder [10] for
generating captions. Specifically, the attentive fusion mod-
ule feeds retrieved object names and visual features into a
customized frozen Q-Former using trainable object name
query tokens to implicitly reduce the presence of superflu-
ous object names. As a result, EVCAP amounts to only
3.97M trainable parameters. Once trained, the model can be
adapted to new domains and large-scale data without further
fine-tuning or re-training. Our contributions are as follows:
• We provide an extensible external visual–name memory

with minimal but useful object information, which en-
ables LLMs-based models to comprehend the open world.

• We present a highly efficacious retrieval-augmented im-
age captioning EVCAP with 3.97M trainable parameters.
On in-/out-domain benchmarks and synthetic

commonsense-violating dataset, EVCAP trained solely on
COCO dataset competes with other lightweight methods by
a margin while being on par with other specialist SOTAs.

2. Related Work
Image captioning aims to describe the contents of a given
image. It can be roughly divided into two approaches: non-

LLMs-based methods and LLMs-based ones. The former
approaches [4, 22, 42] typically employ a visual encoder
and a language decoder in an end-to-end fashion to gen-
erate captions. However, they are incapable of describing
open-world objects. The latter one leverages pre-trained
large-scale vision models (CLIP [32], ViT [12]) and LLMs
(GPTs [7, 31], T5 [33], LLaMA [37]) by bridging the gap
between two modalities using either pre-training with large-
scale data or the learned mapper or prompt techniques.
LLMs-based models [8, 9, 25, 29] demonstrate advance-
ments in image captioning challenges, allowing the capacity
to describe anything as long as pre-trained vision models
can recognize it. Our method belongs to the LLMs-based
approaches, but instead of relying fully on the pre-trained
vision model, we use object names retrieved from the exter-
nal memory to augment LLMs-based image captioning.
Novel object captioning is a branch of image captioning
that describes images containing objects that were not seen
during training. Non-LLMs-based methods explore more
objects by learning from unpaired image-sentence sources
(DCC [19], NOC [39]) or rely on novel object detectors
to recognize novel concepts (NBT [28], OSCAR [26] and
VinVL [45]). LLMs-based methods such as ViECap [15]
leverage the pre-trained CLIP [32] to obtain object entities
Nevertheless, the cut-off in training time of the pre-trained
object detector or CLIP prevents it from detecting novel
objects that arise quickly in reality. Unlike earlier work,
we can readily update our recognition of novel concepts by
adding them to external memory, ensuring that we keep any
new objects from the past and even the future.
Retrieval-augmented image captioning is a recently pop-
ular approach that augments the captioning model with re-
trieved information for better open-world understanding.
AoANet [16] uses a memory bank of image-sentence pairs
and target words. SmallCap [35] employs image-to-text re-
trieval to obtain sampled captions from a captions datastore.
RA-CM3 [44] retrieves documents from an external mem-
ory of a mixture of text and image via a dense multimodal
retriever. EXTRA [34] and Re-ViLM [43] exploit the sim-
ilarity of the input image and vision candidates to retrieve
captions. Different from the previous methods, our external
memory contains visual–name pairs to avoid redundant in-
formation in the external captions/documents. In addition,
we use an attentive fusion module to mitigate the effects of
irrelevant retrieved object names on caption generation.

3. Proposed EVCAP

3.1. Idea of EVCAP

We aim to build a retrieval-augmented LLMs-based image
captioning model with a sufficiently small yet informative
external memory. It involves two challenges: (1) construct-
ing an expandable external memory and (2) building an ef-
fective LLMs-based model using retrieved object names.
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Figure 2. Schematic of our proposed EVCAP. It consists of an external visual–name memory with image embeddings and object names
(upper), a frozen ViT and Q-Former equipped with trainable image query tokens, an attentive fusion module developed by a customized
frozen Q-Former and trainable object name query tokens, and a frozen LLM with a trainable linear layer (lower). The ViT and Q-
Former extract learned visual features from the input image, which are then used to retrieve object names from the external memory.
These retrieved object names and learned visual features undergo cross-attention in the customized Q-Former, creating refined object name
features. Finally, the object name features combined with visual features are fed into the LLM post a linear layer for generating captions.

