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Abstract

Polarization is a fundamental property of light that en-
codes abundant information regarding surface shape, ma-
terial, illumination and viewing geometry. The computer
vision community has witnessed a blossom of polarization-
based vision applications, such as reflection removal,
shape-from-polarization (SfP), transparent object segmen-
tation and color constancy, partially due to the emergence
of single-chip mono/color polarization sensors that make
polarization data acquisition easier than ever. However,
is polarization-based vision vulnerable to adversarial at-
tacks? If so, is that possible to realize these adversarial at-
tacks in the physical world, without being perceived by hu-
man eyes? In this paper, we warn the community of the vul-
nerability of polarization-based vision, which can be more
serious than RGB-based vision. By adapting a commercial
LCD projector, we achieve locally controllable polarizing
projection, which is successfully utilized to fool state-of-the-
art polarization-based vision algorithms for glass segmen-
tation and SfP. Compared with existing physical attacks on
RGB-based vision, which always suffer from the trade-off
between attack efficacy and eye conceivability, the adver-
sarial attackers based on polarizing projection are contact-
free and visually imperceptible, since naked human eyes
can rarely perceive the difference of viciously manipulated
polarizing light and ordinary illumination. This poses un-
precedented risks on polarization-based vision, for which
due attentions should be paid and counter measures be con-
sidered.

1. Introduction
Even if the frequency of light lies in the visible range, its
polarization status can hardly be perceived by human eyes.
Fortunately, a variety of imaging devices have been de-
veloped, which allow to utilize rich scene information en-
coded in polarization, regarding geometry, material, illumi-
nation and light transportation. The emergence of single-
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Figure 1. (a) Single-chip color polarization sensor can capture
trichromatic image, angle of linear polarization (AoLP), and de-
gree of linear polarization (DoLP) within one shot. (b) Our pro-
posed physical attackers are based on polarizing projection, which
is naturally conceivable to human eyes, thus can bypass the trade-
off between attack efficacy and eye conceivability in fooling RGB-
based vision.

chip mono/color polarization sensors has made polarization
data acquisition easier, leading to a blossom of polarization-
based vision applications, such as reflection removal [22],
shape-from-polarization (SfP) [10, 13, 23], surface defects
detection [24], color constancy [28], transparent object de-
tection and segmentation [26]. Figure 1 (a) shows the ca-
pabilities of a single-chip color polarization sensor in cap-
turing trichromatic image I , angle of linear polarization
(AoLP) ϕ, and degree of linear polarization (DoLP) ρ, with
one shot. Given the prevalence of polarization-based vi-
sion, it is astonishing that its vulnerability has never been
formally explored in the CV and AI communities.

The vulnerability of RGB-based deep vision models is
firstly reported in [30], with various extensions in min-
imizing perturbation magnitude, maximizing success rate
of attack, retrieving universal adversarial attackers, and so
on [1, 2]. Stepping beyond the digital space, more re-
cent researches focus on studying the vulnerability of RGB-
based vision models in the physically feasible space, while
minimizing the level of offensiveness to human eyes (blue
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point in Figure 1(b)), by using printed attack patterns on pa-
pers [5, 19, 21], clothes [34], or perturbations projected by
projectors [14], and attacks created by laser beams [11] and
shadows [38]. In principle, physical adversarial attack can
be more catastrophic, since there is no need to hack the in-
put image or the deployed model as digital attack requires.
However, it is extremely hard to find a physical attacker that
is both effective and imperceptible, since RGB cameras by
design are mimicking human eyes, and a physically feasi-
ble attack that is invisible to eyes will not be captured by
the camera as well.

Given that polarization and color represent two distinct
dimensions of light, and polarization is usually introduced
as a complementary modality to assist RGB-based vision,
one might believe that, polarization-based vision, especially
when coupled with the RGB modality, should be safer and
harder to be attacked in the physical world, as the green dot
in Figure 1(b) illustrates. In this paper, we show that this
speculation is ungrounded by proposing a novel yet sim-
ple implementation of locally controllable polarizing pro-
jection. Since human eyes have no sensitivity to polariza-
tion, the most stringent restriction on eye conceivability in
attacking RGB-based vision is naturally bypassed. This al-
lows us to explore the vulnerability space of polarization-
based vision more flexibly, within in the broad feasible
space that the projector can realize (red dots in Figure 1(b)).

