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Abstract

We propose FaceCom, a method for 3D facial shape
completion, which delivers high-fidelity results for incom-
plete facial inputs of arbitrary forms. Unlike end-to-end
shape completion methods based on point clouds or vox-
els, our approach relies on a mesh-based generative net-
work that is easy to optimize, enabling it to handle shape
completion for irregular facial scans. We first train a
shape generator on a mixed 3D facial dataset contain-
ing 2405 identities. Based on the incomplete facial in-
put, we fit complete faces using an optimization approach
under image inpainting guidance. The completion re-
sults are refined through a post-processing step. FaceCom
demonstrates the ability to effectively and naturally com-
plete facial scan data with varying missing regions and
degrees of missing areas. Our method can be used in
medical prosthetic fabrication and the registration of de-
ficient scanning data. Our experimental results demon-
strate that FaceCom achieves exceptional performance in
fitting and shape completion tasks. The code is available at
https://github.com/dragonylee/FaceCom.git.

1. Introduction
The shape completion of incomplete facial scans

presents a significant challenge in the fields of computer vi-
sion, graphics, and medicine. On one hand, limitations in
scanning devices and occlusions during the capture process
often result in incomplete scans. On the other hand, clini-
cal scenarios often involve patients with facial defects, for
whom conventional maxillofacial repair methods such as
mirrored reconstruction [2] or the selection of pre-designed
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prosthetics from a database [31] may lack personalized
shapes and require manual adjustments to fit the patient’s
facial contours. With the rapid development of deep learn-
ing and the increasing availability of three-dimensional fa-
cial datasets, there is a growing interest in leveraging di-
verse individual samples and deep learning techniques for
personalized and precise facial shape completion.

While recent years have seen numerous works on im-
age inpainting for faces [22, 27, 30, 46], there have been
relatively few studies directly addressing shape completion
for three-dimensional facial data. Most voxel-based shape
completion approaches [12,35] and point cloud based meth-
ods [41,42] have demonstrated promising results on various
3D datasets, such as ShapeNet [8]. However, when applied
to 3D facial datasets, their completion results for incom-
plete data are often rough and inaccurate. These results
may be attributed to the high similarity between 3D facial
shapes, which requires networks to learn subtle shape varia-
tions. While point cloud-based methods can learn different
shapes, they are insensitive to small-scale deformations and
struggle to generate smooth results due to the lack of ex-
plicit surface adjacency. Similarly, voxel based methods,
although offering regular results and ease of construction
and training, face challenges in generating high-precision
results due to memory and resolution limitations. There-
fore, we propose a novel approach that operates directly on
facial mesh data for generation purposes.

Our proposed method involves a graph convolutional
neural network structure, specifically an autoencoder, that
operates directly on explicit meshes to learn various facial
shape features and perform parameterized generation tasks.
Our approach aims to learn the facial shapes of as many
identities as possible, focusing on neutral faces without con-
sidering variations of expressions. To address the limited
number of identities in existing 3D facial datasets, we mix
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several publicly available datasets with our collected facial
dataset, resulting in a comprehensive 3D facial dataset with
a substantial number of identities and unified topology. Fol-
lowing auto-regressive training, we obtain a shape genera-
tor capable of sampling from a hypersphere distribution and
generating a complete facial mesh. Additionally, leveraging
the larger scale of facial image datasets, we train a 2D fa-
cial inpainting network applicable to our dataset based on
the work by Lugmayr et al. [30]. In the case of incomplete
facial inputs, we utilize an optimization method to fit a com-
plete facial mesh, with guidance provided by the results of
image inpainting. Post-processing is employed to refine and
achieve the final completion results. Please refer to Fig. 5
for the visual results.

Our approach excels in generating high-fidelity comple-
tion results for various forms of incomplete input, without
the need for specific vertex numbers or correspondences. In
our experiments, we demonstrate that our method outper-
forms other state-of-the-art models in fitting neutral faces
and exhibits excellent completion results for various incom-
plete faces. Furthermore, our method yields practical appli-
cation results in clinical data completion experiments.

In summary, the main contributions of this paper include:

• Introducing a novel 3D facial completion method
based on generative model, image inpainting guid-
ance and optimization techniques, capable of gener-
ating high-fidelity completion results for free-form in-
complete facial scans.

• Proposing a three-dimensional face generation net-
work based on a multi-scale encoder-decoder architec-
ture, outperforming existing state-of-the-art models in
fitting neutral faces.

• Validating the potential applications of our completion
method in clinical maxillofacial repair and non-rigid
registration fields.