As discussed above, challenge (1) can be resolved by uti-
lizing the visual appearance of objects. However, if we re-
strict our memory to only a visual–name pair for each ob-
ject, our memory will be lacking in diversity. Therefore,
we gather several images for each target object. Addition-
ally, we keep the synthetic images in our memory to avoid
the harm that synthetic images might cause to our method,
as pointed out in [18]. With the capability to collect im-
ages from the internet, EVCAP can be easily expanded to
include novel objects from the real world effortlessly.

We base our method on the frozen pre-trained vision
model and LLM with several trainable layers (Fig. 2), giv-
ing in a model that is cheap to train. To guide the LLM,
we adopt a recently popular approach called prompting as
in [11, 25, 29, 35, 46]. We begin by matching the learned vi-
sual features from the input image with image embeddings
stored in memory, retrieving object names. We also intro-
duce an attentive fusion module designed to implicitly re-
move irrelevant retrieved names. Finally, following the at-
tentive fusion, we combine the learned visual features and
object name features to form a prompt for the LLM to gen-
erate a caption, thus addressing challenge (2).

3.2. External visual–name memory

To build the external visual–name memory, we first col-
lect image–name pairs from the external data source. After

that, we encode these images into image embeddings, which
serve as keys in memory, and use their names as values.
External data source. We utilize object images from LVIS
dataset [17] to construct our external visual–name memory
M. Specifically, we use 1203 objects in LVIS, where we
randomly select from one to ten images for each object,
amounting to 8581 object images. Furthermore, as men-
tioned in Sec. 3.1, we also incorporate synthetic images
in our memory construction. Using stable diffusion [36],
we generate five additional images for each object, with a
prompt of “a photo of {object name}”, resulting in a total
of M = 14596 (8581+ 5× 1203) images. Each object im-
age Xi is associated with an object name vi. Note that many
object images may share the same object name. For the sake
of simplicity, we may regard each image as corresponding
to a single name. In summary, we have M image–name
pairs {(Xi, vi)}Mi=1 for external memory construction.
External memory construction. For each image Xi, we
use a frozen vision encoder E(·) (see Sec. 3.3 for detail)
to project it into 32 embeddings with the size of 1 × 768
each: {ki

1,k
i
2, · · · ,ki

32} = E(Xi). We then average 32
embeddings to produce a single embedding ki (1 × 768)
that serves as the key (visual) in M. The paired object
name vi acts as its value (name). Consequently, we have the
visual–name memoryM = {(ki, vi)}Mi=1 which is indexed
using FAISS [21], facilitating rapid searches based on sim-
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ilarity measures. Our memory can be expanded effortlessly
by gathering additional visual–name pairs (see Sec. 5.3).

3.3. Object names retrieval

Image encoding. We feed a frozen vision encoder E image
X and image query tokens Timg to produce visual features
Q. To enable the retrieval process controllable, we make
image query tokens to be trainable. Thus, the image en-
coding process can be summarized as Q = E(X,Timg).
We use the BLIP-2 pre-trained vision encoder [25], which
consists of a pre-trained vision transformer ViT-g [14] out-
putting image features (257 × 1408), and a Q-Former re-
ceiving image features producing |Q| = 32 learned visual
features (1× 768 each). We denote Q = {q1,q2, ...,q32}.
Retrieval. Having obtainedQ, we calculate the cosine sim-
ilarity between the query qj ∈ Q and the key ki ∈M. The

similarity calculation is given by SIM(qj ,k
i) =

q⊤
j ki

∥qj∥∥ki∥ ,
where i ∈ [1,M ], j ∈ [1, 32]. Given each qj , we select
one key with the highest similarity score, resulting in 32
key–value candidates {kbest

j , vbestj }32j=1.
After that, we filter out candidates with repeated object

names (values), and then select the top-K values. In particu-
lar, we determine the index j from the key that has the high-
est SIM score. These selected values vbestj are redefined as
the new notation vl in the retrieved top-K object names for
the input image, which can be summarized as follows:

{kbest
j , vbestj } = argmax

ki
SIM

(
qj ,k

i
)
,

j = argmax
j

SIM(qj ,k
best
j ), vl ← vbestj ,

where l ∈ [1,K]. As a result, the retrieved top-K object
names are {vl}Kl=1.