Inspired by the operating principle of Liquid Crystal Dis-
play (LCD) panels in monitors and projectors, we have rec-
ognized that the polarization status of light emitted from
each liquid crystal cell can be independently controlled, af-
ter removing the front polarization film attached onto the
LCD panel. Since human eyes can not perceive polariza-
tion status, the projected light looks uniformly white, even
if the projection pattern has colors and textures, and the
polarization status of light has been adjusted accordingly
by LCD. In contrast, polarization cameras can record the
programmed polarizing projection, and the behaviors of vi-
sion algorithms based on such information might be manip-
ulated.

We have verified the feasibility of fooling polarization-
based vision for two representative tasks via whitebox at-
tack, including (i) reducing the accuracy of RGB-polar-
based glass segmentation [26]; (ii) misleading the latest
shape estimation model on the basis of polarization [23].
We hope this study can arouse attention on the potential se-
curity risks of utilizing polarization and trigger further re-
searches on the defense side.

2. Related Work

2.1. Adversarial Attacks on RGB-based Vision

While the state-of-the-art deep neural networks are capable
of achieving incredible performance in various scene un-

derstanding tasks, recent researches [21, 30] revealed their
striking vulnerability that very mild modifications to the in-
put images can deceive advanced classifiers with high con-
fidence. The adversarial examples are generated through
optimization processes by maximizing the classification er-
ror of a targeted model. In digital world, on the premise
of direct access to the targeted model, an adversarial ex-
ample can be derived by one or multiple steps of perturba-
tion following negative gradient directions, including clas-
sic Fast Gradient Sign Method (FGSM) [15], the Basic It-
erative Method (BIM) [15], and the Projected Gradient De-
scent (PGD) [25] for efficient and transferable adversarial
attacks. Their perturbations are bounded with a small norm-
ball Lp < ϵ, normally p = 2 or ∞, or minimized with a
joint adversarial loss [8], to craft a quasi-imperceptible ex-
ample to human eyes.

Digital attacks assume they can hijack the prediction sys-
tem to directly feed adversarial examples into the targeted
model. Considering that this requirement is usually imprac-
tical, other researches try to realize adversarial attacks by
inserting perturbations into the physical world. [21] shows
adversarial examples printed on papers are partly effective
to fool DNN classifiers. However, because of the discrep-
ancy between the designed attacker in the digital space and
the physical attacker recorded by the camera, a key task
is to retrieve robust adversarial examples that can be faith-
fully realized. [19] approximates the full digital-to-physical
transformation to search perturbations in a simulated world.
To deal with the wide range of diversities in real world sce-
narios, e.g. view points, illuminations, and noises, [5] gets
a distribution of transformations involved in the optimiza-
tion procedure, including rescaling, rotation (in 2D or 3D),
translation of image, and so on.

However, former small perturbations are too subtle to be
captured by cameras in the wild. Therefore, recent physical-
world adversarial attack methods attempt to generate strong
but stealthy perturbations in the real world. For example,
stickers and graffiti-type perturbations are attached to tar-
geted objects, e.g. a road sign, to achieve targeted mis-
classification from arbitrary viewpoints. Wearable attack
perturbations like clothes [35] and eye-glasses [29] are ca-
pable of fooling detection systems with improved stealthi-
ness. Moreover, laser beams [11], shadows [38], and pro-
jection [14] are utilized to craft attack perturbations in the
physical world without touching target objects. We refer
readers to [33] for thorough literature reviews on physical
adversarial attacks. All these researches on physical adver-
sarial attacks have to make a trade-off between attack effi-
cacy and eye conceivability.

2.2. Polarization-based Vision

Polarization has been utilized in various vision tasks for
many years, which is further boosted recently due to the
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emergence of a single-chip polarimetric imaging sensor that
provides chromatic and polarimetric information in a sin-
gle shot. Polarization cues are highly related to the il-
lumination condition, object geometry and material prop-
erty. Thus, it is introduced to assist conventional stereo vi-
sion approaches, i.e. multi-view stereo [9, 36], binocular
stereo [13], and photometric stereo [32]. Besides, polar-
ized specular and diffuse reflection have distinct properties,
which make it also popular in inverse rendering by formu-
lating the physics-based rendering equation with polarimet-
ric Bidirectional Reflection Distribution Function (pBRDF)
model [7, 18, 37]. With learned shading and polarization
priors, DNNs can restore more detailed geometries [6, 23]
and SVBRDF [10] with a single shot. Moreover, polari-
metric imaging is capable of capturing polarization cues of
transparent objects, which explains its extraordinary supe-
riority in dealing with transparent objects in glass segmen-
tation [26], transparent object shape estimation [27], and
reflection removal [22]. Color constancy is challenging in
the RGB domain, and it is shown that polarization can ben-
efit color constancy, especially in poorly illuminated condi-
tions [28].