2. Related Work
Parametric Face and Head Models. Blanz and Vet-

ter [1] were the pioneers in introducing 3D Morphable Mod-
els (3DMMs) for representing faces. They utilized PCA to
reduce the dimensions of shape and texture spaces, enabling
parametric face generation. Subsequently, 3DMMs found
widespread application in face reconstruction [17, 40, 52].
Based on our research, current studies on parameterized
face or head models can be broadly categorized into three
types. The first type involves linear or blendshapes-based
statistical models [3,4,6,7,13,14,25,32,43]. These models
often use a unified topology dataset and separately model
shape, expression, or texture, and are characterized by their
ease of construction and processing. The second type aims
to achieve non-linear deformation explicitly using deep
learning methods [5, 9, 10, 33], which extract features with

Figure 1. FaceCom Overview. During the shape fitting stage, the
shape generator is employed to fit the incomplete facial scan Md

using an optimization method. The optimization objective com-
prises several loss functions, including the disparity between the
input Md and the fitting result Mfit, the difference between the
images Ifit and Iinp, and regularization terms. Following the ac-
quisition of the optimal complete shape relative to the incomplete
input, a post-processing step is applied to achieve the final com-
pletion results Mout.

spectral or spiral graph convolutions. The final type rep-
resents the recent emergence of implicit neural functions
for constructing continuous models [20, 38, 44, 48]. These
models can finely reproduce facial expression variations but
often exhibit poorer fitting performance for different identi-
ties.

Shape Completion. 3D shape completion, or point
cloud completion, is a technique used to reconstruct missing
parts of input models. In recent years, deep learning meth-
ods have shown promise in effectively addressing missing
data in 3D models. Some approaches have focused on learn-
ing and generating based on voxels due to their regularity
and ease of convolutional processing [12, 35, 39]. How-
ever, voxel-based methods tend to consume a significant
amount of space and yield lower-quality results. Conse-
quently, several studies have directly tackled shape com-
pletion tasks on point cloud [36, 41, 45] or have combined
graph convolutions [26,50] to incorporate more local infor-
mation. Recently some novel methods have also leveraged
implicit functions to avoid discretization or have integrated
new generative models to achieve superior generation out-
comes [11, 42]. Despite these advancements, the effective-
ness of these shape completion techniques on highly de-
tailed facial data remains limited. The work of Litany et
al. [26] shares some similarities with our approach and also
attempted facial completion experiments, yet they imposed
constraints on the topological structure of incomplete input,
and the completion results were found to be unsatisfactory.
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3. Method
We propose an algorithm called FaceCom, which is de-

signed for shape completion of incomplete 3D facial scans.
The key components of our completion process, including
the shape generator, image inpainting guidance, and post-
processing, will be discussed in this section. The workflow
of FaceCom is illustrated in Fig. 1.

3.1. Shape Generator

We employ a GNN-based autoencoder framework for
learning the representation of 3D facial meshes and gen-
eration, as shown in Fig. 2. The procedure involves extract-
ing features from the input facial mesh at both the global
and local levels, with the fused features producing a 256-
dimensional implicit representation of the face. The shape
generation phase worked inversely to the encoding phase,
decoding the implicit vector to gain a complete facial shape.
The encoder part is meticulously illustrated in Fig. 2, and
the decoder follows a symmetric structure. In contrast to
the global path, the local path removes the downsampling
layers, reduces the number of channels, and preserves lo-
cal geometric information by using linear layers in place of
pooling layers.

Meshes retain rich local geometric information, yet their
irregularity makes them challenging to process. We em-
ployed FeaStNet [18,37] to conduct convolution operations
directly on meshes, which demonstrates excellent feature
extraction capabilities. Downsampling layers were imple-
mented and improved based on the work of Ranjan et al.
[33]. To ensure the differentiability of the downsampling
process, we simplified [19] the face template M , resulting
in M1, . . . ,Mk, where Mi ∈ RNi×3. We assumed that a
vertex’s position in Mi+1 is a linear combination of the po-
sitions of the k-nearest vertices in Mi, allowing us to com-
pute the transformation matrix Mi+1 = DiMi, where the
sparse matrix Di ∈ RNi+1×Ni . Upsampling can also be
achieved using a similar method. Within the neural net-
work, we maintained fixed transformation matrices to fa-
cilitate differentiable upsampling and downsampling oper-
ations.