3.4. Attentive fusion

Since the object names obtained from the retrieval process
may be redundant, we develop an attentive fusion module
to selectively distill object name features.

The retrieved object names {vl}Kl=1 are concatenated to-
gether into a sequence S, each separated by a delimiter:
S = {v1,[SEP], v2,[SEP], · · · ,[SEP], vK}. The se-
quence S and visual features Q are fed into a customized
Q-Former F(·), which is constructed from the frozen pre-
trained Q-Former as we used in vision encoder E . Nonethe-
less, in order to enable object names to get attention from
visual features, we switch the image embedding port and
the text instruction port (see the supplement for architecture
detail). Like in the image encoding process in Sec. 3.3, we
make the object name query tokens Tobj learnable during
training to assist in learning object name features related to
the caption. The size of Tobj is P ×768, where P indicates
the number of object name query tokens. We get the object
name features V = F(S,Q,Tobj).

3.5. Caption generation

Before inputting the visual featuresQ and object name fea-
tures V into the LLM decoder, we concatenate (⊕) them
and use a linear layer ϕ(·) to project them into the in-
put latent space of the LLM as ϕ(Q ⊕ V). The LLM
used for caption generation in this work is the pre-trained
Vicuna-13B [10], an open-source chatbot constructed from
LLaMA [37]. During training and evaluation, we design a
prompt in a conversational format, that is similar to [46]:

###Human: <Img><ProjFeature></Img>
Describe this image in detail.
###Assistant:

in which, ProjFeature denotes the projected feature
ϕ(Q⊕ V) after the linear layer. In training phase, given in-
put caption tokens {ci}Li=1, the LLM decoder concatenates
the embedded prompt {wi}Ni=1 and the embedded caption
tokens {ci}Li=1 as input, and predicts the caption tokens in
an autoregressive fashion, while in the evaluation phase, we
only need to input the embedded prompt. We train EV-
CAP by minimizing the cross-entropy loss in an end-to-end
way: Lθ = −

∑L
i=1 log pθ (ci | w1, ...wN , c1, ..., ci−1), in

which θ indicates the trainable parameters.

4. Experimental Settings

4.1. Training setup

Implementation. EVCAP uses the same image encoder as
in BLIP-2 [25], consisting of a ViT-g [14] and their pre-
trained Q-Former. Since we intend to obtain object name
features through cross-attention between retrieved object
names and visual features, we develop a customized Q-
Former, which consists of BERT [23] with cross-attention
layers inserted at every other transformer block. We use a
frozen Vicuna-13B [10] as the caption generator.
Training dataset. For all experiments, we exclusively train
EVCAP using the training set of COCO dataset [27], con-
sisting of 82k images and 5 captions per images. The entire
training process takes about 3 hours on 4 A6000 GPUs, us-
ing mixed precisions (more details in the supplementary).

4.2. Evaluation setup

Evaluation dataset. We evaluate EVCAP, trained using
the COCO training set, across four datasets: its test set,
two challenging benchmarks – NoCaps validation set and
Flickr30k test set, and a synthetic commonsense-violating
dataset – WHOOPS. We adhere follow prior work [15, 41]
to use the same images of Karpathy split [22] on COCO
test set, NoCaps [2] validation set, and Karpathy split on
Flickr30k [30] test set. In addition, WHOOPS [6] is a syn-
thetic image captioning dataset comprising 500 synthetic
commonsense-violating images and 2500 paired captions.
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Table 1. Quantitative comparison against SOTA methods on three common image captioning benchmarks. * denotes using a memory
bank. We report the size of training data and parameters; BLEU@4 (B@4), METEOR (M), CIDEr (C), and SPICE (S) scores on COCO
test set; C and S scores on in-domain, near-domain, out-domain and overall data of NoCaps validation set; C and S scores on Flickr30k test
set. Higher score is better. Bold indicates the best results among compared methods, normal indicates the second best results.

