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Abstract

Recent years have witnessed the remarkable progress of
3D multi-modality object detection methods based on the
Bird’s-Eye-View (BEV) perspective. However, most of them
overlook the complementary interaction and guidance be-
tween LiDAR and camera. In this work, we propose a novel
multi-modality 3D objection detection method, named GA-
Fusion, with LiDAR-guided global interaction and adaptive
fusion. Specifically, we introduce sparse depth guidance
(SDG) and LiDAR occupancy guidance (LOG) to generate
3D features with sufficient depth information. In the follow-
ing, LiDAR-guided adaptive fusion transformer (LGAFT) is
developed to adaptively enhance the interaction of different
modal BEV features from a global perspective. Meanwhile,
additional downsampling with sparse height compression
and multi-scale dual-path transformer (MSDPT) are de-
signed to enlarge the receptive fields of different modal fea-
tures. Finally, a temporal fusion module is introduced to ag-
gregate features from previous frames. GAFusion achieves
state-of-the-art 3D object detection results with 73.6% mAP
and 74.9% NDS on the nuScenes test set.

1. Introduction
3D object detection is a crucial task in autonomous driving.
To cope with the complex road scenarios, multiple sensors
(LiDARs or cameras) are usually employed for scene under-
standing. LiDAR can generate accurate but sparse 3D point
clouds, which contains precise spatial information. Images
have rich semantic and texture information, but lack depth
information. Therefore, a natural operation is to extensively
fuse LiDAR and camera to leverage the complementarity
of multi-modality information, which can enable the au-
tonomous driving system to achieve higher accuracy and
robustness.
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Figure 1. Comparison between BEVFusion and the proposed GA-
Fusion. (a) In BEVFusion, the camera stream and the LiDAR
stream separately generate BEV features, which are then concate-
nated together. (b) In GAFusion, the camera modality BEV fea-
tures are generated by multiple guidance from the LiDAR stream,
and the receptive fields are enhanced by MSDPT. The BEV fea-
tures are fused by LGAFT. “VT” is view transformer.

Recently, fusing LiDAR and camera has achieved some
progress. Early methods [4, 14, 35, 45] achieve LiDAR-
camera fusion by projecting 3D LiDAR point clouds (or
region proposals) onto 2D images. But these methods
overlook the information gap between the two modalities.
Recent works [1, 3, 13, 22, 26, 39, 40, 42] adopt differ-
ent query generation strategies or create a unified Bird’s-
Eye-View (BEV) [28] intermediate feature to fuse multi-
modality features. For instance, TransFusion [1] applies
a two-stage pipeline to fuse the camera and LiDAR fea-
tures, but its performance relies on the query initialization
strategy. BEVFusion [22, 26] explores a unified representa-
tion for BEV features through view transformation, which
not only preserves the spatial information of sparse LiDAR
point clouds, but also lifts the 2D images to the 3D features,
effectively maintaining the consistency between the two
modalities. However, the camera modality still struggles
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with geometric perception information, which limits the
complementarity between LiDAR and camera. As shown
in Fig. 1(a), there is no interaction between both modalities.

To tackle the above challenges, we propose an effective
3D multi-modality object detection method, named GA-
Fusion. Within it, a LiDAR guidance module is devel-
oped, which consists of sparse depth guidance (SDG) and
LiDAR occupancy guidance (LOG). SDG combines the
sparse depth generated by LiDAR point clouds and the cam-
era features to produce depth-aware features, enhancing the
sensitivity of camera features to depth information. Inspired
by the occupancy task [12], LOG guides a 3D feature vol-
ume generated by view transformation with occupancy fea-
tures, and focuses on the targets in the 3D feature volume,
thus providing more valuable information for fusion. Then,
we construct a multi-scale dual-path transformer (MSDPT)
module to improve the interactions around the objects and
expand the receptive fields of the 3D feature volume. With
the above designs, the camera modality has sufficient se-
mantic features and more accurate depth distribution. In the
following, to obtain abundant features in the LiDAR modal-
ity, we perform additional downsampling on the LiDAR
point clouds and use sparse depth compression to aggre-
gate features from different scales. This operation can pro-
vide larger receptive fields with less computation and mem-
ory consumption. Moreover, a LiDAR-guided adaptive fu-
sion transformer (LGAFT) module is proposed to effec-
tively fuse BEV features generated by LiDAR point clouds
and images. In this module, the LiDAR BEV features
adaptively guide the camera BEV features to strengthen the
cross-modality interaction from global scope.