Our objective is to perform shape completion on incom-
plete(defect) facial scans in a clinical setting. Hence, we
disregard facial expression variations, allowing the shape
generator to learn as many individual facial shapes as possi-
ble. Unlike 2D images, publicly available 3D facial datasets
often contain a limited number of individuals. To obtain a
more diverse and aligned dataset, we applied several pub-
lic 3D facial datasets [13, 43] to use their neutral faces.
Additionally, we collected 400 neutral facial scans in the
hospital. All the 3D facial data we utilized is presented in
Tab. 1. Subsequently, we employed the non-rigid registra-
tion method proposed in [16] to achieve a dataset X with
a unified topological structure, which comprises numer-

Dataset Sub. Num. Reserved

Headspace [13, 14, 51] 1171 57
FaceScape [43] 834 41
Ours 400 20

Total 2405 118

Table 1. 3D face datasets used in our study, all aligned to a
unified topology with approximately 5% reserved for testing. Note
that low-quality samples were manually excluded, resulting in a
reduced number of subjects from the origins.

ous individuals, different regions, and various age groups.
Around 5% of the data are reserved for subsequent testing
purposes.

During training, the reconstruction loss of the network is
defined as the mean squared error between the input X and
the output dec(enc(X)), denoted as LMSE . Since the au-
toencoder essentially serves as a data compression method,
facilitating a point-to-point mapping between data samples
and latent space points, its inherent nature lacks generative
capabilities. As a result, we attempted to train the model
using the Variational Autoencoder (VAE) approach [24].
However, we encountered challenges such as the vanishing
KL divergence and non-decreasing LMSE , hindering the
network from reaching a satisfactory convergence. Conse-
quently, we introduced a regularization constraint expressed
by

Lreg = (||z||2 − 1)2, (1)

aiming to confine the mesh’s implicit representation, de-
noted as z = enc(X), within a hypersphere distribution.
Our experimental results further supported the notion that
this approach facilitates optimization-based inference pro-
cedures. Prior study [47] has illustrated that this approach
can significantly enhance the autoencoder’s generative ca-
pacity and overall stability. The optimization objective was
defined as LMSE + λLreg. We initialized the learning rate
at 0.001 and halved it every 50 epochs. The training process
utilized the Adam optimizer [23] within the PyTorch frame-
work, with the entire training process taking approximately
6 hours on an NVIDIA Geforce RTX4090 GPU.

3.2. Shape Fitting

Many generation-based image inpainting approaches
[22, 27] and point cloud shape completion techniques [12,
49] train an end-to-end network to directly complete the
missing parts of the input. However, incomplete meshes
lose topological information, making it challenging to
seamlessly grow the completion parts using deep learning
methods. Hence, we first trained a parameterized gen-
erative model (refer to Sec. 3.1), followed by using an
optimization-based method to fit the input of the incomplete
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Figure 2. Architecture of shape generator. Left: Network used for training, which is primarily based on a graph convolutional au-
toencoder structure. It conducts feature extraction and generation separately from both local and global perspectives. After training, the
decoder component serves as the shape generator for FaceCom. Right: Our shape generator can produce diverse facial samples from the
hypersphere space and is readily optimized within the latent space.

facial mesh.
Let D(v,M) denote the distance from vertex v to the

surface M. For surfaces represented by triangle meshes, we
calculate the closest distance from points to the triangular
faces. For the incomplete facial mesh input Md, the fitting
loss is defined as

Lfit =
1

|Md|
∑

v∈Md

D(v, T (dec(z))), (2)

which quantifies the similarity between generated mesh and
the input incomplete mesh, where T represents a rigid trans-
formation. In practice, the incomplete facial mesh may ex-
hibit inconsistencies relative to the template, so we typically
exclude a certain percentage of vertices farthest from the
calculation of Lfit. Drawing upon the above procedures,
the shape fitting process can be described as

min
z,T

Lfit + λLreg. (3)

During the fitting process, we implemented a differen-
tiable D based on publicly available PyTorch3D [34], ob-
taining the optimal fitting result dec(z) through iterative
optimization. Notably, our optimization-based method is
applicable to any form of incomplete facial input, allowing
Md to be a mesh, a point cloud, or a set of key points.

3.3. Image Inpainting Guidance

Our facial shape generator was trained on a dataset in-
cluding neutral faces from thousands of identities. How-
ever, this volume is relatively small compared to the
datasets used in the field of image generation [15,30], mak-
ing it difficult to cover a wide range of practical scenarios.
Therefore, a natural idea is to train an image inpainting

network customized for our dataset, which can effectively
guide the three-dimensional shape completion process.

