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Abstract

Adversarial training is often formulated as a min-max
problem, however, concentrating only on the worst adver-
sarial examples causes alternating repetitive confusion of
the model, i.e., previously defended or correctly classified
samples are not defensible or accurately classifiable in sub-
sequent adversarial training. We characterize such non-
ignorable samples as “hiders”, which reveal the hidden
high-risk regions within the secure area obtained through
adversarial training and prevent the model from finding the
real worst cases. We demand the model to prevent hiders
when defending against adversarial examples for improv-
ing accuracy and robustness simultaneously. By rethink-
ing and redefining the min-max optimization problem for
adversarial training, we propose a generalized adversar-
ial training algorithm called Hider-Focused Adversarial
Training (HFAT). HFAT introduces the iterative evolution
optimization strategy to simplify the optimization problem
and employs an auxiliary model to reveal hiders, effectively
combining the optimization directions of standard adversar-
ial training and prevention hiders. Furthermore, we intro-
duce an adaptive weighting mechanism that facilitates the
model in adaptively adjusting its focus between adversarial
examples and hiders during different training periods. We
demonstrate the effectiveness of our method based on exten-
sive experiments, and ensure that HFAT can provide higher
robustness and accuracy.

1. Introduction

Although deep neural networks (DNNs) have made signif-
icant progress in recent years [6, 11, 28], they are easily
fooled by adversarial examples to make incorrect predic-
tions [7, 9, 16, 18]. These malicious attacks pose a threat
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Figure 1. Illustration of our core idea. Previous adversarial train-
ing methods have single-mindedly concentrated on worst-case ad-
versarial examples, aiming to accurate classification of such ex-
amples. However, these methods fail to protect hidden high-risk
regions. We refer to these regions’ samples as hiders (blue-filled
triangles) which are correctly classified in the original model but
misclassified after adversarial training due to excessive accommo-
dation of adversarial examples (blue-filled triangles within origi-
nal boundary and outside of AT boundary, as depicted in (b), (d)).
It is noteworthy to mention that this phenomenon of diminished
accuracy also affects natural samples (blue-filled circle), which
can be considered as a special type of hiders. By introducing an
auxiliary model that exposes the hidden high-risk regions where
hiders are located (blue-filled triangles outside of auxiliary bound-
ary, as depicted in (e)), we can obtain the optimization direction to
prevent hiders. Our core idea is to adaptively defend against both
adversarial examples and hiders simultaneously, which promises a
defense mechanism that ensures superior robustness and accuracy.

to the security and well-being of individuals, which high-
lights the importance of adversarial defense efforts. Among
them, adversarial training is proven to be the most effective
defense method against adversarial attacks [14, 18].
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Figure 2. Visualization of the proportions of hiders across different epochs. The first row (a) denotes the ratios of hiders in the adversarial
examples. The horizontal axis denotes the present epoch. Adversarial examples that are initially defended successfully in the present
epoch, but thereafter fail after intervals of 1, 5, 20, and 50 epoch(s), are referred to as hiders. The variations in the proportion of these
hiders are depicted in the graphs. We plot the proportions for four different methods: ATPGD, ATHF, Trades and TradesHF (subscript ”HF”
represents the proposed approach); The second row (b) follows the same process to depict proportions of hiders in the original samples.
For original samples, hiders refer to samples that are first classified correctly in the present epoch but then fail after periods of 1, 5, 20, and
50 epochs. Full details are in Sec. 4.3.1.

Figure 3. Statistical graph of hiders’ occurrence locations. A set
of 1000 adversarial examples, which the model fails to defend
against at epoch 150 using PGD20, is collected. If the models from
prior epochs (100, 110, 120, 130, 140, 145, and 149) successfully
defend these samples, they are labeled as hiders. Additionally,
markers are placed at the respective indices. To enhance visualiza-
tion, we magnify the indices in the range of 0-100 to better discern
the disparities between ATPGD and ATHF (AT with our proposed
method). Full details are in Sec. 4.3.1.