All of the above operations are evaluated on single-frame
raw data. In order to further explore the target correlation
and motion consistency among multiple successive frames,
a temporal fusion module is designed. To be specific,
we store the BEV features of different frames in memory
buffer, which is used to fuse the features of the previous
frame and the current frame.

Our contributions are summarized as follows:

1) We propose GAFusion, a novel 3D object detection
method that leverages LiDAR guidance to compensate for
depth distribution of the camera features, and provides suf-
ficient spatial information for the camera features.

2) We design LiDAR-guided adaptive fusion transformer
(LGAFT), which aims to enhance the global features inter-
action between the two modalities in an adaptive way, facil-
itating the fusion of semantic and geometric features.

3) We conduct extensive experiments on the nuScenes
dataset to verify the effectiveness of our GAFusion. The ex-
periments show that without using any augmentation strate-
gies, our model achieves the state-of-the-art performances
of 72.1% mAP and 73.5% NDS.

2. Related Work

2.1. Single-modality 3D Object Detection

Single-modality 3D object detection, mainly including
LiDAR-based 3D object detection and camera-based 3D
object detection, has achieved remarkable progress in re-
cent years.

LiDAR-based 3D object detection aims to predict 3D ob-
ject bounding boxes using the point clouds captured from
LiDAR. Existing methods [15, 18, 31, 33, 34, 47] either di-
rectly predict on point clouds, or convert point clouds into
voxels or pillars. PointNet [31] is the first framework that
processes point clouds in an end-to-end manner, by taking
unordered point cloud sets as direct inputs and preserving
the spatial structure of point clouds. VoxelNet [47] dis-
cretizes point clouds into voxels, and uses dense convolu-
tion to obtain BEV features.

Camera-based 3D object detection, which can be divided
into two categories: image-view-based and BEV-based.
DETR3D [38] and PETR [23] introduce transformer into
the framework, wherein the former aggregates 2D features
into 3D Query, and the latter embeds coordinate informa-
tion into 2D features. They both use transformer to implic-
itly transform the image features to 3D space. BEVDet [11]
and BEVDepth [16] predict the depth distribution to lift the
image features to a 3D frustum meshgrid. The semantic
or spatial information provided by a single-modality is still
limited, despite the impressive performance achieved by the
aforementioned detection tasks.

2.2. Multi-modality 3D Object Detection

Multi-sensor fusion has gained great attention in 3D detec-
tion due to its superior performance. Previous works [4,
14, 35, 45] fuse 3D point cloud features and 2D image fea-
tures by projecting the former onto the latter. MV3D [4]
associates 3D proposals with 2D RoI features and converts
3D representation into 2D pseudo images, enabling the net-
work to leverage 2D convolutions for geometric refinement.
PointPainting [36] enriches point clouds with semantic la-
bels from images. However, the above methods fail to fully
exploit the dense semantic information in images. Recently,
BEVFusion [22, 26] are proposed to fuse LiDAR features
and camera features in BEV space and apply a lift-splat-
shoot (LSS) [30] operation to project image features, re-
sulting in semantic-rich features. Before fusing BEV fea-
tures from two modalities, LiDAR point clouds and images
do not interact at all. From another perspective, CMT [40]
proposes a novel end-to-end transformer-based 3D object
detection framework, which implicitly encodes 3D point
clouds into multi-modality tokens. Inspired by the above
works, we propose the global interaction and adaptive BEV
fusion that achieves significant performance improvement
while maintaining the simplicity of the framework.