Wider applications of polarization in the near future can
be expected, yet we would like to warn of the potential
vulnerability of polarization-based vision, which might be
more serious than that of RGB-based vision, since the ad-
versarial attackers can be physically realized using a mod-
ified LCD projector and human eyes can not differentiate
maliciously manipulated polarizing light from normal illu-
mination.

2.3. Projectors and Their Applications

Projectors are widespread display devices, whose modula-
tion mechanism of light intensity is either based on digi-
tal micromirror device (DMD) widely used in digital light
processing (DLP) projectors or liquid crystal polarization
adopted by LCD projectors or LCoS projectors. As for
the color-framing mechanism, one-chip DLP projectors use
the rotating color wheel or blinking trichromatic LEDs, and
one-chip LCD projectors use the micro color filter array,
which is similar to the Bayer pattern in RGB cameras. By
using the color-framing mechanism of a one-chip DLP pro-
jector, Ashdown et al. [4] recovered high-resolution spectral
reflectance. Further, to deal with unexpected irregularities
when applying a digital projector in non-ideal situations,
they proposed to generate a compensation image based on
both the radiometric model of the system and the content of
the image. Tanaka et al. [31] utilized a projector coaxially
placed with the camera to inject illuminations of multiple
frequencies for obtaining the appearance of individual in-
ner slices. Projectors have also been used for adversarial at-
tacks in the physical world with projected perturbations [14]
or constant colors [17].

Projector Model: AoLP
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Figure 2. (a) The mechanism of intensity adjustment in one-chip
LCD projector with a liquid crystal panel sandwiched by two per-
pendicular linear polarizers. (b) The polarization direction of the
light beam in each liquid crystal cell can be individually con-
trolled, without affecting its intensity. (c) The range of control-
lable polarization direction.

Existing polarization-based LCD/LCoS projectors do
not offer pixel-wise manipulation of the polarization status
of light projected on the screen. So, they can not be directly
utilized to attack polarization-based vision algorithms. In
the following, we will show that a simple adaptation of the
one-chip LCD projector will allow locally controllable po-
larizing projection.

3. Preliminary

3.1. Principle of One-chip LCD Projector

One-chip LCD projector is the most widely used type of
low-cost projector. The principle of an LCD projector con-
trolling the irradiance is shown in Figure 2. A beam of un-
polarized light is emitted by a bulb. Two linear polarizers
are placed in coaxial positions while their polarizing direc-
tions are perpendicular to each other (π4 and 3π

4 in our de-
vice), and a liquid crystal panel is inserted to the middle of
them. The light is divided into red, green, and blue com-
ponents by a color filter array before linearly polarized by
the back π

4 polarizer. Then, by adding voltages to liquid
crystal grids, the layer can manipulate polarizing direction
of individual light beams, and a greater voltage leads to a
bigger rotation up to π

2 from its initial direction. The light
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Fi g ur e 3. ( a) T h e t y pi c al str u ct ur e of a o n e- c hi p L C D pr oj e ct or, i n
w hi c h li g ht e mitt e d b y L E D l a m p will g o t hr o u g h a li q ui d cr yst al
p a n el, mirr or, a n d pr oj e cti o n l e ns. ( b) A li n e ar p ol ari z er is att a c h e d
t o t h e fr o nt si d e of t h e L C D p a n el. We t e ar it off t o m a k e o ur p ol ar-
i zi n g pr oj e cti o n. ( c)( d) T h e pr oj e cti o n of a n or m al L C D pr oj e ct or
a n d o ur a d a pt e d pr oj e ct or. T h e arr o ws’ dir e cti o n a n d l e n gt h r e pr e-
s e nt li g ht p ol ari zi n g dir e cti o n a n d i nt e nsit y, r es p e cti v el y. A n or m al
pr oj e ct or e mits o ut c ol orf ul li g ht of c o nst a nt p ol ari z ati o n dir e cti o n,
w hil e o ur a d a pt e d p ol ari zi n g pr oj e ct or e mits li g ht wit h c o nst a nt i n-
t e nsit y b ut diff er e nt p ol ari zi n g a n gl es. N ot e t h at, f or n a k e d e y es
a n d or di n ar y R G B c a m er as, t h e pr oj e ct e d li g ht is c o m pl et el y u ni-
f or m, e v e n if t h eir p ol ari z ati o n dir e cti o ns ar e t ot all y diff er e nt. T h e
pr oj e ct e d i m a g e c a n b e o bs er v e d b y e y es wit h t h e assist a n c e of a
li n e ar p ol ari z er o n t h e s cr e e n.