Method
Training COCO NoCaps val Flickr30k

Data Para. Test In-domain Near-domain Out-domain Overall Test
B@4 M C S C S C S C S C S C S

Heavyweight-training models
VinVL [45] 8.9M 110M 38.2 30.3 129.3 23.6 96.8 13.5 90.7 13.1 87.4 11.6 90.9 12.8 – –
AoANet+MA* [16] COCO – 38.0 28.7 121.0 21.8 – – – – – – – – – –
NOC-REK* [40] COCO 110M – – – – 104.7 14.8 100.2 14.1 100.7 13.0 100.9 14.0 – –
RCA-NOC* [13] COCO 110M 37.4 29.6 128.4 23.1 92.2 12.9 87.8 12.6 87.5 11.5 88.3 12.4 – –
ViECap GPT2 [15] COCO 124M 27.2 24.8 92.9 18.2 61.1 10.4 64.3 9.9 65.0 8.6 66.2 9.5 47.9 13.6
InstructBLIP Vicuna-13B [11] 129M 188M – – – – – – – – – – 121.9 – 82.8 –
OSCAR [26] 4.1M 338M 37.4 30.7 127.8 23.5 83.4 12.0 81.6 12.0 77.6 10.6 81.1 11.7 – –
BLIP [24] 129M 446M 40.4 – 136.7 – 114.9 15.2 112.1 14.9 115.3 14.4 113.2 14.8 – –
BLIP-2 FlanT5-XL [25] 129M 1.2B 42.4 – 144.5 – 123.7 16.3 120.2 15.9 124.8 15.1 121.6 15.8 – –
REVEAL* T5 [20] 1.3B 2.1B – – 145.4 – – – – – – – 123.0 – – –

Lightweight-training models
MiniGPT4 Vicuna-13B [46] 5M 3.94M 38.0 29.6 129.6 23.4 99.0 14.8 106.9 15.3 110.8 14.9 108.8 15.1 78.4 16.9
SmallCap* GPT2 [35] COCO 7M 37.0 27.9 119.7 21.3 – – – – – – – – 60.6 –
ClipCap GPT2 [29] COCO 43M 33.5 27.5 113.1 21.1 84.9 12.1 66.8 10.9 49.1 9.6 65.8 10.9 – –
EVCAP* Vicuna-13B COCO 3.97M 41.5 31.2 140.1 24.7 111.7 15.3 119.5 15.6 116.5 14.7 119.3 15.3 84.4 18.0

Specialist SOTAs
Qwen-VL Qwen-7B [5] 1.4B 9.6B – – – – – – – – – – 121.4 – 85.8 –
CogVLM Vicuna-7B [41] 1.5B 6.5B – – 148.7 – – – – – 132.6 – 128.3 – 94.9 –
PaLI mT5-XXL [9] 1.6B 17B – – 149.1 – – – – – – – 127.0 – – –
PaLI-X UL2-32B [8] 2.2B 55B – – 149.2 – – – – – – – 126.3 – – –

Compared methods. We compare EVCAP with sev-
eral SOTAs. According to the trainable parameters size,
they can be divided into 1) Heavyweight-training (between
100M to 5B): VinVL [45], AoANet [16], NOC-REK [40],
RCA-NOC [13], ViECap [15], InstructBLIP [11], OS-
CAR [26], BLIP [24], BLIP-2 [25], REVEAL [20]; 2)
Lightweight-training (less than 100M): MiniGPT4 [46],
SmallCap [35], ClipCap [29]; and also 3) Specialist SO-
TAs with huge trainable parameters (larger than 5B): Qwen-
VL [5], CogVLM [41], PaLI [9], PaLI-X [8]. Among these
methods, AoANet, NOC-REK, RCA-NOC, REVEAL, and
SmallCap are retrieval-augmented captioning methods.

