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Figure 1. EgoGen: a scalable synthetic data generation system for egocentric perception tasks, with rich multi-modal data and accurate
annotations. We simulate camera rigs for head-mounted devices (HMDs) and render from the perspective of the camera wearer with various
sensors. Top to bottom: middle and right camera sensors in the rig. Left to right: photo-realistic RGB image, RGB with simulated motion
blur, depth map, surface normal, segmentation mask, and world position for fisheye cameras widely used in HMDs.

Abstract

Understanding the world in first-person view is funda-
mental in Augmented Reality (AR). This immersive perspec-
tive brings dramatic visual changes and unique challenges
compared to third-person views. Synthetic data has empow-
ered third-person-view vision models, but its application to
embodied egocentric perception tasks remains largely un-
explored. A critical challenge lies in simulating natural
human movements and behaviors that effectively steer the
embodied cameras to capture a faithful egocentric repre-
sentation of the 3D world. To address this challenge, we
introduce EgoGen, a new synthetic data generator that can
produce accurate and rich ground-truth training data for
egocentric perception tasks. At the heart of EgoGen is a
novel human motion synthesis model that directly lever-
ages egocentric visual inputs of a virtual human to sense
the 3D environment. Combined with collision-avoiding mo-
tion primitives and a two-stage reinforcement learning ap-
proach, our motion synthesis model offers a closed-loop so-

lution where the embodied perception and movement of the
virtual human are seamlessly coupled. Compared to previ-
ous works, our model eliminates the need for a pre-defined
global path, and is directly applicable to dynamic environ-
ments. Combined with our easy-to-use and scalable data
generation pipeline, we demonstrate EgoGen’s efficacy in
three tasks: mapping and localization for head-mounted
cameras, egocentric camera tracking, and human mesh re-
covery from egocentric views. EgoGen will be fully open-
sourced, offering a practical solution for creating realistic
egocentric training data and aiming to serve as a useful tool
for egocentric computer vision research.

1. Introduction
The analysis of visual input from front-facing egocentric
cameras is crucial for applications that benefit from a first-
person perspective, mirroring the natural human experi-
ence [23, 43, 115]. AR devices, for instance, can utilize
this viewpoint to amplify user immersion. Such cameras
can also cater to individual preferences, providing custom
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visual assistance for those with impaired vision [19, 120].
Despite its potential, egocentric perception faces chal-

lenges, primarily due to the scarcity of labeled data.
Although datasets like Ego4D [23], ADT [61], Epic-
Kitchen [13] and HoloAssist [102] exist, creating such
datasets with rich and accurate annotations is costly and
raises privacy concerns [115]. Alternatively, using graphics
techniques to render synthetic multi-modal visual data has
proven to be cost-effective and successful in training deep
learning models, such as 3D human body estimation [8] and
facial landmark detection [106].

Creating egocentric synthetic data is challenging because
egocentric cameras capture the complex interplay of body
movements and the environment from the camera wearer’s
viewpoint. Modeling the intricate details and variations in
human behavior presents a significant challenge.

To tackle this problem, we introduce EgoGen, an ego-
centric synthetic data generation approach that simulates
data from embodied sensors, i.e., front-facing cameras in
head-mounted devices (HMD). While the ultimate goal is
to simulate human behaviors that are indistinguishable from
reality, in this work, we focus on creating virtual humans
(i.e., camera wearers) that can explore and avoid obstacles
in the 3D world that is not only complex and dynamic but
could potentially include other moving virtual humans.

Specifically, we propose a novel generative human mo-
tion model. Our key insight is that body movement and
embodied perception should be seamlessly coupled. As
William Gibson aptly stated, “We see in order to move; we
move in order to see.”, our egocentric perception is crucial
for identifying obstacles, navigating in an environment, and
planning actions. Our body movements are not solely a re-
sponse to visual stimuli; they also change our egocentric
perception. Therefore, the key idea of our motion model
is to enable virtual humans to see their environment with
egocentric visual inputs and respond accordingly by learn-
ing a policy to control a set of collision-avoiding motion
primitives (CAMPs) that are composable for synthesizing
long-term, diverse human motions. Due to the unbounded
and high-dimensional latent action space of our generative
motion primitive model, direct policy training through ren-
dered egocentric images is often unstable [122]. Therefore,
we propose a two-stage reinforcement learning scheme us-
ing an efficient egocentric visual proxy to couple egocentric
visual cues and body movements seamlessly. In addition,
we use an “attention” reward to incentivize egocentric per-
ception behaviors, i.e., looking in the desired direction.