i nt e nsit y p assi n g t hr o u g h t h e fr o nt p ol ari z er is d e ci d e d b y
its p ol ari zi n g dir e cti o n, f oll o wi n g t h e M al us’s l a w:

I = I 0 c o s 2 (θ ), ( 1)

w h er e θ is t h e a n gl e b et w e e n t h e p ol ari zi n g dir e cti o n of
li g ht aft er b ei n g r ot at e d b y t h e li q ui d cr yst al a n d t h e dir e c-
ti o n of t h e fr o nt 3 π

4 p ol ari z er. I 0 is a c o nst a nt li g ht i nt e nsit y
fr o m t h e b a c k p ol ari z er. Si n c e t h e i nt e nsit y of R G B c o m p o-
n e nts is s e p ar at el y c o ntr oll e d, t h e c ol or of m er g e d li g ht c a n
b e m a ni p ul at e d t o m at c h t h e pr oj e cti o n p att er n s uf fi ci e ntl y.

N ot e t h at, wit h t h e fr o nt p ol ari z er e q ui p p e d, o ut p ut li g ht
b e a ms ar e al w a ys li n e arl y p ol ari z e d i n t h e π

4 a xis r el at e d
t o t h e pr oj e ct or b ut h a v e diff er e nt i nt e nsiti es, as s h o w n i n
Fi g ur e 3 ( c). T h e k e y i d e a of b uil di n g a c o ntr oll a bl e p o-
l ariz ati o n li g ht pr oj e ct or is t o r e m o v e t h e fr o nt p ol ariz er.
As s h o w n i n Fi g ur e 3 ( a, b), w e t e ar off t h e fr o nt p ol ari z a-
ti o n fil m of t h e pr oj e ct or a n d m a n a g e n ot t o d a m a g e t h e
li q ui d cr yst al p a n el. I n t his w a y, t h e o ut p ut li g hts of t h e
pr oj e ct or h a v e c o nst a nt i nt e nsit y b ut diff er e nt p ol ari zi n g di-

r e cti o ns. T h e p ol ari zi n g dir e cti o n c a n b e pr e cis el y c o n-
tr oll e d b y m a ni p ul ati n g t h e pr oj e cti o n p att er n. F urt h er m or e,
u nif or m w hit e c ol or a n d c o nst a nt pr oj e cti o n i nt e nsit y c o n-
tri b ut e t o hi g h st e alt hi n ess as it will n ot i ntr o d u c e visi bl e
t e xt ur es t o h u m a n e y es, as c a n b e s e e n i n Fi g ur e 3 ( d).

3. 2. P r eli mi n a ri es f o r Li g ht P ol a ri z ati o n

M ost p ol ar- R G B b as e d m et h o ds r el y o n b ot h i nt e nsit y a n d
p ol ari z ati o n c u es, i. e., d e gr e e of li n e ar p ol ari z ati o n ( D o L P,
ρ , t h e pr o p orti o n of li n e ar p ol ari z e d c o m p o n e nt i n li g ht)
a n d a n gl e of li n e ar p ol ari z ati o n ( A o L P, ϕ , t h e p ol ari z-
i n g dir e cti o n of p ol ari z e d li g ht). T h e y c a n b e c al c ul at e d
fr o m a si n gl e s h ot wit h a B a y er- p ol ari z ati o n s e ns or, e. g .,
I M X 2 5 0 M Y R, w hi c h c a pt ur es p ol ari z ati o n c o m p o n e nts i n
f o ur dir e cti o ns, t er m e d as I 0 , I π

4
, I π

2
, a n d I 3 π

4
. St o k es p a-

r a m et er, s = [ s 0 , s1 , s2 ]⊤ is us e d t o d es cri b e t h e p ol ari z a-
ti o n st at e of li g ht, w h er e s 0 r e pr es e nts t h e t ot al i nt e nsit y of
li g ht, s 1 a n d s 2 d es cri b e t h e p ol ari z ati o n st at es i n h ori z o nt al
a n d di a g o n al a x es. s 0 , s 1 a n d s 2 c a n b e c o m p ut e d f oll o w-
i n g:

s 0 = ( I 0 + I π
4

+ I π
2

+ I 3 π
4

)/ 2 ,

s 1 = I 0 − I π
2
,

s 2 = I π
4

− I 3 π
4

.