5. Experimental Results

5.1. Results on in-/out-domain benchmarks

We assess EVCAP against SOTAs on both in-domain and
out-domain benchmarks. The COCO test set can be consid-
ered as in-domain data as we only train our model on the
COCO training set. Out-domain benchmarks are the No-
Caps validation set and the Flickr30k test set.
Quantitative results. Tab. 1 details our EVCAP’s perfor-
mance in comparison with SOTA methods. We first eval-
uate training costs in terms of training data sizes and pa-
rameters. Similar to various heavyweight-training models
that exclude LLMs and the majority of lightweight-training
models, EVCAP is trained solely on the COCO training
set. It utilizes only 3.97M trainable parameters, position-
ing it as the second smallest, slightly larger than MiniGPT4

with 3.94M. Among lightweight-training models, our ap-
proach outperforms others, achieving the highest scores
on all benchmarks. Despite using less training data and
nearly identical trainable parameters as MiniGPT4, EVCAP
significantly surpasses it, with a marked improvement of
10.5, 10.5, and 6.0 in CIDEr scores for each benchmark.
When further compared with heavyweight-training models,
the performance of EVCAP stands out among million-level
models, nearly matching InstructBLIP, except in NoCaps.
Note that since BLIP-2 does not include Vicuna check-
points, InstructBLIP performs pre-training with Vicuna us-
ing the same procedure as BLIP-2, whereas EVCAP does
not involve pre-training. Against REVEAL, which also uses
external memory, our EVCAP utilizes about 1/3000 train-
ing data and 1/500 training parameters yet yields compa-
rable results. Moreover, EVCAP’s performance is on par
with BLIP-2, the top-performing model with 1.2B train-
able parameters. This highlights EVCAP’s efficiency and
effectiveness despite its significantly smaller training cost,
thanks to our external visual–name memory. Regarding
specialist SOTAs, they use billion-level training data and
over 5B trainable parameters, so it is acceptable that they
can achieve exceptionally strong performance, surpassing
EVCAP by nearly 10 on all benchmarks in CIDEr scores.

Qualitative results. Fig. 3 presents a comparison of cap-
tions generated by our EVCAP and three SOTA models
across three benchmarks. The captions of SmallCap are
generated by its publicly accessible demo [1]. We gener-
ate captions of MiniGPT4 and BLIP-2 using their respec-
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GT: The two guinea pigs are getting 
dried off in a yellow towel.
SmallCap: A person holding a small
animal in a towel.
MiniGPT4: Two small animals are 
wrapped in a towel.
BLIP-2: Two guinea pigs wrapped in a 
yellow towel.
EVCap: Two guinea pigs are wrapped 
in a yellow towel.

GT: A computer screen showing two
men sitting at a table.
SmallCap: Two men sitting at a table
with a laptop.
MiniGPT4: A laptop computer sitting on 
top of a table.
BLIP-2: A laptop computer with a 
picture of two men on it. 
EVCap: A laptop computer with a 
picture of two men on the screen.

NoCaps Val

GT: Two men are riding on a wooden 
vehicle pulled by two donkeys.
SmallCap: A donkey pulling a cart with 
a man in the background.
MiniGPT4: Two men riding on a
donkey in the dirt.
BLIP-2: Two men riding a horse drawn 
cart through a field.
EVCap: Two men riding in a cart
pulled by two donkeys.

GT: A very young child in a denim 
baseball cap eats a green apple.
SmallCap: A young boy holding an 
apple in his hand.
MiniGPT4: A baby sitting in a high
chair eating an apple.
BLIP-2: A baby sitting in a white chair 
eating a green apple. 
EVCap: A toddler eating a green apple
while wearing a hat.

Flickr30k TestCOCO Test

GT: A green bus driving through a rural
area with trees in the background.
SmallCap: A bus driving down a street
next to trees.
MiniGPT4: A green bus is driving 
down the street.
BLIP-2: A green bus driving down a 
road with trees in the background.
EVCap: A green bus driving down a 
road next to trees.

GT: A woman in a blue top with 
headphones and two cellphones.
SmallCap: A woman sitting in front of 
a laptop computer.
MiniGPT4: A woman sitting on a 
couch holding two phones.
BLIP-2: A woman sitting on a couch 
with two cell phones. 
EVCap: A woman wearing 
headphones holding two cell phones.