Empirical results showcase the benefits of our egocen-
tric perception-driven motion framework, which does not
require a pre-calculated walking path in 3D scenes as
in [29, 53, 119]. Instead, it empowers virtual humans to per-
ceive the environment from their own viewpoint, enabling
them to navigate, circumvent obstacles, and plan move-

ments to reach the destination. Moreover, our model gen-
eralizes well to dynamic environments, even with training
limited to static settings. By training virtual humans in-
dependently using CAMPs, our method synthesizes emer-
gent multi-human behaviors without relying on multi-agent
reinforcement learning algorithms. Egocentric visual cues
are essential to build exploratory and generalizable motion
models that unify navigational planning and movement con-
trol in complex and dynamic environments.

Building upon CAMPs, we further create a scalable data
generation pipeline for EgoGen that outfits virtual humans
with clothing, automates cloth animation, and integrates 3D
assets from various sources. We validate EgoGen’s efficacy
across three egocentric perception tasks. The high-quality
synthetic data with precise ground truth annotations consis-
tently improve the performance of state-of-the-art methods.
In summary, the contributions of this work are:
1. We introduce EgoGen, a generative and scalable syn-

thetic data generation approach specifically tailored for
egocentric perception tasks.

2. We introduce novel motion primitives based on egocen-
tric visual cues, enabling diverse and realistic human
motion synthesis in 3D scenes. These primitives em-
power virtual humans to handle complex scenarios, such
as dynamic environments and crowd motion without re-
lying on multi-agent reinforcement learning.

3. EgoGen enables us to augment existing real-world ego-
centric datasets with synthetic images. Quantitative re-
sults demonstrate enhanced performance in state-of-the-
art algorithms on mapping and localization for head-
mounted cameras, egocentric camera tracking, and hu-
man mesh recovery from egocentric views.

2. Related Work
Human-Related Simulators and Synthetic Data. Previ-
ous works primarily focus on simulating robots [54, 69, 78,
92, 95] and autonomous cars [7, 16, 20, 74]. While some
incorporated animated digital humans, like in [5, 20, 67],
these efforts relied on pre-recorded motion sequences. Ren-
dering images of people to train perception models has been
widely studied such as [5, 17, 18, 43, 68, 82, 86]. In par-
ticular, [97] offers large-scale synthetic data for egocentric
camera wearer pose estimation but relies on mocap data,
lacking realistic and spontaneous interactions with the digi-
tal world. In contrast, EgoGen closes the gap in egocentric
synthetic data generation for head-mounted devices. Please
refer to Supp. Mat. for detailed comparisons.
Human Motion Synthesis. Generating high-fidelity hu-
man motions and interactions with 3D scenes is widely
studied in graphics [10, 31, 32, 42, 89, 90]. While they
can generate high-quality motion, it’s usually determinis-
tic. Synthesizing physically plausible human motions has
been extensively studied [12, 30, 64, 73, 96, 105]. However,
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they struggle with generalization to different body shapes.
For example, [73] explicitly created 2048 humanoids to
improve body shape generalizability. Time series mod-
els [65, 94, 114] synthesize the stochastic motions of di-
verse people well. However, in [94, 114], their generated
motion sequences have limited lengths and human-scene
interactions are not explicitly considered. Autoregressive
methods [45, 72, 117, 119] can produce perpetual motions.
In particular, [117] can generalize to diverse body shapes
and synthesize long-term human motions.

Our egocentric perception-driven motion synthesis
model is closely related to [117, 119], but distinguishes it-
self w.r.t.: (1) Enabling virtual humans to explore using ego-
centric visual cues, without predefined paths. (2) Synthe-
sizing egocentric perception behaviors beyond locomotion,
e.g., looking in certain directions. (3) Handling dynamic
environments and multi-agent behavior without re-training.
Mapping and Localization for AR. Localization and map-
ping from images is a long-standing problem known as:
Photogrammetry [2, 26]; Structure-from-Motion (SfM) [22,
66, 79, 87, 104]; Simultaneous Localization and Map-
ping (SLAM) [14, 37, 56, 60]. Researchers have worked to
make SLAM amenable for edge hand-held or head-mounted
devices [6, 21, 37]. Cloud-based services like Google’s Vi-
sual Positioning System [71], Niantic’s Lightship [59], and
Microsoft’s Azure Spatial Anchors [34] have made visual
localization and mapping more accessible. Benchmarking
efforts have arisen for small-scale AR scenarios [36, 85],
touristic landmarks [33, 80], and large-scale AR-device
based localization [76, 77] to evaluate these systems.
Egocentric Human Pose Estimation. Estimating 3D bod-
ies from RGB images is widely studied from third-person
views [9, 35, 38–41, 44, 63], and egocentric views [25,
46, 47, 57, 83, 97, 98, 100, 112, 113, 116], mostly re-
quiring expensive real-world data paired with ground truth
annotations. Besides RGB images, depth images offer
explicit 3D information, mitigating scale and shape am-
biguity, with the potential to enable broader AR/VR ap-
plications. However, depth-based methods, especially for
the egocentric view, are underexplored. Most existing
works [28, 49, 55, 70, 84, 101, 107, 111] predict 3D body
skeletons without expressive body meshes, struggling with
challenges like severe body truncations and scene occlu-
sions typical in egocentric views. Such limited attention
mainly stems from the scarcity of data, as obtaining high-
quality human mesh annotations for real-world depth im-
ages is labor-intensive.