Following the min-max optimization problem [18] of ad-
versarial training, previous methods [8, 18, 21, 29, 30, 34]
always single-mindedly focus on the worst-case adversarial

examples to obtain the optimal solution of inner problem.
However, these methods tend to overlook the potential vul-
nerabilities that also exist in secure areas and result in com-
promised robustness and accuracy. Concretely, concentrat-
ing only on the worst-case adversarial examples causes al-
ternating repetitive confusion of the model as seen in Fig. 1,
i.e., adversarial or natural samples that were defended or
accurately categorized against in the preceding adversarial
training epoch are no longer amenable to defense or accu-
rate classification in the subsequent epoch. Fig. 2 shows
the ubiquity of this phenomenon throughout all training
epochs. Moreover, as the epoch interval increases, a greater
number of previously defended samples or accurately clas-
sified samples will become susceptible to attacks or mis-
classification in subsequent epochs. Besides, the observed
phenomenon exhibits intermittency. As depicted in Fig. 3,
the decision boundary repeatedly confuses certain samples,
thereby hindering the model from identifying the genuine
worst case (the worst-case adversarial example we find in
this epoch may be just a perturbed sample without attack
performance for the model in the previous epoch) and im-
pacts the model’s performance. We analyze that this phe-
nomenon is caused by single-minded optimization, which
excessively adjusts the decision boundary towards adversar-
ial examples and neglects focused protections for the tem-
porary secure regions. This overlooked issue motivates us
to reconsider the min-max optimization problem for adver-
sarial training, and explore the possibilities of preventing
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potential dangers.
In this paper, we first define those non-negligible sam-

ples as “hiders”, which were successfully defended or cor-
rectly classified in the previous epoch of adversarial train-
ing, but exhibit strong attack capability or are misclassified
in the later epoch. We propose a new generalized adversar-
ial training algorithm dubbed Hiders-Focused Adversarial
Trainning (HFAT), as shown in Fig. 1 (c) and (f). HFAT
enhances robustness and accuracy by preventing potentially
vulnerable areas where hiders are most likely to be identi-
fied, while maintaining defense against adversarial exam-
ples. Specifically, we redefine the min-max optimization
problem and propose the iterative evolution optimization
strategy to simplify the problem, which allows us to only
consider hiders that are relevant to the next epoch. More
specifically, by exploring the intrinsic relationship between
hiders and adversarial examples, we model the distribu-
tion of hiders as a priori knowledge. Given that hiders
pose no immediate threat to the current model, directly uti-
lizing them into adversarial training yields limited advan-
tages. Therefore, through probabilistic sampling guided
by the prior distribution, we train an auxiliary model that
reveals hiders to determine the optimal direction for pre-
venting hiders by adversarial training on auxiliary model.
HFAT integrates the adversarial training optimization direc-
tions from both the standard model and the auxiliary model
to jointly optimize the network. Besides, in order to better
couple the two optimization directions during various train-
ing phases, we further design an adaptive weighting mech-
anism that adjusts the emphasis between hiders and adver-
sarial examples in a dynamic manner. In short, the model
can boost the optimization weight for an aspect depending
on which aspect is currently more needed.

Our contributions are summarized as follows.
• We first reveal that the single-minded focus of adversar-

ial training on adversarial examples neglects the hidden
threats in secure regions that have been successfully de-
fended in the current epoch, resulting in compromised ro-
bustness and accuracy.
• We define hiders and redefine the min-max optimization

objective aiming to achieve better robustness and accu-
racy by preventing potentially vulnerable regions while
defending against adversarial examples.
• We propose a generalized adversarial training strat-

egy called Hiders-Focused Adversarial Training (HFAT).
HFAT introduces the iterative evolution optimization
strategy to simplify the optimization problem and em-
ploys an auxiliary model to reveal hiders, effectively com-
bining the optimization directions of standard adversar-
ial training and prevention of hiders. Besides, HFAT in-
cludes an adaptive weighting mechanism to improve the
coupling of the two optimization objectives.
• We demonstrate the effectiveness of our method based on

extensive experiments, and reveal that HFAT effectively
mitigates hidden threats posed by hiders.

2. Background and Related work
2.1. Adversarial Attack

The objective of adversarial attacks is to exploit the model’s
vulnerability in the vicinity of decision boundaries by in-
troducing small, imperceptible perturbations to the inputs,
tricking the model into providing incorrect classifications
or predictions. Adversarial attack can be represented as the
following optimization objective:

max
δ∈B(ϵ)

LCE(fθ(x+ δ),y),

where LCE denotes the cross-entropy loss function and
B(ϵ) = {δ : ∥δ∥ ≤ ϵ} limits the perturbation δ under a
certain distance metric (usually ℓp-norm).