21210



Sparse Depth 
Guidance

Sparse Height 
Compression

View 
Transform

DPT DPTDPT

Occupancy Net

LiDAR 3D 
Occupancy Voxel

LGAFT

BEV Encoder
&

Detection Head

LiDAR BEV 
Features

Camera BEV 
Features

LiDAR Occupancy-Guided 
Image 3D Feature Volume

3D Backbone

2D Backbone

LiDAR Features

Depth-Aware 
Camera Features

LiDAR Point Clouds

Multi-view Images

……

Additional 
downsample

Projection

LiDAR Stream

Camera Stream

Prediction

LiDAR Guidance

Detection Result

Fused BEV 
Features

M
em

or
y 

B
uf

fe
r

C A

T-1

…

T

…

T+1

T

T-1

3D Conv
3D Deconv

ConcatenateC

AlignAMSDPT

Figure 2. The overall architecture of GAFusion. The multi-view images and point clouds are fed into the corresponding backbone networks
to obtain multi-scale LiDAR features and camera features. For LiDAR guidance, we propose sparse depth guidance (SDG) and LiDAR
occupancy guidance (LOG) to guide the 2D camera features by adopting the raw point clouds and LiDAR BEV features, respectively.
In addition, we use multi-scale dual-path transformer (MSDPT) to enlarge the receptive fields. Then, LiDAR-guided adaptive fusion
transformer (LGAFT) further fuses the two modalities’ BEV features. A temporal fusion module is introduced to aggregate the previous
frame’s BEV features, and finally feeds these BEV features into an encoder and a detection head.

2.3. Occupancy Task

Recently, 3D occupancy prediction (Occ) [12] has been pro-
posed as a novel 3D detection task. Based on FB-BEV [21],
FB-OCC [20] emphasizes the importance of model scale
and pre-training. OccDepth [29] leverages the implicit
depth information from depth images (or RGBD images)
to help recover the 3D geometry. VoxFromer [17] adopts a
two-stage design and generates a set of sparse visible and
occupied voxel queries from depth estimation. OpenOccu-
pancy [37] is the first omnidirectional semantic occupancy
perception benchmark. We notice that 3D occupancy pre-
diction aims to estimate the occupancy state and semantic
label of each voxel in the scene from multi-view images,
and it can provide more fine-grained and comprehensive 3D
perception capabilities.

2.4. Temporal Fusion

Temporal fusion adopts multiple frames of images or point
clouds to improve the performance of 3D object detection,
as it can enhance the perception system’s understanding and
prediction of dynamic scenes. 3D-VID [46] employs a bidi-
rectional recurrent neural network (Bi-RNN) [32] to model
the temporal sequences of multiple point clouds, captur-
ing the motion information and state changes of the tar-
gets. BEVDet4D [10] fuses BEV features from different
time sequences by coordinate alignment. BEVformer [19]
is a transformer-based 3D object detection model that uses
BEV to represent the scene and exploits multiple frames of
images for spatial-temporal information fusion. After all,
temporal fusion is an effective technique that enhances the
continuity and relevance among different frames, and it can

utilize the information from multiple frames to enrich the
feature representation of each frame.

3. Method
The overall architecture of GAFusion is illustrated in Fig. 2.
We feed the LiDAR point clouds and the corresponding
multi-view images into the backbone to extract dual-stream
features. The LiDAR stream first uses additional down-
sampling and sparse depth compression to obtain BEV fea-
tures(Sec. 3.1). The design of LiDAR guidance, which in-
cludes sparse depth guidance (SDG) and LiDAR occupancy
guidance (LOG), is detailed in Sec. 3.2. After LiDAR guid-
ance, we adopt multi-scale dual-path transformer (MSDPT)
module to enlarge the receptive fields of camera features
(Sec. 3.3). Then, the proposed LiDAR-guided adaptive fu-
sion transformer (LGAFT) module is utilized to fuse dif-
ferent modalities of the BEV features (Sec. 3.4). We also
introduce the temporal fusion module to appropriately fuse
the information from the previous frame (Sec. 3.5).