3. Ego-Sensing Driven Motion Synthesis
To close the loop for the interdependence between egocen-
tric synthetic image data and human motion synthesis, we
use deep reinforcement learning (RL), integrating egocen-
tric vision cues to synthesize human motions as described in

Sec. 3.1 and 3.2. Subsequently, we extend learned policies
to generate emergent multi-agent behaviors, as in Sec. 3.3.

3.1. Ego-Sensing Driven Motion Primitives

Generating realistic egocentric data requires diverse and
lifelike human motion synthesis. In this work, we consider
arguably the most common everyday behaviors: navigat-
ing towards goals with egocentric perception while avoiding
collisions with obstacles and people in dynamic 3D scenes.
Overview. Following recent literature [45, 110, 117, 119],
we employ deep RL to train control policies on learned la-
tent spaces that characterize natural human motions. How-
ever, unlike these previous works that only consider sim-
ple static scenes, we leverage egocentric perception and
propose collision-avoiding motion primitives (CAMPs) to
enable virtual humans to self-explore and navigate in a
dynamic environment. Specifically, CAMPs are trained
jointly to produce collision-free motion sequences. At each
timestep t, the agent observes the state st, performs an ac-
tion at, and receives a reward rt = r(st,at, st+1), where
st+1 represents the next state of the environment due to at.
Egocentric Sensing As Depth Proxy. We aim to sam-
ple actions given by a policy to synthesize realistic human
motions. Egocentric perception-driven motion synthesis
should arguably use egocentric vision as input. However,
depth rendering is costly and RL requires billions of sam-
ples to converge [3, 103]. Besides, directly training RL with
visual data can be unstable [122]. We thereby use a cheap-
to-compute egocentric sensing Et as a proxy for depth im-
ages as illustrated in Fig. 2. N rays are cast evenly from the
midpoint of two eyeballs, i.e., the location of the egocen-
tric camera. The field of view [θmin, θmax], centered on the
2D projection of the viewing direction #»v , limits the agent’s
perception to the front area. Rays stop at collisions, with
collision detection in 2D. See more details in Supp. Mat.
Agent Representation. The agent is a virtual human rep-
resented by an SMPL-X mesh [63]. We further compact
the body representation by selecting M = 67 body surface
markers x ∈ RM×3 on the mesh following [118].
Environment. Inspired by [108], we aim to learn a library
of composable CAMPs. We implement a finite-horizon en-
vironment based on the generative motion primitive model
from [117]. Specifically, a motion primitive is defined as
a 0.5-second motion clip containing T = 20 frames in
the canonical coordinate, and each frame contains a single
agent representation. The primitive model P is based on the
C-VAE framework [88], which takes the first Ts = 2 frames
as the condition, and models a conditional probability of
the next T − Ts frames. Compared to [117] trained on the
AMASS dataset [48] with many sport motion sequences,
we train P using the SAMP dataset [29], which focuses on
daily activities, better suited for HMD use cases. Our action
space A is the pretrained 128D latent space of P , and the
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Figure 2. Policy network architecture. We learn a generalizable mapping from motion seed body markers XS
t , marker directions XSD

t ,
egocentric sensing Et, and distance to the target dt to CAMPs. The policy learns a stochastic collision avoiding action space to predict
future body markers XF

t . For illustration purposes, we visualize only one frame of XS
t and Et. See Sec. 3.1 and 3.2 for details.

action at can be randomly sampled from A.
With the input of a random action at ∈ R128 and a mo-

tion seed XS
t = [x0

t ,x
Ts−1
t ] (history frames), P predicts

future frames XF
t = [xTs

t , ...,xT−1
t ] of the current motion

primitive Xt = [XS
t ,X

F
t ] ∈ RT×M×3, which represents a

short sequence of human motion spanning 0.5 s:

XF
t = P(XS

t ,at)

