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Abstract

Action understanding has attracted long-term attention.
It can be formed as the mapping from the physical space
to the semantic space. Typically, researchers built datasets
according to idiosyncratic choices to define classes and
push the envelope of benchmarks respectively. Datasets are
incompatible with each other like “Isolated Islands” due
to semantic gaps and various class granularities, e.g., do
housework in dataset A and wash plate in dataset B.
We argue that we need a more principled semantic space
to concentrate the community efforts and use all datasets
together to pursue generalizable action learning. To this
end, we design a structured action semantic space in view
of verb taxonomy hierarchy and covering massive actions.
By aligning the classes of previous datasets to our semantic
space, we gather (image/video/skeleton/MoCap) datasets
into a unified database in a unified label system, i.e., bridg-
ing “isolated islands” into a “Pangea”. Accordingly, we
propose a novel model mapping from the physical space to
semantic space to fully use Pangea. In extensive experi-
ments, our new system shows significant superiority, espe-
cially in transfer learning. Our code and data will be made
public at https://mvig-rhos.com/pangea.

1. Introduction
Visual action understanding is an important direction in
computer vision and matters to various domains [14, 65].
Generally speaking, it can be formulated as the mapping
from the physical space to the semantic space. Here, physi-
cal space indicates the visual patterns (information carrier)
and semantic space represents the action semantics (class).

In terms of the physical space, many works were pro-
posed to extract representations from different modalities
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Figure 1. “Isolated islands”. The semantic gap brings a great chal-
lenge to general action understanding.

to capture action cues, such as image [42], video [5], skele-
ton [29], MoCap [25], RGBD [62], etc. However, few
efforts have been made to semantic space design. Previ-
ous benchmarks [6, 10, 32] are typically designed accord-
ing to designers’ choice and incompatible with each other
due to semantic gaps. They have three main weaknesses:
(1) Ambiguity. Similar actions may have different class
names, e.g., clean, wipe, scrub. Though this may
strengthen the diversity in visual-language learning [59], it
hinders machines from learning the subtle similarities and
differences of actions. Besides, the same class may rep-
resent different actions, e.g., address means either ad-
dressing oneself to something or addressing a conference.
This phenomenon brings both generalization possibility and
challenge. (2) Overlooking granularity/hierarchy. The
datasets are constructed independently, thus typically over-
looking granularity, e.g., do housework in dataset A
and clean floor in dataset B, sometimes even in one
dataset. (3) Integration/transfer difficulty. Large models
need more data. However, due to the “isolated islands”, it is
hard to integrate datasets and conclude the “few-shotness”
and “zero-shotness” of classes. We do not know which

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

16582

https://mvig-rhos.com/pangea


hold
hug
pet

scratch
……

hug
pet
scratch

scratch

hug

hold
hold

Action Semantics VerbNet Semantics

Semantic 

Knowledge

Touch-20-1
Verb Members: grasp, massage…

Example Sentences: touched on…

massage: <Manipulation>

massage%2:35:00
Definitions: manually manipulate…
Examples: She rubbed down…
Lexname: verb.contact

massage%2:29:00…

grasp: <Manipulation>……

Geometric
Knowledge

mapping

Figure 2. Verb tree. The conventional action semantics (e.g., hold, hug) can be mapped into node semantics (e.g., touch-20-1,
support-15.3). The proposed semantic space has abundant semantic and geometric knowledge.

classes should be enriched or used for transfer learning.
In Fig. 1, we visualize the class word embeddings [21]

of 18 datasets via t-SNE. Huge semantic gaps exist. Even
for the very large Kinetics-700 [5], there are still many
classes beyond its coverage. Here, we first clearly reveal
the overlooked “Isolated Islands (I2)” problem. It brings
semantic gaps and impedes cross-dataset learning. Though
CLIP [59]-like works alleviate this problem to some ex-
tent with the open-vocabulary property, their latent space
may be difficult to capture the subtle polysemy, taxonomy,
and hierarchy of action semantics. In experiments (Sec. 6),
CLIP trained with simply-mixed datasets performs not well.

Thus, we rethink the action semantic space design and
take a step towards a principled semantic space. We pro-
pose a new system to pave a promising way to address
the I2 problem. Our core idea is to use a structured ac-
tion semantic space to replace the existing hand-crafted
ones. We build this semantic space according to the lin-
guistic structure knowledge of VerbNet [61]. VerbNet is
a network linking the syntactic and semantic patterns of
verbs. It is a domain-independent tree-structure lexicon
and has a clear hierarchy covering most verbs. We vi-
sualize the verb tree in Fig. 2. To maximize the poten-
tial of our semantic space, we gather many datasets (im-
age/video/skeleton/MoCap) to build a database and align
their classes to our semantic space easily, i.e., linking the
“isolated islands” into a “Pangea”. Then, we can use the
continuous hyperbolic space together with the semantic-
geometric prompt to embed the structured knowledge.