We utilize RePaint [30], essentially a denoising diffusion
probabilistic model [15,21], as a prior for our image inpaint-
ing process. The intermediate image xt in the reverse diffu-
sion process originates from xt+1 and the conditional prob-
ability pθ(xt|xt+1). RePaint introducing a mask m as input,
known parts m(x0) of the image are sampled during the dif-
fusion process using the conditional probability q(xt|x0),
resulting m(xknown

t ), while the unknown parts retain the re-
sults of the inverse diffusion process (1−m)(xunknown

t ). The
combined result serves as the intermediate sampling result,
effectively incorporating guided information into the image
generation process. Additionally, a resampling technique is
employed to improve the coherence between the repaired
and known parts. Further details can be found in [30].

An image inpainting network tailored to our specific
task, denoted as inp, was trained to guide the three-
dimensional shape completion process. We first set up a
differentiable rendering camera R with fixed parameters.
Subsequent, leveraging the network weights from CelebA-
HQ [28] in [30] and the training approach outlined in [15],
we fine-tuned the network on our dataset R(X ), resulting in
a network capable of taking incomplete rendered faces and
masks as input and producing restoration outputs.

Define the loss function between the image inpainting
results and the rendering results of the fitting shape as

Linp = MSE (R(T (dec(z))), inp(R(Md))). (4)

By integrating the image inpainting guidance, the shape
completion process for incomplete facial scans can be de-
scribed as

min
z,T

Lfit + λ1Linp + λ2Lreg. (5)
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3.4. Post Processing

Our optimization-based approach is capable of complet-
ing various types of incomplete 3D facial input. However,
from an application standpoint, inconsistencies in the non-
defective regions of the completion results can lead to mis-
alignments at the boundaries. To address this limitation, we
have devised a series of engineering post-processing meth-
ods. Through post-processing, the completed results exhibit
greater consistency with the defective input, leading to more
precise completion outcomes.

The visualization of the post-processing is illustrated in
Fig. 3. For the defective facial input Fig. 3a, we employed
the techniques described in Sections Sec. 3.1 and Sec. 3.3
to obtain the fitted face Fig. 3b. Subsequently, we identified
the repaired parts of Fig. 3b using a thresholding approach,
as shown in Fig. 3c. We then projected the non-defective re-
gions onto the surface represented by the defect input along
the vertex normal direction, yielding the result displayed
in Fig. 3d. Finally, by leveraging the K-nearest neighbors
of the extended portion of the defective region (the green
portion in Figure Fig. 3c), we performed weighted vertex
deformation to obtain the final completion outcome Fig. 3e.
The projection process may introduce some outliers, there-
fore there is an additional refinement step in the end.

Please note that the post-processing stage primarily
serves as an engineering approach to enhance the confor-
mity between the completion results and the defect input.
It addresses inherent issues within the optimization-based
method. Post-processing greatly refines the final results par-
ticularly for faces with pronounced wrinkles. While we pro-
vide a brief description of the post-processing stage here,
more detailed information is available in our supplementary
materials. Figs. 3f and 3g demonstrate the disparities of the
fitted face and the final completion result, relative to the de-
fective facial input, using the same scale for color mapping.
It is evident that post-processing has yielded improved re-
sults.

4. Experiments
In this section, we conduct multiple experiments to test

FaceCom thoroughly. We evaluate the fitting capability of
the shape generator on neutral faces in Section 4.1, examine
FaceCom’s proficiency in completing irregular incomplete
facial inputs in Section 4.2, assess FaceCom’s effectiveness
in designing prosthetics for clinical facial defect cases in
Section 4.3, explore the potential of FaceCom for non-rigid
registration in Section 4.4, and finally validate the necessity
of different components of FaceCom in Section 4.5.

4.1. Fitting

The reserved data from Tab. 1 are resampled to cre-
ate a facial scan test set, with the number of triangular

Method CD(mm)↓ MD(mm)↓
FLAME [25] 0.622 0.309
facescape [43] 0.685 0.416
ImFace [48] 0.632 0.505
NPHM [20] 0.578 0.381
ours(w/o post-processing) 0.480 0.275

ours(w/ post-processing) 0.160

Table 2. Fitting comparison results on L2 chamfer distance
and mean point-to-surface distance. The bottom row shows Face-
Com’s outcomes for non-rigid face registration.

faces in each mesh randomly ranging between 10k and 20k.
We conducted fitting experiments on the test set using the
shape generator trained in Sec. 3.1 and compared the re-
sults with state-of-the-art 3DMM models FLAME [25] and
FaceScape [43], and the implicit parametric model ImFace
[48] and NPHM [20]. Some visual examples are shown in
Fig. 4.