State. To preserve Markov property [62], the state is de-
fined as st = {XS

t ,X
SD

t , Et, dt, τt}, in which XSD

t ∈
RTs×M×3 denotes the normalized direction of each marker
seed to the target, Et ∈ RTs×N denotes the egocentric sens-
ing depth proxy, dt denotes the distance from the pelvis to
the target, and τt denotes the remaining time. See Fig. 2.
Reward. To synthesize egocentric perception behaviors,
we use an “attention reward” to incentivize the virtual hu-
man to look in specific directions: rattention = cos⟨ #»v , #»a ⟩,
where #»a is the attention direction from the head joint to the
viewing target. The reward function is defined as:

rt = rcont.+rdist+rori+rattention+rpene+rpose+rsucc,

where rcont. enforces valid foot contact and minimizes foot
skating; rdist encourages reaching the target; rori aligns the
body forward direction with the target; rpene guides colli-
sion avoidance; rpose reduces unrealistic human poses; and
rsucc is a sparse reward when reaching the target.
Episode Termination. To handle collisions beyond [119],
we employ multiple termination signals to conclude an
episode if the generated motion primitive Xt satisfies any
of the following conditions:
• Success: The virtual human reached the target.
• Penetration: The virtual human collides with the obstacle.
• Timeout: The virtual human did not reach the target

within the maximum timesteps.

3.2. Training Collision-Avoiding Stochastic Policies

Algorithm. We use Proximal Policy Optimization [81]
(PPO) to learn a generalizable mapping from various ego-
centric sensing and body configurations to CAMPs. Instead
of extensive manual data collection for all possible input
combinations, we leverage the stochastic nature of the PPO
policy. Through exploration and sampling actions, the agent
traverses the scene and generates varied egocentric sensing
and body configurations, diversifying the training data.

Instead of training each CAMP independently for every
single step, we use PPO to train a sequence of CAMPs
jointly in multi-step collision avoidance tasks. This ap-
proach can benefit choosing a more favorable CAMP which
makes the subsequent action easier.
Network. The network architecture is shown in Fig 2. The
actor and critic network share a feature extraction trunk to
encode the state st: the motion seed (XS

t and XSD

t ) and
the egocentric sensing Et are encoded using RNNs; the rest
of scalar states are encoded using positional encoding [99].
The actor predicts a stochastic policy at ∼ π(zt|st) condi-
tioned on the current state st, where zt ∼ N (µ,Σ). µ and
Σ are the mean and variance of the learned action space.
Objective Function. The objective function includes the
policy surrogate LCLIP , the value function error term LV F

to evaluate the value prediction Vθ, and an entropy bonus
LS to encourage exploration:

L = LCLIP + c1L
V F + c2L

S

where c1, c2 are coefficients. See more details in Supp. Mat.
RL Pre-training and Finetuning. Training in crowded
scenes, e.g. Replica [91], requires additional steps. Be-
cause the action space A is an unbounded Gaussian, RL
exploration while predicting reasonable human poses can
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Algorithm 1 Crowd motion synthesis with learned CAMPs

Result: Multi-human locomotion w/ collision avoidance;
Init: crowd size C, marker seed for each human XS

c ;
for step← 1 to max steps do ▷ env. finite horizon

for c← 1 to C do ▷ for each human
update all locations with {bbox(XS

c )}c=1:C

compute egocentric sensing Ec;
execute the action that maximizes the expected

return, and produce one CAMP;
end for

end for

be challenging. We first pretrain the policy with a higher
rpene weight without penetration termination. After con-
vergence, we finetune it with strict termination constraints
using a signed distance field (SDF) for penetration detec-
tion. Please refer to Supp. Mat. for the formulation and
weighting of each reward and training detail.

3.3. Compositing Learned Motion Primitives

Although CAMPs are trained solely with static scenes, their
direct application to dynamic settings is achieved by de-
composing jointly trained CAMPs into individual motion
primitives and re-compositing them. Our model demon-
strates effective generalization by selecting the next best
motion primitive from the learned CAMP library to maxi-
mize the expected return, provided that the egocentric sens-
ing is updated with the most recent obstacle location at each
timestep. Furthermore, our model is directly applicable to
tasks involving complex interactions with other virtual hu-
mans. To synthesize crowd motion (Alg. 1), each virtual hu-
man employs the same policy to navigate and avoid others.
To a specific virtual human, others are seen as dynamic ob-
stacles, represented by body bounding boxes for avoidance.
Acknowledging the inherent delay in human reactions when
avoiding dynamic obstacles [4], agents take a single CAMP
sequentially, instead of in parallel, i.e. the first agent gen-
erates its first CAMP and waits for others to complete their
first CAMP before all agents move on to prepare their sec-
ond CAMP. To ensure successful collision avoidance, the
agent’s egocentric sensing is updated before taking a new
action. This composition of CAMPs synthesizes emergent
multi-human behaviors without multi-agent RL algorithms
(see Sec. 5.1), enhancing the generalization and scalability.