Several adversarial attack methodologies have been pro-
posed, exposing the susceptible components of deep learn-
ing models. To increase the efficacy of adversarial per-
turbations, Projected Gradient Descent (PGD [18]) refines
them iteratively. Carlini and Wagner’s attack (C&W [3])
formulates an optimization problem with the goal of ob-
taining misclassification with the fewest possible perturba-
tions. Momentum Iterative Method (MIM [7]) enhances
traditional iterative optimization techniques by incorporat-
ing a momentum term, facilitating more effective and effi-
cient exploration of the adversarial perturbation space. Au-
toAttack [4] presents a suite of diverse attack methods to
evaluate model robustness comprehensively. The success of
these attack methods makes the adversarial defense a mean-
ingful work for improving model robustness.

2.2. Adversarial Training

Adversarial training is an essential approach to enhance the
robustness of deep learning models against adversarial at-
tacks. It involves augmenting the training dataset with ad-
versarial examples, forcing the model to learn and defend
against adversarial threats. The foundation of adversarial
training lies in a min-max optimization framework, which
can be formalized as:

min
θ

max
δ∈B(ϵ)

LCE(fθ(x+ δ),y).

Many noteworthy methods have been proposed within
the framework of adversarial training. Madry et al. intro-
duced the foundational ATPGD [18] framework, focusing
on improving robustness of the models. An early stopping
variant of ATPGD [23], proposed by Rice et al., demon-
strated notable improvements. Zhang et al. presented
the TRADES [34] method, exploring a trade-off between
standard accuracy and adversarial robustness. Wu et al.
delved into the weight loss landscape, introducing Adver-
sarial Weight Perturbation (AWP [30]) to effectively en-
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hance model robustness. MART [29], introduced by Wang
et al., improved the adversarial example generation process
by simultaneously incorporating misclassified clean exam-
ples. Jia et al. introduced Learnable Attack Policy Ad-
versarial Training (LAS-AT [13]), a concept that involved
learning to automatically generate better attack policies to
enhance model robustness.

However, these methodologies still excessively empha-
size adversarial examples [2, 22], neglecting the potential
threats concealed within secure regions. As a result, these
models are repeatedly confused by hiders and unable to
identify the genuine worst case, leading to limited robust-
ness and accuracy. In this paper, we enhance the robustness
and accuracy of the model by directing our focus towards
hidden threats from a new perspective.

3. Methodology
3.1. Hiders

While adversarial examples directly expose vulnerabilities
in the current trained model, hiders reveal hidden threats
within the decision boundaries of the model, i.e., samples
that were correctly classified or defended in the previous
epoch of adversarial training cannot be accurately classified
or defended in subsequent epochs. Besides, as illustrated
in the second row of Fig. 2, it is noteworthy to emphasize
that certain natural samples exhibit hider-like characteris-
tics. Thus, by implementing proactive defense mechanisms
against hiders during adversarial training, the accuracy and
robustness of the model can be improved simultaneously.
Definitions of hiders. We first define the hider x̂ = x+δ̂j

of sample (x,y) in the current i-th epoch with respect to the
later j-th epoch as follows:

D(fθi(x̂)) = y,D(fθj (x̂)) ̸= y, i, j ∈ {1, 2, ...}, j > i,

where δ̂j ∈ B(ϵ)
⋂

Si, Si indicates the interior of the deci-
sion boundary in i-th epoch, and x̂ is defended or correctly
classified at the i-th epoch and fails at the j-th epoch. D is
the classification function that maps the probability distri-
bution fθi(x̂) to the class y with the highest probability.