Our space has four-fold superiority: (1) Unambigu-
ous verb nodes correlating all related verbs, e.g., pat,
nudge, massage with similar meaning are shared by
the node touch-20-1. (2) Rich knowledge. Besides
the thematic role, syntactic, semantic description, and se-
lectional preferences of verbs, VerbNet has mappings to
other knowledge bases (WordNet [53], PropBank [33],
FrameNet [1]). We can conveniently adopt Large Language
Models [3] to extract meaningful language representations
to advance learning. (3) Hierarchy to represent actions

from abstract to specific granularity, e.g., sports, ball
sports, basketball, dunk. (4) Extensive cover-
age. It contains about 5,800 verbs. In Fig. 1, our space not
only covers all datasets but also spans the semantics a lot.

To fully use Pangea, we propose a compact mapping
system to conduct action understanding, which effectively
maps multi-modal physical patterns to the structured se-
mantic space. In experiments, our method armed with
Pangea demonstrates representative and transfer ability. On
multi-modal benchmarks, it brings decent improvements.

Our contributions are: 1) We propose a structured se-
mantic space to bridge the “isolated islands”. 2) We build
the Pangea database gathering 28 multi-modal datasets. 3)
A physical-to-semantic mapping model is proposed given
Pangea and shows significant transfer ability.

2. Related Work
Action Understanding has achieved progress recently.
There are mainly image [6, 26, 77], video [15, 24, 32, 66],
skeleton [46], and 3D body [57] datasets. The common
tasks are action recognition and temporal/spatial localiza-
tion/detection. Early benchmarks focus on classifying an
image or a short video into classes [6, 66, 77]. Recently,
benchmarks that require both accurate recognition and ac-
tive subject detection are emerging [7, 24, 26]. More-
over, few/zero-shot action learning [8] also attracts atten-
tion. Many methods have been proposed to push this di-
rection forward. For image tasks, 2D CNN is the domi-
nant architecture, while knowledge like part state [41, 50],
2D/3D human [39, 40], and language prior [2, 28, 42, 56] is
used too. For video tasks, 2D-CNN [13, 43, 78], two-stream
network [17, 64], and 3D-CNN [5, 18] are the major archi-
tectures adopted. For skeleton tasks, both GCN [38, 47, 75]
and 2D-CNN [9, 74] are widely used. Recently, with the
success of Transformer [71], besides directly importing it
into action detection [4, 68], visual-language contrastive
learning [59] has changed this direction a lot.

In terms of action semantic space, most datasets [6,
24, 26, 35, 36] overlook action hierarchy. While some
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works consider hierarchy [15, 48, 63]. For example, Activi-
tyNet [15] defines 200+ action classes belonging to 7 high-
level classes (e.g., personal care, household)
based on activity scenarios; FineGym [63] organizes hier-
archical actions from gymnasium videos; VerSe [22] aug-
ments COCO [44] and TUHOI [37] with verb sense labels
to provide finer-grained action semantics on 3.5 K images.
However, they are scale/class/domain-limited and built with
manually-picked classes. Instead, we choose to cover the
hierarchy based on well-defined linguistic works such as
VerbNet [61], WordNet [53], FrameNet [1], etc.

3. Preliminary
In this section, we first introduce the preliminaries of the
physical and semantic space.

Multi-Modal Physical Space. Here, we adopt two
modalities for physical space P : 2D and 3D. For 2D, we
adopt CNN or Transformer (e.g., ResNet [27], CLIP [59])
to extract representation from image/video. For 3D, we use
the widely-used model SMPL [49] to embed 3D humans.

Structured Semantic Space. Intuitively, the ambiguity
of objects is relatively smaller, thus objects/nouns are eas-
ier to label. Things are different for actions/verbs which
are more ambiguous. Previous works typically design se-
mantic space manually and optionally. Instead, we build
the structured semantic space S via the hierarchical verb
tree from VerbNet [61] (Fig. 2). Here, we define the nodes
as the classes of our semantic space. Compared with con-
ventional design [15], our space has elegant characteristics:
(1) Due to the lack of a unified naming standard, classes
of previous datasets have ambiguity. For example, differ-
ent datasets may have feast, eating, and dining re-
spectively, where a common semantic is shared. Instead,
in our S, actions with shared meanings are connected with
their common nodes. (2) Each node is equipped with abun-
dant knowledge. In Fig. 2, touch-20-1 node is ex-
plained by: a) Verb members, e.g., grasp; b) Example
sentences as instantiations of the node semantics; c) Each
verb member is explained via connections with other lexical
resources (e.g., WordNet [53], FrameNet [1]). In Fig. 2, the
verb massage is explained by its frame in FrameNet [1]
(manipulation) and the corresponding items in Word-
Net [53] (massage%2:35:00, massage%2:29:00).
(3) Hierarchy reveals semantic connections between nodes
and provides structured knowledge. The nodes are num-
bered according to shared semantics and syntax. Nodes
sharing a high-level number (9-109) have semantic rela-
tions [61], e.g., banish-10.2 and wipe-10.4 share a
parent node as they are all about removing. Though some
works [15, 63] consider hierarchy too, they are either of lim-
ited coverage or defined empirically according to scenes.
Instead, our verb semantics are more explicit. (4) Our S
covers 5,800+ verbs which is broader than previous works.