( 2)

N ot e t h at t h e i nt e gr ati o n of m ulti pl e li g ht c a n b e c al c ul at e d
as li n e ar c o m bi n ati o n of t h eir St o k es p ar a m et ers. T h e n, ρ
a n d ϕ ar e g e n er at e d b y St o k es el e m e nts as:

ρ =
s 2

1 + s 2
2

s 0
, ϕ =

1

2
ar ct a n

s 2

s 1
. ( 3)

Als o, s 1 a n d s 2 c a n b e c o m p ut e d fr o m s 0 , ρ a n d ϕ b y:

s 1 = s 0 ρ c o s( 2 ϕ ), s2 = s 0 ρ si n( 2 ϕ ). ( 4)

4. W hit e b o x Att a c k o n Gl ass S e g m e nt ati o n

B as e d o n t h e n o v el l o c all y c o ntr oll a bl e p ol ari zi n g pr oj e c-
ti o n, w e will s h o w h o w t o att a c k a p ol ar- R G B b as e d d e e p
m o d el, P G S N et f or gl ass s e g m e nt ati o n [ 2 6 ], i n a w hit e b o x
m a n n er. Ass u mi n g f ull a c c ess t o t h e t ar g et m o d el, o ur g o al
is t o d esi g n a n eff e cti v e att a c k s etti n g, fi n d a st a bl e p ert ur-
b ati o n, a n d pr oj e ct it o nt o t h e t ar g et e d s c e n e i n t h e p h ysi c al
w orl d. T h e pr oj e ct e d a d v ers ari al att a c k er will n ot b e r e c-
o g ni z e d b y h u m a n e y es, si n c e it a p p e ars t o b e u nif or ml y
w hit e, y et c a n b e c a pt ur e d b y a p ol ar-r g b c a m er a. U n d er
s u c h m a ni p ul at e d i n p uts, t h e P G S N et m o d el is i n d u c e d t o
g e n er at e i n c orr e ct pr e di cti o ns.

4. 1. O u r S etti n g’s C h all e n g es

Fi n e-s c al e d p ert ur b ati o ns li k e pi x el- wis e n ois es ar e e x-
tr e m el y s u btl e a n d e as y t o b e d estr o y e d i n a c o m pli c at e d
p h ysi c al w orl d.  T h er ef or e, pr e vi o us w or ks a p pl y l ar g e
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perturbation patterns, like blocks [12], lines [11], trian-
gles [38], for attacking image classification models. How-
ever, segmentation models predict pixel-wise classifica-
tions, which also apply advanced multiscale architectures,
skip connections, and even self-attention modules, making
them robust to adversarial attacks [3, 20]. Our polarization
projection involves complex physical and optical proper-
ties, which makes the creation of adversarial samples highly
complex and technical. Thus, we develop a perturbation
pattern in the form of grids, to realize a more robust physi-
cal attack.

Normally, whitebox adversarial attacks in the physical
world need to simulate comprehensive effects in the real
world, including camera response function, camera noises,
light decay, quantization effects, and so on [14, 19]. There-
fore, in order to attack a polarization-based AI model, the
most intuitive way of generating an effective perturbation in
the whitebox manner is to simulate the complete transport
of light. For us, polarization light travels from the polariz-
ing projector to the object’s surface, and finally to the polar-
ization camera after being reflected by the object. However,
it is not possible to acquire detailed scene geometry and ac-
curate material parameters in the wild. So, we consider a
simplified setup for whitebox attacks on glass segmentation.
We can not only construct the most reliable simulation for
polarization projection on glasses in the digital world but
also generate adversarial examples of high effectiveness in
the physical world.

4.2. Digital World Attack

Given a clean input sb in the form of Stokes parameters
and its binary label y ∈ RH×W×1, where (H,W ) denotes
spatial resolution. PGSNet f(·) is trained to maximize the
pixel-wise binary prediction accuracy, where 1/0 represents
the region that is/is not glass. The goal of our adversarial at-
tack is to maximize the segmentation error with a projected
adversarial perturbation, denoted as v, which is captured as
s = s(v). The problem is formulated as

max
v

1

HW
∥ y − f(g(sb + s(v))) ∥, (5)

where g(·) denotes mapping from Stokes vectors to polar-
ization cues by equation 3.

In general, adversarial attack algorithms generate adver-
sarial examples by adding the gradient of error function
w.r.t. sb, termed as ∇sbL, and the perturbation is the di-
vision of clean image and its adversarial optimization re-
sult. However, the perturbation generated in this approach
does not obey the physical property of our polarizing pro-
jection. For an optical adversarial system, we need to up-
date perturbation directly following the gradient of the per-
turbation [14], i.e., the projection pattern v that will be fed
into polarizing the projector, denoted as∇vL.