Figure 3. Examples of captions generated by our EVCAP and three SOTA methods on COCO test set, NoCaps validation set, and Flickr30k
test set. GT refers to the Ground Truth captions. Incorrect objects in captions are highlighted in red , while correct ones are in blue . Our
EVCAP correctly generates captions across different datasets, showing performance comparable to BLIP-2.

tive pre-trained models. As a lightweight and retrieval-
augmented captioning method, SmallCap struggles to pro-
duce accurate captions for given images, primarily because
it relies on retrieved captions laden with extraneous in-
formation. MiniGPT4, though aligned with the primary
content of images, sometimes misses certain objects like
“trees” and “headphones”. This oversight stems from its
focus on the main objects in images, without integrating
additional cues for other objects provided by the retrieved
object names. In contrast, the captions generated by our
EVCAP are comparable to those of BLIP-2.

5.2. Results on commonsense-violating data

To explore our EVCAP’s capability in describing contents
in open-word settings, we further evaluate it on WHOOPS
dataset, which contains commonsense-violating images.
Quantitative results. In Tab. 2, we compare the per-
formance of EVCAP, MiniGPT4, BLIP, and BLIP-2 on

GT: This is an image of a blue Pikachu with yellow accents.
SmallCap: A blue and white stuffed animal on a table.
MiniGPT4: A blue pokemon sitting on the floor with its eyes closed.
BLIP-2: A blue Pikachu sitting in a dark room.
EVCap: A blue and yellow cartoon character sitting on a dark 
background.
EVCap (w/ WHOOPS): A blue Pikachu is sitting on the floor.

Figure 4. Examples of captions generated by our EVCAP, EVCAP

(w/ WHOOPS), and three SOTAs on WHOOPS dataset. Incorrect
objects are highlighted in red , while correct ones are in blue .

WHOOPS dataset. This dataset is particularly challeng-
ing due to its inclusion of unusual objects [6]. Initially, as
an end-to-end trained model, our EVCAP exhibits perfor-
mance similar to MiniGPT4. However, there is a noticeable
improvement in the CIDEr score, after the external mem-
ory is enriched with 2396 new objects from the WHOOPS
dataset, each represented by 5 synthesized images generated
using stable diffusion [36]. It highlights the effectiveness of

13738



Table 2. Quantitative results on commonsense-violating data –
WHOOPS dataset. EVCAP (w/ WHOOPS) denotes EVCAP using
the memory expanded by WHOOPS objects. The results reveal the
open-world comprehension ability and expandability of EVCAP.

Method B@4 M C S

Only pre-trained models
BLIP [24] (from [6]) 13 – 65 –
BLIP-2 FlanT5-XXL [25] (from [6]) 31 – 120 –
BLIP-2 FlanT5-XXL [25] (reproduced) 28 26.7 93.1 17.9

Finetuned models on COCO
MiniGPT4 [46] 24.2 26.7 84.8 18.2
BLIP [24] 22.9 25.0 79.3 17.1
BLIP-2 FlanT5-XL [25] 25.8 27.0 89.1 18.3

End-to-end trained models on COCO
EVCAP 24.1 26.1 85.3 17.7
EVCAP (w/ WHOOPS) 24.4 26.1 86.3 17.8

Table 3. Ablation study on components prior to the LLM decoder
in EVCAP. The result of “+ Attentive fusion” demonstrates the
substantial impact of the external visual–name memory.

Method COCO test NoCaps val Flickr30k test

C S C S C S

ViT + Q-Former (Baseline) 134.4 23.9 108.8 14.2 76.8 17.3
+ Image query tokens (Baseline+) 134.1 23.8 109.0 14.3 77.3 17.2
+ Attentive fusion (EVCAP) 140.1 24.7 119.3 15.3 84.4 18.0

GT: A hamster on a blanket with a hand behind it.
Baseline: A hamster sitting on a couch with a person's hand near it.
Baseline+: A close up of a small hamster on a bed.
EVCap: A small hamster sitting on a blanket next to a hand.
(pillow, hamster, grizzly, gameboard, kitten, spectacles, cat, blanket,
giraffe, pug-dog)

Figure 5. Visualization of the captions generated from ablation
study on the NoCaps validation set. We also show the retrieved
object names by EVCAP, presented in gray. Incorrect objects in
captions are highlighted in red , while correct ones are in blue .

our idea of incorporating an expandable external memory
into the captioning model for open-world comprehension.
Qualitative results. Fig. 4 illustrates the captions gener-
ated by EVCAP, EVCAP (w/WHOOPS), and three SO-
TAs for one image from the WHOOPS dataset. Simi-
lar to other methods except for BLIP-2, EVCAP can not
recognize “blue cartoon character” as “Pikachu”, while
EVCAP (w/WHOOPS) successfully predicts it because of
the updated memory. SmallCap and MiniGPT4 tend to
generate captions with hallucinatory objects, a result of
commonsense-violating contents present in the images.