Image datasets:Image datasets:  1.3%1.3%Image datasets: 1.3%

Kinetics:Kinetics:  48%48%Kinetics: 48%

Home Action Genome:Home Action Genome:  2.4%2.4%Home Action Genome: 2.4%HACS:HACS:  4.7%4.7%HACS: 4.7%

ActivityNet:ActivityNet:  8.3%8.3%ActivityNet: 8.3%

CMU MoCap:CMU MoCap:  3.3%3.3%CMU MoCap: 3.3%

NTU RGB+D:NTU RGB+D:  2.8%2.8%NTU RGB+D: 2.8%

Human3.6M:Human3.6M:  12.2%12.2%Human3.6M: 12.2%

BABEL:BABEL:  13.8%13.8%BABEL: 13.8%

Images

Videos

MoCap/
Skeleton

HICO:HICO:  11.9%11.9%HICO: 11.9%
HAKE:HAKE:  3.1%3.1%HAKE: 3.1%

MPII:MPII:  8.1%8.1%MPII: 8.1%

Kinetics:Kinetics:  13.9%13.9%Kinetics: 13.9%

Home Action Genome:Home Action Genome:  9%9%Home Action Genome: 9%
HACS:HACS:  4%4%HACS: 4%ActivityNet:ActivityNet:  4%4%ActivityNet: 4%
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HMDB51 and UCF101:HMDB51 and UCF101:  3%3%HMDB51 and UCF101: 3%

ASLAN:ASLAN:  8.6%8.6%ASLAN: 8.6%

HAA500:HAA500:  9.9%9.9%HAA500: 9.9%
HAA4D:HAA4D:  6%6%HAA4D: 6%
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MoCap/
Skeleton

Videos
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Figure 3. Gathered datasets in Pangea.

4. Constructing Pangea

Data Curation. With the structured S, we collect data with
diverse modalities, formats, and granularities, and adapt
them into a unified form. Our database Pangea contains
a large range of data including image, video, and skele-
ton/MoCap. We process and formulate them as follows:

1) Semantic Consistency. The class definitions of
datasets are various, but they can be mapped to our seman-
tic space with the fewest semantic damages. The mapping
is completed via manual annotation with the help of word
embedding [59] distances and OpenAI GPT-3.5. Manual
annotation is the most accurate and most expensive, while
word embedding comparison is the least. Thus, we adopt a
hybrid method: potential class-node mapping is first filtered
out roughly by comparing word embedding, then selected
via GPT-3.5 prompting, and finally checked by human an-
notators. As more and more classes are aligned and cov-
ered, the process would be faster and faster with synonyms
checking. As shown in Fig. 1, our semantic space covers a
broad range of semantics, verifying this mapping.

2) Temporal Consistency. Some videos [5] only have
sparse labels for a whole clip instead of each frame. For
these sparse datasets, we sample the clip with 3 FPS and
give frames the label of their belonged clip. We provide
both frame- and clip-level labels.

3) Spatial Consistency. There are both instance
(boxes) [7] and image [6] level labels. We merge the in-
stance labels of each image/frame into image/frame-level
labels. For demands of instance-level training, we can use
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the original instance labels [7, 24] and detectors [4, 60] to
get instance boxes even masks [34] for future annotation.

4) 3D Format Consistency. 3D datasets typically have
various formats, e.g., SMPL [49] has 24 keypoints while
CMU MoCap [25] has 31 keypoints. To keep consistency,
we transform all of them into SMPL via a fitting procedure.

5) 2D-3D Consistency. Image/video datasets mostly
contain only 2D labels without GT 3D humans. Aside from
the GT 3D humans from 3D datasets [57], we recover 3D
humans from 2D data as pseudo 3D labels via ROMP [67]
and EFT [31]. We use both GT and pseudo 3D humans in
3D action recognition. Though the reconstruction is some-
times noisy, we use the pseudo 3D humans as noisy data
augmentation to supplement 2D learning. In tests, we find
that 2D and 3D learning are complementary.

Analysis. With the large data collection and unified se-
mantic space, we build Pangea as shown in Fig. 3. It con-
tains 19.5 M images, 1.1 M videos, and 840 K 3D humans
over 28 datasets, with coverage of 4 K+ action classes of
original datasets. Pangea covers the semantics of 513 verb
nodes over all the 898 nodes of VerbNet [61] and includes
290 leave nodes carrying fine-grained semantics.