Similarly to the adversarial examples, for the model of
the i-th epoch, there exists a worst-case hider x̂∗ = x+ δ̂∗,
which can be expressed as

(j∗, δ̂∗) = argmax
j,δ̂j

LCE(fθj (x+ δ̂j),y). (1)

Unlike the worst-case adversarial example, which indicates
the sample with the strongest attack performance under the
current model, the worst-case hider indicates the sample
within the current decision boundary that exhibits the high-
est upper bound on its attack performance during the future
epochs. As an illustration, let x̂∗ represent the worst-case
hider of x at the i-th epoch, indicating that x̂∗ lies within the

Figure 4. Histograms show the distribution of ratio values (r)
from 10,000 samples across five defense models (ATPGD, Trades,
MART, AWP, HELP), quantifying distances between hider and
original samples versus adversarial and original samples, in the
model’s gradient direction. Colored curves represent Gaussian fits
that correspond to the histograms at different interval epochs.

decision boundary under the model fθi , and the maximum
loss value of x̂∗ in the future j∗-th epoch is larger than the
maximum loss value of any other samples (also within the
decision boundary under the model fθi ) in future epochs.
Empirical probability distribution of hiders. Due to the
delayed threat of hiders, it is difficult to pinpoint worst-case
hiders. Besides, the distribution of hiders depends on natu-
ral samples and models, which encourages us to explore the
relative position of hiders from previous adversarial train-
ing models rather than absolute location information. We
observed a remarkable similarity in the relative positional
relationships between hiders and natural/adversarial exam-
ples across various adversarial training methods and train-
ing phases. This guides us to model the empirical probabil-
ity distribution [19, 24, 26] of hiders’ relative position. The
distribution not only reveals the position of hiders with nat-
ural samples and adversarial examples, but also elucidates
the probability that a sample belongs to hiders.

Based on the observations, we use the Gaussian distribu-
tion G to model the relative positional information. Specif-
ically, at the i-th epoch, the positional information distribu-
tion of hiders relative to the j-th epoch is denoted as Gj .
To obtain the regions where hiders are likely to occur, we
compared the distances of both hiders and adversarial ex-
amples to the original samples, resulting in the relative po-
sition ratio r. Fig. 4 displays the histograms of the ratio r
for 10000 hiders, which are computed on five defense mod-
els (ATPGD [18], Trades [34], MART [29], AWP [30] and
HELP [21]). We fit the data in accordance with the Gaus-
sian distribution characteristics evident in the histogram.
Besides, observation reveals that as the number of epochs
increases, the mean and variance of the ratios r for the gen-
erated hiders also show an increase. Due to the statistical
analysis being conducted on multiple models and a large
number of sample points, the distribution characteristics of
hiders that we observed exhibit universality. We can regard
r as a hyperparameter obtained from priori knowledge that
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can provide assistance in defense against hiders.

3.2. Hider-Focused Adversarial Training (HFAT)

To enhance both the robustness and accuracy of the model,
our objective is to proactively defend the worst cases involv-
ing adversarial examples and hiders. This dual focus can be
expressed as the following optimization objective,

min[ max
δ∈B(ϵ)

LCE(fθi(x+ δ),y)+

max
j,δ̂j∈Si

LCE(fθj (x+ δ̂j),y)],
(2)

where the former is optimized for the adversarial examples,
the latter for preventing the potential dangers of hiders, and
j denotes that the worst-case hider reaches the maximum
loss value at the j-th epoch.

The second term of optimization objective (2) forces us
to find the maximum loss value of the samples x+ δ̂ in all
future epochs. We propose Iterative Evolution Optimiza-
tion Strategy to simplify the problem. According to Theo-
rem 1, we can optimize objective (2) by considering only
the worst-case in the next epoch, i.e., optimization of objec-
tive (2) can be simplified into optimizing objective (3). The
proof of Theorem 1 is available in the supporting material.

min[ max
δ∈B(ϵ)

LCE(fθi(x+ δ),y)+

max
δ̂i+1∈Si

LCE(fθi+1(x+ δ̂i+1),y)],
(3)

Theorem 1. (Iterative Evolution Optimization Strategy) We
can optimize objective (2) by iteratively optimizing against
the worst-case hider for the next epoch.

Auxiliary model. The second term of objective (3) serves
the purpose of enabling the current model to defend against
hidden threatening regions within the current decision
boundary. However, optimizing the current model for future
scenarios poses a challenge due to the inability to calculate
the derivative of the objective (3)’s second term with respect
to the current model’s weight parameters θi. Moreover, if
we directly approximate the second term with hiders’ loss
function LCE(fθi(x + δ̂j)) under model fθi , the conven-
tional gradient descent method encounters optimization dif-
ficulty since the hiders are not aggressive for model fθi .