3.1. LiDAR and Camera Features Extraction

In the high-level feature extraction stage, we adopt a dual-
stream approach to process the LiDAR point clouds and the
multi-view images separately.

For the LiDAR stream, a common method [1, 22, 26]
is to use 3D sparse convolution [41] to extract single-scale
features from the voxelized point clouds, which has a weak
feature representation with limited receptive fields. There-
fore, we use additional downsampling layers to compensate
for this deficiency. The common sparse convolution fea-
tures have strides of 1,2,4,8, and the output sparse features
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Figure 3. Additional downsampling and sparse height compres-
sion. This operation enlarges the receptive fields of the features
and reduces the computational cost.

are named F1, F2, F3, F4 respectively. We adopt two addi-
tional downsampling layers with strides of 16,32 to obtain
the F5, F6 features. Finally, to effectively combine differ-
ent scales of F4, F5, F6 features and maintain geometric and
positional information, we use sparse depth compression to
process different scales of the features. Specifically, we first
align the spatial resolutions of F5, F6 with F4. For stage i,
Fi is a set of individual features. p ∈ Pi is a position in 3D
space, with the coordinate (xp, yp, zp). In addition, we de-
sign a BEV grid of size (xp,yp) that only contains Pc, which
aggregates the sparse features of different scales at the same
height, and forms a rich BEV feature. The whole process is
shown in Fig. 3. Sparse features Fc and their positions Pc

are obtained as follows:

Fc = F4 ∪ (F5 ∪ F6),

P ′
6 = {(xp × 22, yp × 22, zp × 22) | p ∈ P6}

P ′
5 = {(xp × 21, yp × 21, zp × 21) | p ∈ P5}

Pc = P4 ∪ (P ′
5 ∪ P ′

6).

(1)

For the camera stream, Following the previous
works [22, 26], we input multi-view images into backbone
to obtain 2D image features Fc ∈ RNc×C×H×W with suffi-
cient semantic information, where Nc, C, H , W denote the
number of cameras, feature size, image height and image
width respectively.

3.2. LiDAR Guidance

To integrate the camera high-level features into a unified
BEV space, a view transformation is required, which first
needs to project the 2D image features into 3D space. Dur-
ing this process, it is often difficult to estimate the depth
distribution accurately, resulting in the loss of a lot of use-
ful information in the BEV feature generated by the camera
stream. To obtain a reliable depth distribution, our proposed
LiDAR guidance consists of two parts: sparse depth guid-
ance (SDG) and LiDAR occupancy guidance (LOG). They

Sparse Depth Map Depth Features

C

Depth-aware Camera 
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Camera Features
C Concatenate
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LiDAR 3D 
Occupancy Voxel

2D to 3D Voxel 
Pooling
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LiDAR Occupancy-guided 
Image 3D Feature Volume

Figure 4. The architecture of sparse depth guidance (SDG) and
LiDAR occupancy guidance (LOG). These two modules guide the
2D camera features to generate 3D features that contain sufficient
semantic information and accurate depth information.

can help the image features better capture accurate geomet-
ric and depth information.

Sparse Depth Guidance. As shown in Fig. 4, SDG first
projects each point of the input LiDAR point clouds into
multi-view images, and obtains sparse multi-view depth
maps. Then, they are fed into a shared encoder to extract
depth features, which are concatenated with image features
to form the depth-aware camera features. They are used
as the input of view transformation, and finally voxel pool-
ing [9] is employed to generate the image 3D feature vol-
ume, which is denoted as F ′

c, F ′
c ∈ RC×Z×H×W . SDG

can effectively incorporate LiDAR depth information and
generate more accurate and reliable depth.