5. Methodology
5.1. Overview of P2S Mapping

First, we introduce the Physical-to-Semantic Space (P2S)
mapping (Fig. 4). We aim to propose a multi-modal, con-
cise, and practical model as the baseline to inspire future
work. Given a sample of the physical space P , we obtain
its representation V via different encoders according to its
modality. For images, we use a CNN/Transformer-based
image encoder. For videos, we first input them to the image
encoder for frame encoding and then use a temporal layer

for temporal encoding. For SMPLs, we covert them into
point clouds and use a PointNet++[58] as the encoder.

In the semantic space S, we define N target verb nodes.
For each node, two types of information are provided by
VerbNet [61]: 1) semantic one to describe its meaning,
e.g., example sentences, WordNet definitions; 2) geomet-
ric one to locate it in the tree and reveal its connection
with the other nodes. The semantic and geometric infor-
mation can be encoded via the verb node representation
E = {ei}Ni=1 (detailed in Sec. 5.3). The ground-truth (GT)
label for the sample is Y = {yi|yi ∈ {0, 1}}Ni=1. P2S map-
ping is a multi-label classification, where a physical sam-
ple is mapped to multi-node of the semantic space (one-to-
many mapping). The similarity S(V,E) between V and E
is bound with the GT label Y , and the loss function is de-
rived in Sec. 5.3. In Sec. 5.2, we discuss how to facilitate
such one-to-many mapping with semantic disentangle and
augmentation. We summarize the training and inference in
Sec. 5.4.

5.2. Semantic Disentanglement and Augmentation

A person typically performs multi-action simultaneously,
e.g., standing while eating. Such entanglement of multi-
action semantics increases the annotation and learning diffi-
culty. It is a challenge to annotate all the ongoing actions of
a person in previous datasets due to the limited coverage and
ambiguity of their classes. Besides, as Pangea has a broader
semantic space, after the action→node mapping in Sec. 4,
we face a partial-label learning problem. Moreover, in the
mapping, inevitably, some labels are early filtered out and a
few of them should have been annotated as True. Also, er-
rors of omission may exist within the labels because of an-
notators’ bias. Thus, each sample theoretically has a partial
annotation Y = {yi|yi = 1, 0, ∅}Ni=1, where 1, 0 are cer-
tain positive/negative labels, and ∅ is uncertain. Though it
is nearly impossible to supplement the labels of all N verb
nodes in Pangea for all samples (images/videos/MoCap),
we can conduct flexible weakly-supervised learning with
partly-labeled data with representation disentanglement.

To facilitate the one-to-many P2S mapping and address
the partial-label learning problem, we propose disentan-
gling a physical representation into node-specific represen-
tations. We use vraw as the entangled physical feature.
Thanks to our unambiguous verb node definition, we dis-
entangle the input vraw into N representations supervised
by N verb nodes respectively. Thus, the gradients of verb
nodes (True/False labeled clearly) were disentangled during
training from the uncertain ones. As is illustrated in Fig. 5,
a model is trained to transform the entangled physical rep-
resentation vraw ∈ Rd (d: dimension) into node-specific
representation V = {vi}Ni=1 ∈ RN×d (i: verb node index)
as conditions. To get V = {vi}Ni=1 ∈ RN×d, we first de-
fine the verb node-specific disentangling mapping function
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tangled physical representation vraw is mapped into node-specific
V = {vi}Ni=1 ∈ RN×d (i: node index as conditions). (b) Getting
pseudo node labels via language priors and structure knowledge.

fi for the i-th node, which is in practice a learnable MLP.
Then, given vraw, fi(·) transforms it into vi = fi(vraw).
To apply P2S mapping with this disentangled physical rep-
resentation, the similarity between V and G is measured as

S(V,E) = {S(vi, ei)}Ni=1, (1)

If not disentangled, it goes like

S(vraw, E) = {S(vraw, ei)}Ni=1, (2)

i.e., physical representation is shared by all verb nodes.
Aside from disentanglement, the partial-label learning

problem can be alleviated by augmenting the GT label Y .
As the verb nodes in our structured semantic space have
clear semantic and geometric relations in a tree, we pro-
pose a label augmentation method to generate pseudo node
labels for missing ones via language priors and structure
knowledge. For more details, please refer to Suppl. Sec. 3.

5.3. Verb Node Encoding and Alignment

5.3.1 Semantic Encoding

Next, we discuss how to use text representation to encode
semantic information of nodes into E = {ei}Ni=1 ∈ RN×d.
As mentioned in Sec. 3, a verb node is composed of several
actions with shared meanings. The node semantic infor-
mation includes: 1) verb members; 2) example sentences;
3) WordNet [53] definition and FrameNet [1] mapping for
each verb member. Following CLIP [59] text encoder, we
get E via inputting these texts into a Transformer encoder.

Different from CLIP [59] where the text is short (up to
77 tokenized symbols, or equally 30 words approximately),
our node description can be longer when the node con-
tains many verb members. It is inefficient, unstable, and
memory-costly to input such long text into the encoder di-
rectly. Thus, we sample key texts clarifying the node se-

mantics better. We use TextRank [54] to extract keywords
and then take the summarized text as the text encoder input.