4. Egocentric Synthetic Data Generation

Synthesizing realistic egocentric perception-driven human
motions (as detailed in Sec. 3) forms the foundation of sim-
ulating egocentric synthetic data. An overview of our ego-
centric data generation pipeline EgoGen, is shown in Fig. 3.

Sensor Placement

HoloLens

Project Aria

… …
Egocentric Perception-Driven Motion Synthesis

Automated Clothing
Simulation High-quality Scenes

Rendering and Annotations

Example
sensors

Figure 3. Overview of EgoGen. Through generative motion syn-
thesis (Sec. 3), we further enhance egocentric data diversity by
randomly sampling diverse body textures (ethnicity, gender) and
3D textured clothing through an automated clothing simulation
pipeline (Sec. 4.2). With high-quality scenes and different ego-
centric cameras, we can render photorealistic egocentric synthetic
data with rich and accurate ground truth annotations (Sec. 4.3).

4.1. Embodied Camera Placement

Similar to existing AR devices, we use the head pose to de-
fine the egocentric viewing direction #»v . Our development
is based on Blender [11]. We use the SMPL-X [63] mesh
to position the egocentric camera between the two eyeballs.
The camera’s viewing direction ( #»v ) is perpendicular to the
plane determined by the two eye bones in the armature.
We also support simulating multi-camera rigs as shown in
Fig. 1. When the body moves (Sec. 3.3), we can synthesize
egocentric videos with continuously updated camera poses.

4.2. Body Texture and Clothing

To enhance EgoGen’s synthetic data realism, we dress vir-
tual humans using human textures and 3D clothing assets
from BEDLAM [1, 8], including 50 male and 50 female
skin albedo textures from seven ethnic groups.

Unlike prior works [8, 109] relying on unscalable com-
mercial software for clothing dynamics simulation, we au-
tomate it for diverse synthesized motions and body shapes,
minimizing manual effort. Each garment mesh is in a con-
sistent rest pose, i.e., A-Pose (See Fig. 3 middle-left). For
each motion sequence, we first repose it to match the body
pose in the first frame using linear blend skinning. This in-
volves initializing the clothing geometry by sampling pose
and shape blend shapes, along with skinning weights from
the nearest multiple SMPL-X vertices in A-Pose. Then we
simulate upper and lower garments separately using a state-
of-the-art clothing simulation network [24].
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Table 1. Evaluation of motion synthesis in scenes with moving ob-
stacles, multiple humans, and path diversity. ↓: lower is better; ↑:
higher is better. The best results in each scenario are in boldface.
* denotes an improved version for fair comparison. (Sec. 5.1)

Evaluation Metrics GAMMA* [117] DIMOS* [119] Ours

Mov. obs.

SR (%) ↑ 96 83 100
Dist. (m) ↓ 0.29 0.55 0.06

Cont. ↑ 0.95 0.96 0.97
Pene-S. (%) ↓ 9.2 8.4 3.4

2 humans

SR (%) ↑ 95 88 100
Dist. (m) ↓ 0.32 0.41 0.07

Cont. ↑ 0.96 0.98 0.97
Pene-H. ↓ 27.6 10.7 0

4 humans

SR (%) ↑ 92 70 100
Dist. (m) ↓ 0.41 0.79 0.07

Cont. ↑ 0.94 0.95 0.96
Pene-H. ↓ 60.4 41.7 0

Diversity SR (%) ↑ 96 84 97
Std Dev ↑ 0.987 1.05 1.21

4.3. Rendering and Annotations

EgoGen supports simulating diverse head-mounted devices
with different camera models, such as fisheye and pinhole
cameras. Given the camera’s intrinsic parameters and rel-
ative poses within the camera rig, we can simulate AR de-
vices like Project Aria glasses [50] and HoloLens [51], fa-
cilitating synthetic data generation for real-world applica-
tions. Camera extrinsic is determined by our generative hu-
man motion model. We use Blender [11] to render photo-
realistic egocentric image sequences with motion blur. We
also render out a rich set of ground truth annotations, such
as depth maps, surface normals, segmentation masks, world
positions, optical flow, etc for egocentric perception tasks.

5. Experiments
We assess the motion quality, generalizability, and diver-
sity of our motion model, highlighting its ability to gener-
alize to unseen complex tasks and comparing it with recent
baselines (Sec. 5.1). We evaluate our proposed egocentric
sensing as a depth proxy for enhancing agent exploration
(Sec. 5.2) and conduct ablation studies (Sec. 5.3).