To address this issue, we obtain an auxiliary model that
has a higher loss at x + δ̂j , thereby exposing the region
where hiders are located. Furthermore, we enhance the opti-
mization of model fθi by adding the optimization direction
from the adversarial training on auxiliary model as momen-
tum. This compels the current model to acquire optimiza-
tion directions that effectively prevent hiders.

To make the auxiliary model fθ̂i expose the region where
hiders are situated, it is necessary to determine where hiders

are most probable to emerge. By sampling from the empiri-
cal probability distribution G, we can determine the relative
location ratio r of hiders between natural samples and ad-
versarial examples. This allows us to find the most probable
region where hiders are placed, as sampling is dependent
on probability. In particular, since we only need to consider
the hiders associated with the next epoch, we sample the
relative position ratio r from G1. Then we can obtain the
auxiliary model fθ̂i through reverse training as follows:
θ̂i ← θi + η∇θiLCE(fθi(T (x,xadv, r)),y), r ∼ G1,

where η is the learning rate, T represents a position trans-
formation function that computes the most probable regions
for hiders based on sampled r, natural samples, and adver-
sarial examples. We incorporate a minor amount of noise
within ϵ into the process to introduce a degree of random-
ness. Furthermore, by applying adversarial training on aux-
iliary model, we are able to determine the gradient direction
of defending the hidden threatening regions, which can be
utilized as an approximation for the second term in objec-
tive (3). We introduce it as momentum p in the training of
model fθi , where the p can be denoted as:

pi = ∇θ̂i(LCE(fθ̂i(x+ δ∗),y)),

δ∗ = max
δ∗∈B(ϵ)

LCE(fθ̂i(x+ δ∗),y). (4)

HFAT aims to mitigate potential threats while defending
adversarial examples, so the optimization can be expressed
as a coupling of standard adversarial training and auxiliary
model guided optimization, which can be formalized as:

θi+1 ← θi − η(∇θiLCE(fθi(x+ δ), y) + pi). (5)

Adaptive weighting mechanism. In fact, HFAT can be
conceptualized as consisting of two adversarial training
branches. The first branch involves standard adversarial
training, where the model is trained to focus on the worst-
case adversarial examples. The second branch concentrates
on adversarial training the auxiliary model to assist the
model in defending against the region with the highest hid-
den threat. Considering that the threat intensity of adversar-
ial examples and hiders to the model varies across samples
and training phases, we devise an adaptive weighting mech-
anism to improve the coupling between the two adversarial
training branches.

We utilize the disparity between the outputs of natural
and adversarial examples as a metric, which represents sig-
nificance of the branch. If there is a significant dispar-
ity between the two outputs, it indicates that the branch
is comparatively undertrained and requires increased em-
phasis during training. The Kullback-Leibler divergence
is used to quantify the difference. The adaptive weighting
mechanism can be expressed as:

λA =
eKL(fθ̂(x)||fθ̂(x

′))

eKL(fθ(x)||fθ(x′)) + eKL(fθ̂(x)||fθ̂(x′))
, (6)
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where λA denotes the weight of the momentum p from the
auxiliary model’s branch, and the weight of standard adver-
sarial training’s branch is λS = 1− λA.
Training strategy. With the introduction of auxiliary
model and adaptive weighting mechanisms, the update of
HFAT’s weighting parameters finally can be represented as
formula 7, where pi is shown in formula 4.

θi+1 ← θi − η(λS∇θiLCE(fθi(x+ δ), y) + λAp
i). (7)

4. Experiments

4.1. Experimental setting

Dataset: We conduct extensive experiments on the CIFAR-
10 [15], CIFAR-100 [15], and SVHN [20] datasets. We
employ a perturbation budget of 8/255 for three datasets.
Network Architectures: To train on these datasets,
we employed a standard network Pre-ResNet18 [12]
and an advanced large-scale network (WideResNet-34-
10 [32]). Baselines: We adopt a standard defense base-
line: ATPGD [18] and four strong defense baselines:
TRADES [34], MART [29], AWP [30], HELP [21] to verify
generalization in various conditions. Training Details: All
defenses undergo 200 epochs of training using SGD with a
momentum of 0.9, weight decay of 5× 10−4, and an initial
learning rate of 0.1. The learning rate is reduced by a factor
of 10 at the 100-th and 150-th epoch. Simple data aug-
mentations, including a 32 × 32 random crop with 4-pixel
padding and random horizontal flip, are applied during the
training process for all methods.