5.3.2 Geometric Encoding

Next, we encode the geometric information into E =
{ei}Ni=1 ∈ RN×d. To encode the hierarchy, parent-child
relation, verb tree depth, etc., we use hyperbolic represen-
tations [11] of the physical representation V and verb node
representation E. Besides, to utilize the representative abil-
ity of language models [12, 59], we also propose a geomet-
ric prompt strategy to strengthen the training. Fig. 6 is the
overview of the encoding and V − E alignment processes.

Geometric Prompt. A direct way is to use language de-
scriptions as prompts, e.g., the node touch-20-1 is de-
scribed as: “The node is touch-20-1. Its ancestors are
touch-20, 20: contact, and root. Its descendants are
none.” We use a text encoder to encode these prompts. In
practice, we use text concatenation to integrate the geomet-
ric descriptions and those semantic descriptions introduced
in Sec. 5.3.1. We concatenate these sentences and input
them together into one Transformer encoder to get E.

Hyperbolic Representation The proposed semantic
space is hierarchical, revealing connections between nodes
and providing structured knowledge (Sec. 3). The text de-
scription of nodes implicitly reveals the hierarchy. For
example, a node with a text description “The node is
put-9.1.1. Its ancestors are put-9.1, 9: putting,
and root. Its descendants are none. Its verbs are: apply, in-
sert, install ...” would be closer to put-9.1 (more generic
concepts) and put-9.1.2 (neighbor). Besides, P2S is
a verb node multi-label classification. Thus, one physical
representation can be aligned with both generic concepts
which are closer to the root node of the hierarchy (e.g.,
10:removing), and specific concepts which are closer to
the leaf node (e.g., banish-10.2, wipe-10.4). Thus,
Euclidean space is not suitable for our task, which applies
the same distance metric to all embedded points.

Here, we leverage the hyperbolic representation [55]
which can capture hierarchy to embed V and E. Specif-
ically, we adopt a Lorentz model of hyperbolic geome-
try [11]. Thus, similar to [11], the semantic hierarchy
emerges in the representation space. We can thus align
each disentangled physical representation to its correspond-
ing multiple node representations. For a detailed formula-
tion of the Lorentz model, please refer to Suppl. Sec. 3.

There are two objectives in the alignment: classification
loss and entailment loss. Fig. 6 illustrates the calculation.

Classification Loss. We have the disentangled physi-
cal representation V = {vi}Ni=1, node representation E =
{ei}Ni=1, and GT label Y = {yi|yi ∈ {0, 1}}Ni=1. For each
i, vi and ei are first mapped into vLi and eLi in the Lorentz
hyperboloid via exponential map. The similarity S(vi, ei)

16586



𝑉

……
N

d

Text

Encoder Geometric Prompt:

The node is touch-20-1. Its 

ancestors are touch-20, 20: 

contact, and root. Its descendants 

are none.

……
N

d

Semantic Description:

Verb node name: touch-20-1 

Verb members: grasp, message…

……

𝐸 Semantic Space

𝑒𝑖𝑣𝑖

𝑒𝑖
ℒ

𝑣𝑖
ℒ

Lorentz hyperboloid

max(0, 𝜃 𝑒𝑖
ℒ , 𝑣𝑖

ℒ − 𝛼(𝑒𝑖
ℒ))

−𝑑ℒ 𝑣𝑖
ℒ , 𝑒𝑖

ℒ
Classification Loss: 

Entailment Loss: 

Figure 6. Verb node encoding and V − E alignment. 1) The right part: encoding semantic and geometric information via a text encoder.
2) The left part: V − E alignment in a Lorentz hyperboloid with two training objectives: classification loss and entailment loss.

Method Full Rare Non-Rare

CLIP 28.25 16.90 37.87
P2S 34.01 21.37 44.72
P2S-aug 34.25 21.56 45.00

Table 1. Verb node classification results on Pangea test set.

is measured via the negative of Lorentzian distance dL(·, ·)
between vLi and eLi . Thus, the classification loss is:

Lcls = LBCE({Sigmoid(γ · −dL(v
L
i , e

L
i ))}Ni=1, Y ), (3)

where γ is a scaling factor. For multi-label classification,
the output is processed by a Sigmoid function and bound
with Binary Cross Entropy (BCE) loss.

Entailment Loss. In addition to the classification loss,
an entailment loss is applied to enforce partial order rela-
tionships between the node representation eLi and physical
representation vLi . If yi = 1, the physical representation
vLi should lie inside the entailment cone [19] of the node
representation eLi . As is illustrated in Fig. 6, it is mea-
sured by comparing the exterior angle θ(eLi , v

L
i ) and the

half-aperture α(eLi ). Thus, the entailment loss is :

Lent =
1

sum(Y )

∑
i:yi=1

max(0, θ(eLi , v
L
i )− α(eLi )). (4)

The loss functions as a further constraint besides the classi-
fication loss.