We further demonstrate the effectiveness of EgoGen on
three egocentric computer vision tasks in Sec. 5.4, and 5.5.
By incorporating synthesized egocentric images, we can en-
hance the performance of the state-of-the-art algorithms.

5.1. Evaluation of Learned CAMPs

We assess CAMPs’ generalizability in dynamic scenes, in-
cluding scenes with moving obstacles and scenes with mul-
tiple individuals. In tests with moving obstacles, the obsta-
cle blocks the person’s path by moving between the person
and the goal. In multiple human test scenes, lines from their
starting and goal locations intersect in the middle, requiring
solving human-human penetrations. See detail in Sup. Mat.

In Tab. 1, we compare goal-reaching behaviors with two
recent baselines: GAMMA [117] and DIMOS [119]. Base-

Table 2. Evaluation of egocentric sensing. (Sec. 5.2)

Method (sensing range) SR (%) ↑ Dist. (m) ↓
Local map [119] (0.8 m) 78 0.35

Local map* (7 m) 4 3.04
Egocentric sensing (ours) (7 m) 95 0.12

line methods use navigation meshes and path planning for
static scenes, while CAMPs can autonomously avoid dy-
namic obstacles (Sec. 3.3). For fair comparison in dy-
namic scenes, we extend the baselines by updating navi-
gation meshes and performing on-the-fly path planning at
each time step. The tree-based search as in [117] is dis-
abled for all the methods. Metrics: (1) SR: Success rate
for reaching the goal location within a 0.3m threshold. (2)
Dist.: Average distance of the final pelvis location to the
goal. (3) Cont.: The contact metric [117] that measures
foot-floor contact and foot skating. (4) Pene-S.: Percentage
of frames with detected human-scene penetration in mov-
ing obstacle scenes. (5) Pene-H.: Accurate human-human
penetration evaluation metric using COAP [52] in multiple
human scenes. Please refer to Supp. Mat. for metric details.

CAMPs outperform the two baselines in dynamic sce-
narios with moving obstacles and multiple humans, exhibit-
ing lower human-scene and human-human penetrations and
a higher goal-reaching success rate. In multiple human sce-
narios, we observe that in the baselines, dynamically redo-
ing path planning for each human independently can not ef-
fectively solve human-human penetration. In contrast, com-
posable CAMPs can generalize well in dynamic settings
without using multi-agent RL to synthesize crowd motions.

We assess walking path diversity using the standard de-
viation of pelvis locations for the same start-target pairs in
scenes with a single static box obstacle. As shown in Tab. 1
(Diversity), our approach does not require a pre-computed
global path and allows agents to self-explore without being
constrained by predefined paths, achieving higher walking
path diversity and success rate. This fosters diverse syn-
thetic data generation via more diverse synthesized motion.

5.2. Evaluation of Egocentric Sensing

We assess the exploration ability of our egocentric sensing
Et in Replica [91] scenes. In Tab. 2, we replace Et with
a local map [119] in our state st, following their encoding
method. Relying on local information can trap agents in lo-
cal optima, e.g., walls beyond their sensing range, resulting
in lower SR. Our egocentric sensing acts as a depth proxy,
allowing the agent to avoid local optima, explore more ef-
fectively than local maps [119] or scandots [3], and achieve
higher SR. In addition, our compact representation is more
scalable as the sensing range increases, while quadratic lo-
cal map growth can hinder the policy network’s learning.
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Table 3. Ablation studies. Note: in our observation, ∥VP∥2 > 15
indicates abnormal human poses. (Sec. 5.3)

SR (%) ↑ ∥VP∥2 ↓ cos( #»v , #»a ) ↑
Egocentric depth 8 13.64 0.049
No pretraining 90 28.77 0.918

No attention reward 90 12.26 0.891
Our policy 92 10.57 0.940

5.3. Ablation Studies

We compare our policy with several ablations in Tab. 3:
Egocentric depth: an ablation training an egocentric depth
image-based policy without the depth sensing proxy. Ego-
centric depth images are encoded with a CNN;
No pretraining: an ablation training collision avoidance in
crowded scenes with strict penetration termination directly;
No attention reward: an ablation for the viewing direction.

We assess pose naturalness with the maximum pose em-
bedding norm encoded with VPoser [63] and evaluate the
attention reward with the cosine similarity between the
viewing direction #»v and the attention direction #»a (Sec. 3.1).