4.2. Performance analysis

4.2.1 Performance on robustness and accuracy

We utilize two standard attacks, namely FGSM [9] and
PGD [18], as well as four strong attacks: C&W [3],
MIM [7], AArand [4] (composed of APGD-CE [4] and
APGD-DLR [4]) and AAstandard [4] (a collection of di-
verse parameter-free attacks consisting three white-box at-
tacks: APGD-CE [4] and APGD-T [4] and FAB-T [5],
and a black-box attack: Square Attack [1]). C&W uses
the margin-based loss function described in [3] and utilizes
PGD for optimization. Specifically, we employ 20 and 100
steps for PGD, 20 steps for MIM, and 30 steps for C&W.
The step size for these attacks is set to α = ε/4. Tab.
1 showcases the performance enhancement achieved by
HFAT across the five defense baselines on CIFAR-10 [15].
Results on the CIFAR-100 and SVHN datasets will be pre-
sented in the supporting material. We observe that HFAT
improves almost both natural accuracy and robust accuracy
against various attack methods, confirming the efficiency
and applicability of our strategy.

4.2.2 Performance under black-box attacks
Despite the inclusion of black-box attacks in AAstandard,
we further extend our evaluation to encompass transfer-
based black-box attacks [25, 27, 31] using PGD-20. We
employed adversarial examples generated from the source
model to attack the target model. The results in Tab. 2 show
that the model improved by HFAT achieved better transfer-
ability in adversarial attacks (evident in the red box region
in the figure, where the HFAT model exhibited a higher
success rate when attacking the same target model). Ad-
ditionally, it demonstrated superior performance in defend-
ing against transfer adversarial examples (as depicted by the
yellow background region in the figure, where the HFAT
model exhibited higher accuracy when faced with adversar-
ial examples from the same source model).

4.3. Analysis of hiders

4.3.1 Defense Performance
We illustrate HFAT’s defensive performance against hiders
through two aspects.

We first verify that HFAT can effectively defend against
potential threats from hiders. We compute and plot the pro-
portions of hiders at different intervals (interval 1, 5, 20,
and 50 epochs) in Fig. 2. It is observed that our method
significantly reduces the proportion of hiders compared to
ATPGD and Trades defenses alone. Furthermore, as the in-
terval value increases, the proportion of adversarial hiders
for ATPGD and Trades increases, while our method shows
almost no difference across different intervals. This indi-
cates that training the model using experience distribution
sampling with an interval of 1 epoch is reasonable and ul-
timately enables better generalization in defending against
hiders with larger interval values.

We next verify that HFAT prevents repeated threats to the
model by hiders. We visualize the specific index positions at
which hiders appear in Fig. 3 and observe a phenomenon of
repeated occurrences in the ATPGD. This repetition appears
to follow an intermittent and alternating pattern. However,
in the ATHF, hiders generally do not exhibit repeated oc-
currences, indicating that HFAT can effectively and persis-
tently defend against hiders.

4.3.2 Loss landscape
In this subsection, we directly validate the effectiveness
of HFAT by visualizing the loss landscape as shown in
Fig. 5 [8, 10, 17]. Firstly, we perturb the input in the gra-
dient direction and random direction as illustrated in Fig. 5
(a)-(c) [8]. It’s obvious that HFAT flattens the loss land-
scape more significantly compared to ATPGD, which illus-
trates that HFAT provides better robustness. Additionally,
we visualize the loss landscape along the hider’s direction
and random direction in Fig. 5 (d)-(f). It can be seen through
Fig. 5 (e) that ATPGD exhibits local peaks, which confirms
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Table 1. Comparison of performance improvement of HFAT applied to five different baselines on the CIFAR-10 dataset and implemented
them on the PreAct ResNet-18 and WideResNet34-10 architectures. For testing the attack methods, we selected FGSM, PGD20, PGD100,
CW, MIM, AArand, and AA. Here, AA refers to the standard version of AutoAttack.