5.4. Training and Inference

In training, the total loss Ltotal = Lcls + ωLent, where
ω balances the loss weight (here ω = 0.01). In infer-
ence, P2S outputs probabilities of verb nodes Snode =
{Sigmoid(γ · −dL(v

L
i , e

L
i ))}Ni=1 from Eq. 3. We evaluate

node classification with Snode on Pangea test set (Sec. 6.2).
For transfer learning, we pretrain P2S on Pangea and fine-
tune it on downstream datasets. To get the action class score
Sact of the downstream dataset, we fix the node prediction
and use a small learnable MLP to transform Snode to Sact.

6. Experiment
6.1. Dataset and Implementation

Dataset. Pangea is adopted to evaluate verb node classifi-
cation. We also conduct transfer learning on several multi-

modal benchmarks: HICO [6], HAA [10], HMDB51 [36],
Kinetics-400 [32], BABEL [57], and HAA4D [70].

Implementation. (1) P2S training: we use 19.5 M 2D
images/frames and 840 K 3D humans. (2) P2S transfer
learning: P2S pretrained on Pangea with node classification
is a knowledgeable backbone. To make the transfer learn-
ing strict, in pretraining, we exclude the val & test set data
of the downstream dataset from Pangea train set. Then the
pretrained backbone is finetuned and tested on downstream
datasets. For different modalities, we use their correspond-
ing data path. To make our pipeline efficient, we do not
adopt complex temporal encoding and video augmentation.
Instead, we use simple strategies to implement the tempo-
ral encoding similar to [73], e.g., mean pooling, a tempo-
ral transformer, average prediction of frames, etc. P2S is a
multi-modal and lite method that is different from the ad-
hoc models for sole-modal tasks. Thus we can use it as a
plug-and-play method, i.e., fusing it with SOTA models in
downstream tasks. As P2S is trained in much broader se-
mantic coverage on large-scale data, its learned bias is dif-
ferent from ad-hoc models. So P2S is complementary to
these SOTA models and can improve their performances in
the cooperation. Moreover, we test different ways to fuse
2D and 3D to mine the potential of multi-modal learning.
The simplest late fusion (fusing logits) performs best in our
tests (Suppl. Sec. 9). Thus, we use late fusion as the de-
fault. For data with one human per image/frame, we fuse
the 2D and 3D results. For data with more than one human
per image/frame, we first conduct max pooling on the 3D
results of multi-human then perform late fusion with 2D.
All experiments are conducted on 4 RTX 3090 GPUs.

6.2. Action Recognition

6.2.1 Verb Node Classification

To evaluate the verb node classification, we build a Pangea
test set with 178 K images. To evaluate few/zero-shot learn-
ing, we split the 290 leave nodes into two sets and evaluate
them separately: rare (133 leave nodes) and non-rare (157
leave nodes). We report the results in Tab. 1. For base-
line CLIP, we load the vanilla CLIP pretrained model [59]
as the backbone and train it on Pangea train set for node
classification. We use visual-language contrastive learning
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Method mAP

R*CNN [23] 28.50
Mallya et al. [52] 36.10
Pairwise [16] 39.90
RelViT [51] 40.12

CLIP [59] 46.35
CLIP-Pangea 45.09
P2S 47.74

Table 2. Results on the image
benchmark HICO [6].

Method Top-1 Accuracy (%)

I3D [30] 33.53
TPN [76] 50.53
TSN [72] 55.33
EVL [45] 76.40

CLIP [59] 66.33
CLIP [59]-Pangea 68.27
P2S 71.40
P2S + EVL [45] 80.87

Table 3. Results on the video bench-
mark HAA [10].

Method Top-1 Accuracy (%)(all)

TSN [72] 69.40
RGB-I3D [30] 74.30
Two-stream I3D [30] 80.90
EVL [45] 83.68

CLIP [59] 67.47
CLIP [59]-Pangea 67.69
P2S 68.37
P2S + EVL [45] 85.09

Table 4. Results on the video benchmark
HMDB51 [36].

Method Top-1 Acc (%) Top-5 Acc (%)

TSN [72] 73.90 91.10
VideoMAE [69] 87.40 97.60
EVL [45] 87.64 97.71

CLIP [59] 72.82 91.68
CLIP [59]-Pangea 70.45 89.14
P2S 73.80 92.01
P2S + EVL [45] 90.22 98.26

Table 5. Results on the video benchmark
Kinetics-400 [32].

Methods Top-1% Top-1-norm%

2s-AGCN [57] 40.00 16.00
PointNet++ [58] 42.26 24.73
CLIP [59] 32.42 9.84
PointNet++ [58]-Pangea 45.79 30.52
CLIP [59]-Pangea 48.53 32.74
P2S 49.69 33.87

Table 6. Results on the 3D benchmark BABEL-
120 [57].