5.3. Detailed analysis

Ablation study. We assess the contribution of each compo-
nent prior to the LLM decoder in EVCAP by incrementally
integrating the image query tokens and the attentive fusion
module into our baseline model. The baseline model com-
prises a ViT+Q-Former, a linear layer, and a LLM decoder.

42

Figure 6. Visualization of the visual features in external memory
using t-SNE. For visual features in LVIS dataset’s objects (blue),
the related objects fall in the same cluster. After adding more vi-
sual features of synthesized images from WHOOPS’ objects, new
objects (red) are located at appropriate clusters (zoom-in view).

The quantitative results are shown in Tab. 3. When em-
ploying only the baseline model (Baseline), CIDEr scores
drop notably by 5.7, 10.5, and 7.6 on COCO, NoCaps, and
Flickr30k, respectively. The inclusion of trainable image
query tokens (Baseline+) brings a marginal improvement
on NoCaps and Flickr30k. However, the performance is
significantly enhanced with the addition of attentive fusion
(along with the introduction of external memory), indicat-
ing the pivotal role of the external visual–name memory in
the overall effectiveness of EVCAP. This is further corrob-
orated by the qualitative results in Fig. 5, where captions
from Baseline and Baseline+ inaccurately include objects
like “couch” and “bed”, and Baseline+ overlooks “hand”.
Exploration for external memory expandability. To
demonstrate the scalability of the external memory in EV-
CAP, we visualize the visual features stored in LVIS exter-
nal memory, and newly synthesized data from objects ap-
pearing in the WHOOPS dataset. We employ t-SNE [38] to
plot visual features after reducing their dimensions to 2-D
(Fig. 6). For clear visualization, we only randomly display
3649 visual features in LVIS memory, and add 479 visual
features from WHOOPS objects. Among them, 35 sam-
ples are randomly labeled. The result shows a clear cluster-
ing of LVIS objects (blue) in the external memory, as well
as the successful integration and appropriate localization of
new objects from WHOOPS (red) into these clusters. This
pattern not only confirms the distinctiveness of visual fea-
tures already present in the memory but also demonstrates
the potential to accurately incorporate and differentiate new
objects introduced from updated data. These findings high-
light our external memory’s ability to expand and maintain
its effectiveness even as new data is incorporated.
Impact of external memory size. We examine the impact
of external memory size in Tab. 4. On the one hand, we
randomly remove 30%, 60%, and 90% data in the external
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Table 4. Impact of the external memory size on the performance
of EVCAP by evaluation under CIDEr scores. Changes in the size
of external memory result in changes in performance.

Method NoCaps val Flickr30k

In Near Out Overall Test

LVIS objects (EVCAP) 111.7 119.5 116.5 119.3 84.4
– 30% LVIS 112.0 119.2 115.3 118.8 85.0
– 60% LVIS 111.4 119.1 116.2 119.0 85.1
– 90% LVIS 110.6 118.2 115.8 118.3 83.6
+ WHOOPS 110.7 118.9 116.7 119.0 84.9

135.6

140.4 139.5 139.3 140.1 140.1 139.6 140.3

111.2

116.4 117.9 118.7 119.3 116.2 116.8 118.7

80.3
84.7 85.2 84.9 84.4 85.1 84.7 84.8

80

100
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Figure 7. CIDEr scores after training EVCAP with the number of
retrieved object names K from 0 to 20. The results indicate that
the performance is relatively optimal when K is set to be 10.