PreAct ResNet-18 WideResNet34-10
Natural FGSM PGD20 PGD100 CW MIM AArand AA Natural FGSM PGD20 PGD100 CW MIM AArand AA

ATPGD 81.66 57.51 52.64 52.51 50.29 52.83 49.04 48.25 86.40 61.83 55.60 55.19 54.59 55.70 52.95 52.06
ATHF 81.88 60.04 56.39 56.23 52.60 56.46 51.64 50.61 87.53 65.76 60.06 59.87 57.64 60.18 56.55 55.58
TRADES 81.24 59.24 55.71 55.37 50.45 55.63 49.95 49.20 83.68 61.78 59.31 59.25 54.29 59.31 54.02 53.46
TRADESHF 80.39 59.61 57.41 57.12 51.20 56.95 50.96 50.35 85.38 63.80 61.12 61.03 55.88 61.16 55.62 55.05
MART 80.63 59.54 56.16 55.86 50.31 55.41 50.47 49.62 83.98 61.32 58.43 58.12 54.74 58.07 53.64 52.36
MARTHF 81.14 59.73 57.24 56.97 51.11 56.36 51.61 50.74 84.76 64.03 61.63 61.47 56.18 60.73 55.23 54.77
AWP 80.81 59.38 55.59 55.47 51.89 55.70 51.04 50.06 85.65 62.75 58.82 58.69 55.56 59.24 55.39 53.61
AWPHF 81.17 59.83 55.95 55.87 52.31 56.27 51.82 50.28 86.41 64.18 62.23 62.06 57.42 60.94 56.22 54.95
HELP 80.75 59.57 56.41 56.13 52.34 56.18 50.63 49.76 83.69 62.63 59.48 59.11 55.82 60.02 55.40 53.98
HELPHF 81.27 60.04 57.82 57.50 52.91 57.05 51.24 50.31 85.21 64.29 62.54 62.21 57.73 61.25 56.71 55.21

Table 2. Classification accuracy under transfer-based black-box
attacks. We use adversarial examples generated by source model
to attack the target model.

ATPGD ATHF TRADES TRADESHF

ATPGD 52.64 61.50 62.76 63.61
ATHF 60.12 56.39 62.35 63.32
TRADES 63.78 64.76 55.71 63.68
TRADESHF 62.21 62.89 63.03 57.41

Source Target

Figure 5. The loss surfaces in the vicinity of an input are depicted
in (a)-(c) for several models (standard model, ATPGD, and ATHF).
These entail examining the direction of the gradient (dg) and a di-
rection chosen randomly (dr) [8]. Additionally, in (d)-(f), the loss
surfaces focus on the hider direction (dh) and a random direction
(dr), which are depicted for different models (early-stage ATPGD

model, late-stage ATPGD model, and ATHF).

the existence of hiders. However, HFAT effectively sup-
presses the emergence of hiders as shown in Fig. 5 (f).

4.4. Ablation studies

4.4.1 Ablation study of auxiliary model
Although our method can identify potential areas for hiders
by sampling the relative location information, we do not
train the model directly using the samples computed by lo-
cation ratio information as data augmentation, but use the
auxiliary model to obtain the optimization direction. There-
fore, in this subsection we compare the effects of utilizing
auxiliary model and data augmentation. Additionally, we

Table 3. Comparison of robust and natural accuracies under differ-
ent data augmentation methods. AThiders includes hider samples
directly into the training process as additional training data.

Robust Accuracy Natural Accuracy

ATPGD 52.64 81.66
AThiders 48.90 85.73
Mixup 52.92 81.74

ATHF 56.39 81.88

Figure 6. The robust accuracy of under white-box attack PGD20

and MIM are evaluated using various static auxiliary model weight
settings: λA = 0, 0.01, 0.1, 1, 2, 3, and 5. The dashed horizontal
lines represent the accuracies of ATHF and TradesHF respectively
(i.e., using adaptive weighting mechanism). ATPGD and Trades
models are represented by distinct curves.

employ the Mixup [33] data augmentation method with a
selected α value of 1.4 for further comparison. Tab. 3 re-
veals that although the direct inclusion of hiders leads to a
substantial improvement in natural accuracy, it also results
in a significant decrease in robust accuracy. Furthermore,
the application of Mixup only yields marginal improve-
ment. Nevertheless, via the implementation of the auxiliary
model, HFAT significantly improves both its robustness and
accuracy. We believe this is because samples computed by
relative location information do not have significant attack
performance under the current training epoch, and thus can-
not be used directly for training to get good results.
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Table 4. Robust accuracy (evaluated by PGD20), natural accuracy,
and average runtime per epoch under different step value settings.
We use ATPGD as a reference.