However, as mentioned, it is impossible to accurately
construct a differentiable computation from v to s, since the
complicated polarization reflection. Thus, we try to gener-
ate perturbation by directly optimizing s. We generate our
adversarial example from a collection of real-world polar-
ization images, termed as Sp = {s1, s2, ..., sK}, captured
directly by the targeted camera in the scene covered by the
corresponding uniform projections vp = {v1, v2, ..., vK}.
For robust attacks in the real world, our projected perturba-
tion is a map of grids, the value of each grid is assigned with
a selected value, e.g., vi. With the relationship between the
reflection si and the quantized projection vi known, we can
realize optimization using Sp rather than vp to avoid com-
plicated simulation of polarization reflection, indirect light
effects, as well as the tone-mapping function of projector.

Further, we introduce a set of optimizable weights Ω =
{ω1, ω2, ..., ωK} on candidate images and use SoftMax
function to generate relative coefficients of each si. Then
we compute an adversarial example as:

sae =
K∑
i

exp(ωi/τ)∑K
j exp(ωj/τ)

(si − sb) + s∗b , (6)

where τ is a temperature parameter to adjust the bias of rela-
tive weights. s∗b denotes the augmented background image.
Our optimization variable is the weights Ω. The problem in
equation 5 is then reformulated as:

max
Ω

1

HW
∥ y − f(g(sae)) ∥ . (7)

To deal with the problem in equation 7, we follow the
negative gradient directions to update Ω based on an itera-
tive optimization approach:

Ωt+1 ← Ωt + α∇ΩtL(y, f(g(sae))), (8)

where α denotes the step size. After the optimization, we
use ArgMax to decide the final Ω̂ and form an adversarial
perturbation. In practical terms, to strike a balance between
efficiency and effectiveness, we assembled a set of 17 can-
didate images. These images have source projection values
that are uniformly discrete, ranging from 0 to 255. Further
implementation details can be found in the supplementary
material.

4.3. Adversarial Loss

With our adversarial example, we aim to maximize the error
between predicted glass segmentation map f(g(sae)) and
label y, thus we first apply a Binary Cross Entropy loss.
Moreover, we prefer to mislead the PGSNet to predict more
non-glass pixels as positive, and vice versa, aligning with
the approach outlined in [16]. With the prediction of adver-
sarial example yae, LE is termed as:

LE =
1

HW

∑
j∈yn

yjae −
1

HW

∑
j∈yp

yjae, (9)
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Figure 4. The Illustration of intensity, AoLP and DoLP images
from our digital world simulation alongside their counterparts
captured in the physical world. In the digital scenario with Ex-
pectation Over Transformation (EOT), the images are augmented
through the addition of Gaussian noises, Gaussian blurring, and
scaling of background intensity, all of which are randomly sam-
pled to simulate real world degradations.

(a) ℒ𝐵𝐶𝐸 (b) IoU

Figure 5. Illustration of LBCE , and IoU during the optimization
process.

where yl∈{n,p} denotes the set of pixels which are nega-
tive/positive (non-glass/glass) in the label y. yn and yp

are disjoint, and the total number of pixels of yn ∪ yp

is HW . Thus our final adversarial loss function is L =
LBCE + λLE .

4.4. Augmentation for Attack in Real World

To generate more robust adversarial examples for the phys-
ical world attack, we follow the data augmentation strategy
of EOT (Expectation Over Transformation) [5]. EOT em-
ploys a distribution of real-world degradations and transfor-
mations, enabling the generation of adversarial examples
that are better suited for the complexities of the physical
world. Given our specific focus on a scenario with a fixed,
known camera and projector setup, transformations such as
rotation and translation are not applicable in our case. We
introduce Gaussian noise and apply Gaussian blur to sim-
ulate real-world degradation. Additionally, we employ a
randomly sampled scale ratio to adjust the intensity of the
background image sb, accounting for minor variations in
environmental lighting conditions.

Table 1. Quantitative comparison using MAE and IoU in the dig-
ital and physical world. Random refers to perturbations that are
randomly sampled, while Ours-k denote our optimized perturba-
tion at a grid size of k.