memory constructed from LVIS objects. The results show
the performance gradually degrades on NoCaps as reducing
30% and 90% LVIS. Despite some unexpected increases in
certain results on NoCaps (5th row) and Flickr30k (4th - 5th
rows), they do not alter the overall downward trend. Similar
phenomena are also noted in SmallCap [35], we speculate
it is due to data distribution. On the other hand, as we in-
fuse WHOOPS knowledge into LVIS memory, there is a
slight improvement on NoCaps (out) and Flickr30k. These
observations validate the model’s capability to effectively
retrieve object names from an updated memory, enhancing
its performance in generating captions.
Impact of the number of retrieved object names. We
investigate how the number of retrieved object names K
(Sec. 3.3) affect EVCAP in Fig. 7. We train the model with
K from 0 to 20 and evaluate the performance under CIDEr
on all three benchmarks. From the results, we can find that
the model works worst on the out-domain dataset (NoCaps)
with zero object names. It confirms that the performance
boost from Baseline+ to EVCAP (Tab. 3) is primarily at-
tributed to the retrieval-augmented mechanism, but not the
customized Q-Former itself. With more object names, per-
formance fluctuates but improves. Furthermore, we observe
that setting K to 10 yields relatively optimal overall perfor-
mance, validating the choice of K = 10 in EVCAP.
Analysis with different decoders. To explore the influence
of different LLMs decoders on our EVCAP, we experiment
by substituting Vicuna-13B with GPT2 and Vicuna-7B, as
detailed in Tab. 5. With GPT2 as the decoder, EVCAP still
markedly surpasses other GPT2-based models, achieving

Table 5. Analysis with different LLM decoders including GPT2,
Vicuna-7B, and Vicuna-13B. The results reveal EVCAP is effec-
tive when applying it in different LLM decoders.

Method LLM COCO test NoCaps val Flickr30k test

C S C S C S

SmallCap [35] GPT2 119.7 21.3 – – 60.6 –
ViECap [15] GPT2 92.9 18.2 66.2 9.5 47.9 13.6
EVCAP GPT2 131.0 23.2 97.6 13.3 70.6 16.1

MiniGPT4 [46] Vicuna-7B 119.4 23.5 108.7 15.7 73.9 17.2
InstructBLIP [11] Vicuna-7B – – 123.1 – 82.4 –
EVCAP Vicuna-7B 139.0 24.7 116.8 15.3 82.7 18.0

MiniGPT4 [46] Vicuna-13B 129.6 23.4 108.8 15.1 78.4 16.9
InstructBLIP [11] Vicuna-13B – – 121.9 – 82.8 –
EVCAP Vicuna-13B 140.1 24.7 119.3 15.3 84.4 18.0

impressive gains of 11.3 and 10.0 under CIDEr on COCO
and Flickr30k, compared to SmallCap. When employing
Vicuna-7B, the comparison of performance trends mirrors
those observed with Vicuna-13B, further attesting to the ro-
bustness and adaptability of EVCAP across different LLM
decoders. Notably, both SmallCap, which retrieves cap-
tions, and our GPT2-based EVCAP, which retrieves object
names, use the same GPT2 decoder. Therefore, their com-
parison also underscores the effectiveness of our method’s
object name retrieval and attentive fusion strategy.
Limitations. First, EVCAP cannot retrieve all objects that
appear in the given image due to the memory coverage lim-
its, leading to incomplete image descriptions (Fig. 4). We
will investigate integrating object detection with image cap-
tioning to enhance completeness. Second, our focus on ob-
ject representation restricts consideration of other crucial
captioning elements, affecting overall performance. Simi-
lar to all models trained with COCO dataset, EVCAP has
limitations in generating varied styles, which is reflected in
our relatively modest performance improvements in Tab. 2,
compared to MiniGPT4. We will overcome it by exploring
methodologies that encourage style diversity in the future.

6. Conclusion

We further advance image captioning in real-world sce-
narios by introducing EVCAP, a novel image captioning
model with object names retrieved from an external visual–
name memory. The external memory is easily expand-
able, allowing for effortless updates with new object visuals
and names. We extensively compare EVCAP with SOTAs
on various benchmarks and commonsense-violating data,
demonstrating its significant superiority in performance.
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