FLAME [25] and ImFace [48] offer dedicated methods
for fitting scanned data, requiring the provision of addi-
tional landmarks. We prepared compliant landmarks be-
forehand on the test set to facilitate the evaluation process.
FaceScape [43], on the other hand, solely provides a method
for fitting 3D key points, and NPHM [20] only provides a
point cloud fitting method after depth observation for spe-
cific samples. We modified their code to achieve the fit-
ting of scanned data after spatial coordinate alignment. Our
evaluation included the assessment of the L2 Chamfer Dis-
tance and the average point-to-surface distance, both are
unidirectional as the fitted mesh typically has a larger scope.
The Chamfer Distance(CD) is significantly influenced by
vertex density, so we employed Loop Subdivision [29] to
refine the fitted meshes to approximately 200k faces before
calculation. The mean point-to-surface distance(MD) cor-
responds to the calculation of the average D mentioned in
Sec. 3.2. The results, outlined in Tab. 2, demonstrate the su-
perior performance of our shape generator in fitting neutral
faces compared to existing state-of-the-art 3D facial gener-
ation models.

4.2. Shape Completion

To the best of our knowledge, there have been few works
specifically addressing facial shape completion in the field
of computer vision. The experiments of point cloud com-
pletion methods for facial datasets have yielded unsatisfac-
tory results. Please refer to our supplementary materials for
details. Therefore, in this section, we did not conduct com-
parative experiments. Instead, we tested FaceCom’s com-
pletion capability by constructing several incomplete facial
inputs on the test set with various regions and extents, and
presented visual results.
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(a) defect input (b) fit (c) identification (d) projection (e) refinement (f) (a) vs. (b) (g) (a) vs. (e)

Figure 3. Visualization of post-processing technique. (a) depicts the incomplete facial scan input, (b) demonstrates the fitting result,
(c) to (e) illustrate each step of the post-processing process. (f) and (g) showcase the disparities between the results before and after post-
processing and the incomplete input.

Input FLAME FaceScape ImFace NPHM Ours

Figure 4. Fitting experiment examples.

The results of facial shape completion experiments are
presented in Fig. 5. The visualizations demonstrate the ef-
ficacy of FaceCom in achieving natural and high-fidelity
completion results for defects located in different facial ar-
eas (Figs. 5a to 5f), extensive defect areas (Figs. 5g to 5k),
and cases involving elderly subjects with pronounced wrin-
kles (Figs. 5c and 5k). Even with extremely limited inputs,
such as partial information about specific regions (Figs. 5l
and 5n), scattered fragments (Fig. 5m), or just key points
(Fig. 5o), FaceCom is capable of generating natural and
authentic completion results. As the size of the defect in-
creases, the information provided decreases, resulting in
larger discrepancies between the completion results and
the ground truth. For example, in Figs. 5l and 5n, it is
challenging to determine the original facial fullness based
on the available information, leading to completion results
that do not entirely match the actual condition. However,
the non-defective regions remain consistent, resulting in a
harmonious completion. It is important to note that our
optimization-based completion strategy focuses on gener-
ating a complete facial structure rather than directly gener-
ating defect regions. While this approach proves effective
for a wide range of irregular defect inputs and yields ex-

cellent fitting results, there might be slight mismatches in
non-defective areas. We attempted to address this concern
by employing post-processing techniques.

The defect test data we manually constructed were aimed
at highlighting the capability of our method to effectively
complete various irregular defect inputs. It should be noted
that some of the defect styles, such as the one illustrated
in Fig. 5k, are not typically encountered in clinical cases.
To evaluate the practical application of our solution in a
clinical setting, we tasked medical professionals with col-
lecting several samples of nasal defects that conform to
clinical conditions. One of these examples is depicted in
Fig. 5p. The experimental results and analysis are outlined
in Sec. 4.3.

4.3. Clinical Experiment

In clinical facial prosthetics, two main requirements are
typically considered. Firstly, the prosthetic margins should
seamlessly adhere to the contours of the patient’s defect
area. This criterion is evaluated by the root mean square
distance of sample points, noted as margin fitness, and is
deemed the most critical factor. Secondly, the prosthesis
should blend naturally with the patient’s original facial fea-
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Figure 5. Examples of facial shape completion experiment. FaceCom demonstrates high-quality completion results for facial inputs
with defects of various positions and sizes, even for samples with numerous wrinkles or lower quality. Please refer to our supplementary
materials for more detailed views.