Robust Accuracy Natural Accuracy Training Time(s)
ATPGD 52.64 81.66 192
step 1 53.52 83.89 211
step 3 54.26 82.75 248
step 5 56.39 81.88 287
step 7 56.47 81.13 326

4.4.2 Ablation study of adaptive weighting mechanism
We further investigate the impact of adaptive weighting λ
on model performance. To convey concepts more effec-
tively, we utilize λA to signify the weight of the auxiliary
model branch, and λS to denote the weight of the standard
adversarial training branch. In Fig. 6, we set the weight λS

to a fixed value of 1, while adjusting λA of the auxiliary
model to different values: λA = 0.0, 0.01, 0.1, 1, 2, 3, 5,
and normalize the weights before the experiment. We em-
ploy PGD20 and MIM attacks to evaluate and represent the
robust accuracy of adaptive weights using dashed lines. It is
observed that the model’s robustness gradually improves as
the weight λA increases, reaching its peak when λA equals
2 or 3, followed by a decline. Additionally, the adaptive
weight scheme exhibits significantly improved performance
compared to static weights.

4.4.3 Ablation study of auxiliary model step
Introducing an auxiliary model incurs additional computa-
tional overhead, and to discuss this, we vary the step values
for generating adversarial examples of the auxiliary model
in Tab. 4. Larger step values require more time for com-
putation. As the step value increases, both robust accuracy
and natural accuracy gradually improve, reaching their op-
timal balance when the step value is set to 5. A noticeable
decrease in natural accuracy is observed when the step size
is set to 7. The reported training time includes the sequen-
tial computation for the auxiliary model and the standard
adversarial training model.

4.5. Analysis of adaptive weighting mechanism

To provide evidence for the effectiveness of introducing
an auxiliary model, we visualize the variations of adaptive
weight values throughout the training process. Fig. 7 illus-
trates the evolution of the mean weight, λS , of the stan-
dard adversarial training model from around 0.5 in the early
epochs to approximately 0.1 in the later stages of training.
Conversely, the gradient weight λA of the auxiliary model
gradually increases from 0.5 to 0.9. This observation in-
dicates that as the training progresses, the gradient contri-
bution of the auxiliary model becomes increasingly signifi-
cant, highlighting the heightened importance of hiders’ de-
fense in the later stages of model training.

Figure 7. Visualization of adaptive weights as they vary with train-
ing steps. The blue hue signifies the weights λA of the auxiliary
model, whereas the orange hue corresponds to the weights λS of
the standard adversarial training branch. In addition, the darker
line represents the average value for each epoch.

5. Future work
We identify hiders as hidden high-risk areas and propose
HFAT that defends against both hiders and adversarial ex-
amples using iterative evolution optimization strategy and
auxiliary model. Hider detection in this study uses empiri-
cal fitting with Gaussian distribution. We encourage intro-
ducing an evaluation metric to assess the model’s capability
in detecting hidden threats, which could advance research
on self-supervision-based methods for hider prevention.

6. Conclusion
This paper highlights the limitations of conventional adver-
sarial training, which focuses solely on worst-case adver-
sarial examples and neglects the hidden threats in secure re-
gions. We introduce “hiders” samples that can be defended
or correctly classified initially but are vulnerable later. Our
method, HFAT, uses an auxiliary model to reveal potential
threats and offer optimized guidance for enhancing robust-
ness in the regions prone to hider emergence. HFAT im-
proves model robustness and accuracy through joint opti-
mization and adaptive weighting. Our experiments not only
show that HFAT can provide stronger robustness and bet-
ter accuracy, but also demonstrate HFAT’s effectiveness in
mitigating hider-related risks.
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