Directly training RL with egocentric depth images is in-
effective due to our high-dimensional action space, empha-
sizing the value of the compact egocentric sensing represen-
tation. Training agents with strict penetration constraints in
crowded scenes directly can result in exploring unreason-
able action subspaces, given its unbounded Gaussian nature,
leading to unrealistic human poses, highlighting the effec-
tiveness of our two-stage RL training scheme. Without the
attention reward, the virtual human’s capability to attend to
a specific direction decreases. All ablation studies are eval-
uated in Replica. See visuals in Supp. Vid. and Supp. Mat.

5.4. Mapping, Localization, and Tracking for HMD

Mapping and localization. LaMAR [76] is the first map-
ping and localization benchmark dataset for AR in large-
scale scenes. Despite over a year of extensive data collec-
tion, the dataset still lacks exhaustive scene coverage, espe-
cially in large open spaces. EgoGen can let virtual humans
explore large-scale scenes, render dense egocentric views,
and build a more complete SfM map by extracting image
feature points with SuperPoint [15] and matching images
with SuperGlue [75]. Despite synthetic images being nois-
ier due to scene quality, SuperGlue [75] matching can filter
out noisy feature points and yield reliable matches.

In Tab. 4, we evaluate EgoGen by assessing the localiza-
tion recall at (1◦, 10cm) on the validation set in a lobby of
∼120 sqm of the LaMAR CAB location. In addition, we re-
port the number of triangulated 3D points (#P3D) and track
length. EgoGen improves the 3D reconstruction by yielding
more points for a slightly improved track length and also
a significantly better localization performance compared to
using the real data only. Ng et al. [58] augments mapping

Table 4. Mapping and localization evaluation. We augment
LaMAR with the same amount of images (248 frames) and re-
port the localization recall at (1◦, 10cm) on the validation set.
EgoGen achieves the highest track length and recall. (Sec. 5.4)

#P3D ↑ Track length ↑ Recall (%) ↑
LaMAR 1929739 5.1946 66.9

Ng et al. [58] 1937758 5.1940 74.9
EgoGen 1936169 5.2105 76.7

Table 5. Egocentric camera tracking evaluation of models trained
with and without synthetic data from EgoGen. (Sec. 5.4)

Pose ↓ Rotation ↓ Transl (mm) ↓
Scratch 1.83 0.74 1303

+ EgoGen pretrain 1.67 0.62 1305

images by perturbing real-world camera poses with noise,
which may generate unrealistic camera poses (e.g., stuck in
a wall or facing the ceiling), limiting egocentric localization
effectiveness. Their method also assumes the availability
of initial camera poses, which may not always be feasible.
In contrast, EgoGen augments by virtual humans randomly
exploring scenes. Our approach holds promise for creat-
ing AR mapping and localization datasets for digital twin
scenes without manual data collection, providing enhanced
privacy preservation, e.g. no need for anonymization. Refer
to Supp. Mat. for visualization and implementation details.
Egocentric camera tracking. Egocentric camera tracking
for HMD aims to yield device pose trajectories in 3D scenes
given egocentric video observations. Recovering camera
poses from monocular RGB videos using SLAM [93] is
a challenging and ill-posed problem due to scale ambigu-
ity. EgoEgo [43] leverages the knowledge of human motion
to address the egocentric HMD tracking problem. Specif-
ically, EgoEgo trains a neural network to infer the trans-
lation scaling and rotations from egocentric videos, which
improves the HMD tracking performance. However, train-
ing this model requires jointly captured data of ground truth
HMD trajectories and egocentric videos, which are costly to
collect. We address this limitation by using EgoGen to syn-
thesize quantities of egocentric videos with accurate camera
trajectories to pretrain the model, which proves to improve
the tracking performance on real data. We conduct experi-
ments on the GIMO [121] dataset that contains ∼200 short
sequences of paired motion-video data in 19 scenes. Us-
ing EgoGen, we synthesize∼4k sequences of human move-
ments in their scenes and render corresponding egocentric
videos using the same camera intrinsic as GIMO and the
embodied camera placement described in Sec. 4.1. We also
slightly perturb the camera placement location and orienta-
tion to simulate the diversity of how people wear HMDs in
real data and avoid overfitting to one specific camera place-
ment. We first pretrain the model with synthetic data gen-
erated by EgoGen, then finetune it on the real GIMO data.
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Tab. 5 shows the egocentric camera tracking performances
for models trained with and without synthetic data. Defi-
nitions of evaluation metrics can be found in Supp. Mat.
The finetuned model benefits from EgoGen synthetic data
and predicts more accurate camera poses compared to the
model trained using real data only.