Figure 6. Clinical Experiment. Left: nasal defect input. Middle:
extract nasal region from completion result. Right: combine and
calculate margin fitness.

tures, which is challenging to quantify and is often assessed
visually.

To test the practical application of FaceCom in a clinical
setting, we recruited 20 clinical patients in the hospital and
scanned their facial data to construct nasal defects. These
20 cases of nasal defects were all handled by professional
physicians and met the standards for clinical data collec-
tion. Following the completion process by FaceCom, we
extracted the nasal region for evaluation, as illustrated in
Fig. 6. The average margin fitness of the completed results
for the 20 cases of nasal defects was 0.33±0.21 mm, indi-
cating their practicality for manufacturing and use. Addi-
tionally, the natural and seamless appearance of the com-
pleted results has been acknowledged by the physicians.
Our method shows promise in providing assistance to facial
defect patients in the medical field.
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Method reconstruction regularization

Ours(global-only) 0.336 0.240
Ours(local-only) 0.208 0.419
Ours(full) 0.153 0.419

Table 3. Ablation experiment results for shape generator.

(a) (b) (c) (d)

Figure 7. Ablation experiment example for image guidance. (a)
Ground truth. (b) Constructed large-scale defect. (c) Fitting result
without image guidance. (d) Fitting result with image guidance.

4.4. Non-rigid Registration

While our method is primarily designed for completing
defective 3D facial scans, it can also be utilized as a non-
rigid face registration tool for facial scans with potential
holes or missing areas. This is because FaceCom main-
tains topological consistency of outputs across various fa-
cial scans. To assess FaceCom’s performance in non-rigid
facial registration, we conducted a simple test. Using the
same test data as in Sec. 4.1, we applied the full comple-
tion approach to achieve non-rigid registration results. The
quantitative results of the registration are shown in the last
row of Tab. 2. Although we did not conduct a comparative
experiment for non-rigid registration, as it falls outside the
primary focus of this paper, our method achieves a precision
of 0.16mm for the mean surface error, similar to the facial
non-rigid registration algorithm proposed in [16], without
the need for landmarks. This underlines the potential of our
method in the field of non-rigid facial registration.

4.5. Ablation Study

In this section, we conduct ablation experiments on the
shape generator to assess the significance of its local and
global modules. Additionally, we examine the role of im-
age inpainting guidance on the 3D facial shape completion
process.

For the shape generator, we isolate the global and lo-
cal modules individually while adjusting the channel num-
bers to maintain a consistent parameter count. We trained
each of them under the same training parameters. The ex-
perimental results, including the quantitative reconstruction
loss and regularization loss, are summarized in Tab. 3. No-
tably, we observe that under similar training conditions, the
network with only the global module tends to prioritize op-

timizing the regularization term, whereas the full network
demonstrates superior mesh data reconstruction.

For the image inpainting guidance module, we explore
its influence on FaceCom’s completion results and provide
qualitative analysis. Our findings suggest that for cases
with smaller defect areas, the image inpainting guidance
has minimal impact. Conversely, for scan data with more
extensive defect areas, as illustrated in Fig. 7, this method
achieves results that are closer to the ground truth, effec-
tively steering the shape generator’s generation process.

5. Discussion

Due to the intended application of our research in provid-
ing assistance for patients with facial defects, we primarily
considered only basic shape variations. However, this ap-
proach may limit its applicability in other contexts. For fu-
ture improvements, incorporating changes such as expres-
sions and textures into our facial shape completion solution
could be explored. Additionally, addressing the issue of less
effective deformation handling at the edges during geomet-
ric processing is another aspect that requires attention.

The publicly available datasets used in this research were
obtained through formal applications and adhered to their
respective agreements. Additionally, the clinical facial data
we collected was obtained with the consent of the patients
and has been approved for scientific research by the rele-
vant Institutional Review Board. We have provided the cor-
responding approval documents in the supplementary mate-
rials.

6. Conclusion

We propose a facial shape completion solution FaceCom
in this paper, involving training a shape generator on di-
verse individual datasets, followed by the generation of a
complete face from the incomplete input using optimiza-
tion and image inpainting guidance, and finally refining the
completed face through post-processing. The entire process
is automated and efficient, yielding high-fidelity completion
results for irregular incomplete facial scans. Our approach
demonstrates promising results in fitting and completion,
and it can be practically applied to the design of clinical
facial prostheses.
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