Methods Top-1%

SGN [70] 53.3
PointNet++ [58] 38.6
CLIP [59] 38.0
PointNet++ [58]-Pangea 45.6
CLIP [59]-Pangea 49.3
P2S 54.1

Table 7. Results on the 3D bench-
mark HAA4D [70].

P2S HICO[6] mAP HAA [10] Acc (%) HMDB51 [36] Acc (%)

% 41.32 68.87 70.80
" 46.91 70.87 71.09
Table 8. Results of P2S + MLLM [20] on several datasets.

in training and use the same texts as P2S in inference. It
achieves 28.25 mAP on 290 leave nodes (16.90 mAP for
133 rare nodes, 37.87 mAP for 157 non-rare nodes). Rela-
tively, P2S performs much better with the help of disentan-
glement and semantic/geometric information. It achieves
34.25 mAP (21.56 for rare nodes, and 45.00 for non-rare
nodes). Moreover, with label augmentation, P2S-aug fur-
ther outperforms P2S on all three tracks.

6.2.2 Transfer Learning

We refer to the downstream benchmark as the target. For
a fair comparison, we design several baselines: (1) CLIP:
finetuning the vanilla CLIP pretrained model on the target
train set and testing it on the target test set. The output is ac-
tivity predictions Sact, and the loss is contrastive loss Lact;
(2) CLIP-Pangea: finetuning the vanilla CLIP pretrained
model on Pangea train set with Lact, then finetuning it on
the target train set, where Sact is used for evaluation on the
target test set. (3) P2S: detailed in Sec. 5.4, where the output
Sact is fused with the better one from CLIP/CLIP-Pangea.

Image Benchmark. In Tab. 2, CLIP performs well and
even outperforms the ad-hoc SOTA models on HICO [6].
Pretrained on the image-text pairs from Pangea, CLIP-
Pangea is inferior to CLIP because of the large domain
gap between activity videos in Pangea and human-object in-
teraction images in HICO [6]. Thus, CLIP-Pangea cannot
utilize the extensive semantic-geometric knowledge. Rela-
tively, P2S boosts the performance and outperforms RelViT
and CLIP with 7.62 and 1.39 mAP respectively.

Figure 7. Result analysis of MLLM [20] w/ or w/o P2S.New verb detected：
knead-26.5 (squeeze, twist…)

Disappearing verb detected：
knead-26.5

New verb detected：
slide-11.2-1 (float, slide…)

New verb detected：
modes_with_motion (swag, wave…)

New verb detected：
nonvehicle-51.4.2-1 (cruise, sail…)

Disappearing verb detected：
send-11.1-1 (forward, pass…)

Figure 8. Visualization of changed node predictions from 2 videos.

Video Benchmark. The CLIP, CLIP-Pangea are with
the same setting as above. The conclusion is simi-
lar in Tab. 3-5. On HAA and HMDB51, CLIP-Pangea
weaponized with Pangea outperforms CLIP. P2S outper-
forms CLIP with 5.07%, 0.90% and 0.98% respectively
on 3 benchmarks respectively. Moreover, P2S without
bells and whistles performs comparably well (e.g., TSN
on HMDB51, TSN on Kinetics-400) or even better (e.g.,
TSN on HAA) compared with ad-hoc SOTA. Lastly, fusing
P2S and SOTA models further improves the performance:
4.47% (HAA), 1.41% (HMDB51), 2.58% (Kinetics-400).

3D Benchmark. We set baselines PointNet++ and CLIP
and strengthen them with Pangea as PointNet++-Pangea
and CLIP-Pangea (Suppl. Sec. 7). Similarly, PointNet++-
Pangea and CLIP-Pangea performs better in Tab. 6, 7. P2S
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Figure 9. Hierarchical predictions of an image with action
canoeing sprint. P2S outputs 898 node predictions for
the image, and some nodes among the top 15 highest predic-
tions are shown in the blue blocks. P2S can learn from generic
concepts (e.g., 11:sending and carrying) to finer-grained
(e.g., drive-11.5) concepts.

outperforms all the baselines, e.g. 7.43% upon PointNet++
on BABEL. Moreover, P2S performs better than the ad-hoc
SOTA thanks to the abundant data of Pangea. We do not
fuse P2S with SOTA due to the modality gap: most SOTA
use 3D skeleton while we use point cloud.