5.5. Human Mesh Recovery from Egocentric views

Human mesh recovery (HMR) is the key to human behav-
ior understanding from the egocentric view, thus crucial
for applications in robotics and AR/VR. Given an egocen-
tric RGB or depth image of a target subject, HMR aims to
reconstruct the subject’s 3D body pose and shape. How-
ever, acquiring and annotating real-world data is expensive,
demanding, and time-consuming, with egocentric data be-
ing particularly scarce. EgoBody [115] is a recent ego-
centric dataset capturing two-people interactions, with ego-
centric depth/RGB frames annotated with SMPL-X body
meshes. EgoBody provides∼180k egocentric RGB frames,
and merely ∼23k depth frames due to the low frame rate of
the depth sensor, with ∼90k/∼10k in the RGB/depth train-
ing set. Such limited data is insufficient to train a learning-
based model from scratch. In contrast, with EgoGen, large-
scale synthetic egocentric data can be generated in a time-
efficient way. We leverage EgoGen to generate quantities of
training frames (300k RGB, 105k depth) of humans moving
in EgoBody 3D scenes, rendered from the egocentric view,
and annotated by SMPL-X parameters of the target subject.
Specifically, RGB images are rendered with lifelike human
body textures and 3D clothing, with random lighting.

With the recent HMR regressor, ProHMR [41], we show
that pre-training with our synthetic data from EgoGen en-
hances the existing method’s capability to generalize on
real-world scenarios. Evaluated on the real-world EgoBody
test set, we compare two training schemes: (1) trained from
scratch on the real-world EgoBody training set (“-scratch”),
and (2) pre-trained on synthetic data from EgoGen and fine-
tuned on the real-world EgoBody training set (“-ft”).

HMR from depth. As no existing methods were pro-
posed for depth-based HMR task, we adapt ProHMR [41] to
the depth input by changing the channel number of the first
convolution layer. To mimic real-world sensor noise, syn-
thetic noise [27] is added to the rendered depth. G-MPJPE
is additionally reported for depth-based HMR as depth im-
ages provide global information. As shown in Tab. 6, com-
pared to the model trained only with a limited amount of
real-world data (Depth-scratch), errors are significantly re-
duced for the model pre-trained with our large-scale syn-
thetic data (Depth-ft), in terms of global translation (22.9%
lower G-MPJPE), local pose (20.7% lower MPJPE), and
body shape (19.5% lower V2V).

HMR from RGB. For training with RGB images, we
apply various data augmentation techniques similar to [8].

Table 6. Evaluation of HMR on EgoBody test set. “*-scratch”
denotes the model trained from scratch with the Egobody training
set, and “*-ft” denotes the model pre-trained with EgoGen syn-
thetic data. The units for all metrics are in mm. (Sec. 5.5)

G-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓ V2V ↓
Depth-scratch 117.7 82.2 54.1 100.6

Depth-ft 90.7 65.2 47.3 81.0
RGB-scratch - 90.7 59.9 102.1

RGB-ft - 85.3 56.2 97.2

Tab. 6 indicates that the RGB-based model pre-trained with
large-scale synthetic data (“RGB-ft”) also outperforms the
model trained only on real-world data (“RGB-scratch”), for
both body pose and shape accuracy.

The enhanced performance highlights that EgoGen’s
synthetic data effectively compensates for the lack of real-
world training data, boosting the performance of current
methods when test on real-world data. We will release both
of our synthetic EgoBody datasets. See dataset statistics,
qualitative visualizations, and training details in Supp. Mat.

6. Conclusion and Future Work
We propose a novel egocentric synthetic data generation ap-
proach, EgoGen, that uses embodied sensors, a parametric
body model, and a generative egocentric perception-driven
human motion synthesis method to create egocentric train-
ing data with accurate and rich ground truth annotations.
By integrating deep reinforcement learning and collision-
avoiding motion primitives with egocentric depth proxy,
EgoGen synthesizes robust human motion and emergent
multi-agent behaviors. This paves the way to an efficient
and scalable data generation solution that may have a pro-
found impact on egocentric perception tasks.

Human-scene interaction in EgoGen is currently coarse.
We aim to extend the current method to simulate more de-
tailed human motion driven by egocentric perception, such
as hand manipulation, sitting, lying, etc, to facilitate more
realistic egocentric synthetic data. We use fixed attention
goals to model human attention. Predicting human inten-
tion through historical egocentric perception and synthesiz-
ing viewing directions based on predicted intention holds
significant potential. Synthesizing gaze direction for pre-
dicting human intent is valuable but presently hampered by
data requirements; we will revisit this when resources allow.

We will explore many other egocentric vision tasks with
EgoGen as this area grows rapidly such as social under-
standing and forecasting. EgoGen could benefit human-
robot interaction, e.g., our generative human motion model
and lifelike human appearances can be integrated into [67]
to close the sim2real gap for robotic agents further.
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