Digital world Physical world
MAE↑ IoU ↓ MAE↑ IoU↓

Unpolarized 0.101 0.715 0.101 0.715
Random-8 0.204 0.461 0.167 0.509
Ours-8 w/o EOT 0.745 0.185 0.321 0.411
Ours-8 w/o LE 0.569 0.245 0.271 0.408
Ours-8 0.719 0.200 0.318 0.422
Random-16 0.246 0.489 0.287 0.449
Ours-16 w/o EOT 0.735 0.197 0.372 0.413
Ours-16 w/o LE 0.588 0.205 0.404 0.396
Ours-16 0.698 0.190 0.399 0.377
Random-32 0.329 0.440 0.257 0.474
Ours-32 w/o EOT 0.674 0.212 0.307 0.449
Ours-32 w/o LE 0.680 0.254 0.342 0.367
Ours-32 0.678 0.250 0.347 0.361

4.5. Experiments

To simplify our experiments, we use a specific setup with a
co-located projector and camera. This configuration obvi-
ates the need for calibrating their relative poses, thereby fa-
cilitating an effortless alignment of the camera’s view with
the projection. We gather candidate images and background
images in an indoor setting. In Figure 4, we show the visual
comparison between the digital world simulation and real-
world captures. The AoLP and DoLP images show that our
simulation approach reconstructs realistic polarization re-
flections at extremely high precision. On the contrast, the
modification of rgb images from adversarial perturbation is
visually imperceptible, thus realize an undermined adver-
sarial attack on polarization-based vision model.

Experiments were conducted across 11 scenes to validate
the efficacy of the proposed method. At an image resolution
of 612 × 512, we set the grid size for our perturbations to
be 8, 16, and 32, respectively, that a smaller grid size yields
a higher resolution for the perturbation. We apply MAE
(Mean Absolute Error) and IoU (Intersection over Union) to
characterize the prediction performance of the target model.
For every scene, we run 300 iteration of optimizations, and
λ = 1 for LE . The step size is set to α = 1. We set τ as 0.3
and reduce it gradually for a simulation close to the candi-
date values. For a clear observation, the updates of LBCE

and IoU with different optimization settings are shown in
Figure 5. The visual comparison shows the LE effectively
enforce erroneous predictions especially with high resolu-
tion perturbations (grid size 8).

Quantitative evaluations are summarized in Table 1.
Based on the results, our polarizing perturbations can sig-
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Ours-8Random-8 Ours-32Random-32UnpolarizedGT

Figure 6. Visual comparison for adversarial attacks on the polarization-based glass segmentation model PGSNet [26]. This comparison
illustrates the predictions of inputs with projections in three states: unpolarized, polarized in random directions, and polarized in the
optimized pattern using our technique. Random-k and Ours-k represent random and our optimized perturbations at a grid size of k. The
input images are visualized in red boxes.

W/o EOT W/o ℒ𝐸 OursUnpolarized

Figure 7. Representative ablation study regarding EOT and LE ,
using optimized perturbations at a grid size of 8.

nificantly weaken the accuracy of PGSNet. The compar-
ison reveals that in the digital world, perturbations with
higher resolution are more effective in misleading the tar-
geted model, especially in scenarios without the application
of EOT. Conversely, in the physical world, adversarial per-
turbations with a lower resolution (grid size 32) exhibit su-
perior performance. We attribute the improvement to the in-
herent robustness provided by grid-based perturbation. This
robustness ensures effective transferability, even in the face
of minor degradations. Furthermore, the use of (EOT) pre-
vents overfitting to the input data and enhances the transfer-
ability of adversarial examples to real-world scenarios. No-
tably, our optimized adversarial examples outperform ran-
domly generated perturbations with a great margin, and the
introduction of our proposed LE loss further amplifies at-
tack efficacy in both digital and physical realms.

We illustrate results of adversarial examples in two grid
sizes, 8 and 32, as shown in Figure 6. When compared with
predictions derived from inputs illuminated by unpolarized
projection, the results highlight the efficacy of our polariz-
ing projection in undermining the performance of PGSNet
in both the digital and physical worlds. Notably, even per-

turbations that are randomly sampled can degenerate the
model’s performance. Furthermore, perturbations synthe-
sized via our optimization technique consistently outper-
form random perturbations. Particularly in physical world
attacks, our method benefits substantially from the integra-
tion of Expectation Over Transformation (EOT) and the LE

loss function, resulting in robust and pronounced attack per-
formance. Although minimal visual textures are discernible
to the human eye, the polarization properties undergo sig-
nificant alterations due to our perturbation projections. This
approach effectively achieves both stealthiness and attack
efficacy. Additional experimental details are provided in our
supplementary material.

Visual comparisons of the physical world attack for the
ablation study are also shown in Figure 7, which indicate the
significance of the proposed technique. The applied EOT
enhances the robustness of the projection perturbation ef-
fectively and proposed LE further boosts the attack perfor-
mance.