Integration with MLLM. As a plug-and-play method,
P2S can facilitate recent powerful Multi-Modal Large Lan-
guage Models (MLLM). We integrate the prediction of P2S
with a SOTA MLLM backbone: LLaMA-Adapter V2 [20]
on HAA [10], HICO [6] and HMDB [36]. When trained
without P2S, the backbone is finetuned on the train set to
output captions indicating the activity. Then the top-1 ac-
curacy/mAP is calculated by comparing the semantic dis-
tance between output captions and GT actions based on a
CLIP text encoder. When trained with P2S, the P2S pre-
diction is converted into a prompt as known information for
the MLLM.The results are shown in Tab. 8. The perfor-
mance improvement shows complementary effectiveness of
P2S to enhance MLLM. We also show some cases predicted
by MLLM with and without P2S in Fig. 7. In the first col-
umn, though MLLM with P2S does not predict the correct
action, it does predict the correct verb thanks to the knowl-
edge from Pangea, making the prediction semantically sim-
ilar to the ground truth. In other columns, with the help of
P2S, MLLM succeeds in giving the correct prediction.

6.3. Further Analysis

Visualization. We analyze changed node predictions in
videos in Fig. 8 and show hierarchical predictions in Fig. 9.
P2S effectively captures the subtle semantic changes hier-
archically. Besides, we can also conduct motion generation
given Pangea, i.e., Semantic-to-Physical Space (S2P), to
fully represent its efficacy. In Fig. 10, we show the results
of inputting verb nodes and use a simple cVAE to gener-
ate 3D motions, verifying that S2P is capable of generating
reasonable poses for single/multi-node.

Performance Variance Analysis. a) 3D vs. 2D: P2S
presents more evident performance improvement on 3D
benchmarks because of the smaller-scale train/test set and
smaller data domain gaps than 2D image/video bench-

Ride Sit Cellphone Sit + Cellphone

Figure 10. S2P results. ride has the elbows away from the
spine, while sit has the opposite. Adding cellphone upon
sit drives the wrist to distribute around the pelvis more.

Method Full Rare Non-Rare

P2S-aug 34.25 21.56 45.00
w/o Disentanglement 30.09 18.65 39.79
w/o Semantic Augmentation 34.01 21.37 44.72
w/o Text Encoder 31.81 20.05 41.78
w/o Hyperbolic Mapping 32.56 20.49 42.78
w/o Semantic Prompt 33.20 21.00 43.54
w/o Geometric Prompt 33.81 21.20 44.49

Table 9. Ablation studies on the proposed benchmark Pangea.

marks. b) Image vs. Video Benchmark: P2S performs bet-
ter in image benchmark as the baseline is a concise, image-
based model, rather than a sophisticated video-based one. c)
Variations within Video Benchmarks: P2S shows different
benefits across video benchmarks mainly because of various
sizes of pre-training data and node sample distribution.

Ablation Study & Discussion. We conduct ablations on
Pangea to evaluate the P2S components in Tab. 9. With-
out four key components, P2S shows obvious degrada-
tion, which follows the gap between P2S and CLIP-Pangea.
Moreover, semantic disentanglement matters most to facil-
itate the one-to-many P2S mapping and weakly-supervised
learning. Here, we adopt concise models to verify the
efficacy of Pangea and quickly trial-an-error with limited
GPUs. We believe that larger and more sophisticated mod-
els trained with Pangea with more computing power would
gain more superiority in future work. For additional results
and discussions, please also refer to the supplementary.

7. Conclusion
In this work, to bridge the action data “isolated islands”, we
propose a structured semantic space and accordingly merge
multi-modal datasets into a unified Pangea. Moreover, to
fully use Pangea, we propose a concise mapping system to
afford multi-modal action recognition showing superiority.
We believe our framework paves a new path for future study.

8. Acknowledgments
This work is supported in part by the National Natural
Science Foundation of China under Grants 62306175, Na-
tional Key Research and Development Project of China
(No. 2022ZD0160102, No. 2021ZD0110704), Shanghai
AI Laboratory, XPLORER PRIZE grants.

16589



References
[1] Collin F Baker, Charles J Fillmore, and John B Lowe. The

berkeley framenet project. In COLING, 1998. 2, 3, 5
[2] Ankan Bansal, Sai Saketh Rambhatla, Abhinav Shrivastava,

and Rama Chellappa. Detecting human-object interactions
via functional generalization. AAAI, 2020. 2

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. NeurIPS, 2020. 2

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020. 2,
4

[5] Joao Carreira, Eric Noland, Chloe Hillier, and Andrew Zis-
serman. A short note on the kinetics-700 human action
dataset. arXiv preprint arXiv:1907.06987, 2019. 1, 2, 3

[6] Yu Wei Chao, Zhan Wang, Yugeng He, Jiaxuan Wang, and
Jia Deng. Hico: A benchmark for recognizing human-object
interactions in images. In ICCV, 2015. 1, 2, 3, 6, 7, 8

[7] Yu-Wei Chao, Yunfan Liu, Xieyang Liu, Huayi Zeng, and
Jia Deng. Learning to detect human-object interactions. In
WACV, 2018. 2, 3, 4

[8] Shizhe Chen and Dong Huang. Elaborative rehearsal for
zero-shot action recognition. In ICCV, 2021. 2

[9] Vasileios Choutas, Philippe Weinzaepfel, Jérôme Revaud,
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