5. Whitebox Attack on Deep SfP
We have expanded our locally controllable polarizing pro-
jection technique to another key area of polarization imag-
ing: shape estimation. Polarization imaging is inherently
adept at capturing cues related to object geometries. In
line with this, SfP-wild [23] suggests leveraging deep pri-
ors from a large-scale polarization image dataset to esti-
mate normal maps from single-shot images taken in the
wild. Compared to RGB-only-based normal estimation,
Lei’s model derives significant advantages from polariza-
tion cues, enabling it to discern false geometries, such as
scenes printed in a photograph. Importantly, with deep pri-
ors derived from extensive datasets captured in the wild,
the model avoids the ambiguity issue [13] and circumvents
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sfp_7cube16_31_1

sfp_7cube16_31_woaug_2

Image w/o EOT 𝜙𝑎𝑒
𝑝ℎ𝑦 w/o EOT𝜌𝑎𝑒

𝑝ℎ𝑦 w/o EOT 𝑦𝑝ℎ𝑦 w/o EOT 𝑦𝑑𝑖𝑔 w/o EOT

Image w/ EOT 𝜙𝑎𝑒
𝑝ℎ𝑦 w/ EOT𝜌𝑎𝑒

𝑝ℎ𝑦 w/ EOT 𝑦𝑝ℎ𝑦 w/ EOT 𝑦𝑑𝑖𝑔 w/ EOT 𝑦𝑡𝑎𝑟

Figure 8. Visual comparison for adversarial attacks on the shape esimation model SfP-wild [23].

lighting constraints [10, 18]. However, our experiments
demonstrate instability when relying on polarization. Our
polarizing projection can mislead the state-of-the-art deep
Shape-from-Polarization model. This allows the fake cre-
ation of arbitrary shapes through perturbations that are im-
perceptible to the human eye.

Our objective is to project a polarizing perturbation onto
the background, aiming to deceive the model into estimat-
ing shapes of non-existent ’objects’. Starting with an orig-
inal estimation under a uniformly linear polarized projec-
tion, we superimpose the background normal map with a
hypothetical object, such as a cube, to serve as our target
for the attack. We follow the settings described in Section
4 to optimize the perturbation pattern within the target re-
gion. For the optimization process, we simply employ the
MAE loss [23] and update the perturbation by gradient de-
scent. We introduce a high-resolution perturbation with a
grid size of 2 and also incorporate the EOT methodology [5]
to ensure an effective adversarial perturbation in real world
attacks.

In Figure 8, we present the adversarial examples result-
ing from the physical world attack, alongside the network
outputs y

l∈{phy,dig}
ae corresponding to physical and digital

world attacks. Here, yori represents the estimation obtained
with the background illuminated by linear polarized projec-
tion, while ytar denotes the label of our targeted adversarial
attack. As indicated by the intensity, ρphyae and ϕphy

ae of ad-
versarial examples, our perturbation focuses on modifying
the polarization within the target region. In the digital do-
main, even a limited polarizing reflection proves adequate
for generating a detailed normal map. While certain inher-
ent challenges, such as noise and quantized signals, mani-
fest in the real world, the attack leveraging EOT still yields
results that closely align with the simulations. Please refer
to our supplementary material for more evaluation.

In addition to the aforementioned experiments, we also
conducted tests targeting the polarization-based color con-
stancy algorithm [28] and human pose and shape estima-

tion model [39]. Further details on these experiments are
provided in our supplementary material.

6. Research Ethics and Limitations

This study originates from our curiosity on the potential
vulnerability of polarization-based vision algorithms in the
digital space. In line with existing researches on adversarial
attacks, this study is intended to offer a timely warning on
the potential vulnerability of polarization-based AI.

The most obvious limitation we found lies in the relative
low luminance of the projector, and the attack success rate
will be low in bright environment. However, it is highly
effective in indoor or low-light outdoor scenarios. Further
protection measures, such as adversarial training, data en-
hancement, or introducing activate illuminations should be
considered.

7. Conclusion

Polarization has been utilized for a variety of computer
vision tasks. We have shown that, similar to the well-
known vulnerability of RGB-based vision, the performance
of polarization-based vision algorithms, such as glass seg-
mentation and shape estimation, can be manipulated, maybe
in a potentially harmful way. Our adversarial attackers are
physically realized by using an adapted one-chip LCD pro-
jector, which allows locally controllable polarizing projec-
tion. Our method is visually friendly, thus poses realis-
tic concerns on the reliability of polarization-based AI. We
hope this study will arouse attentions on the potential risks
of polarization-based vision.
Acknowledgement This research was supported in
part by JSPS KAKENHI Grant Numbers 22H00529,
20H05951, 23H03420, JST-Mirai Program JPMJMI23G1,
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