LiDAR Occupancy Guidance. Due to the sparsity and
measurement noises of LiDAR point clouds, the depth in-
formation of some pixels is inaccurate. Therefore, LOG
is proposed to address the aforementioned drawbacks, as
shown in Fig. 4. Specifically, we first map LiDAR BEV
features to 3D space to obtain the 3D features, and then
attach an occupancy prediction head that estimates occu-
pancy states to obtain the LiDAR 3D occupancy voxel,
denoted as OL ∈ R1×Z×H×W . It is worth noting that
the resolution of OL is the same as that of F ′

c. The Li-
DAR 3D occupancy voxel is then multiplied by F ′

c to ob-
tain the LiDAR occupancy-guided image 3D feature vol-
ume F ′′

c ∈ RC×Z×H×W using the following equation:

F ′′
c = Mul(F ′

c, OL) (2)

Where Mul denotes element-wise multiplication with
broadcasting operation. With the above designs, the 2D
camera features contain sufficient semantic information and
accurate depth information, which provide an excellent ref-
erence for subsequent module interactions.

3.3. Multi-Scale Dual-Path Transformer

To effectively aggregate semantic information and enlarge
the receptive fields, we introduce multi-scale dual-path
transformer (MSDPT). Dual-path transformer (DPT) con-
sists of a local path and a global path, which uses 3D con-
volution to perform downsampling to obtain features of dif-
ferent scales. The detailed structures of DPT are shown
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Figure 5. The schema of dual-path transformer (DPT), which ef-
fectively aggregates semantic information and expands the recep-
tive fields of the camera features.

in Fig. 5. The local path is mainly used to extract fine-
grained semantic structures. Since the height direction has
less variation in 3D object detection, the local path only
slices and processes the 3D feature volume extracted from
the multi-view images in parallel along the horizontal di-
rection. The global path attempts to acquire the semantic
layout of the scene accurately. It first obtains BEV fea-
tures by average pooling along the height dimension, and
then interacts with the basic information of the BEV fea-
tures. To improve computational efficiency, they both use
windowed self-attention [25], and share weights. Finally,
the 3D feature volume from the local path merges the suffi-
cient semantic features from the global path. The dual-path
outputs are Flocal ∈ RC×X×Y×Z and Fglobal ∈ RC×X×Y ,
the combined output Fout is computed as:

Fout = Flocal + σ(WHFlocal) · unsqueeze(Fglobal,−1) (3)

where WH refers to the aggregation weights along the
height dimension generated by the FFN, σ(·) is the sigmoid
function, and “unsqueeze” expands the global 2D features
along the height.

3.4. LiDAR-Guided Adaptive Fusion Transformer

Recent works [22, 26] simply concatenate different modal-
ities of BEV features to obtain a shared BEV representa-
tion, which does not consider the information interaction
and global spatial relevance among different modalities. To
this end, LGAFT is developed to adaptively enhance the in-
teraction of LiDAR BEV features FLB and camera BEV
features FCB from a global perspective. The detailed ar-
chitecture is illustrated in Fig. 6. We use 1 × 1 convolu-
tion to expand FLB and FCB to appropriate channels, and
concatenate the expand BEV features F ′

LB and F ′
CB to ob-

tain feature weights WF from a sigmoid function. Then,
we adopt WF to fuse the LiDAR and camera BEV features
adaptively, and the fused features are denoted as Fa. The
weights WF can be expressed as:

Camera BEV Features

LiDAR BEV Features

Feature Weights(W)

W

1-W C Q
KC

Sigmoid

ConcatenateC Matrix Addtion 

Position Encoding 1x1 conv

V

Softmax Norm MLP

Figure 6. The overview of LiDAR-guided adaptive fusion trans-
former (LGAFT). LGAFT adaptively enhances the interaction be-
tween LiDAR and camera BEV features from a global perspective.

F ′
LB = conv1×1(FLB)

F ′
CB = conv1×1(FCB)

WF = σ(Concat(F ′
LB , F

′
CB))

(4)

Where “Concat” denotes the concatenate operation. To
reduce the computation cost, we do not use the multi-head
attention module in transformer structure. specifically, we
adopt Fa as the query of the cross-attention module. The
adaptive camera features are regarded as the keys and val-
ues to avoid the gradient explosion convergence problem.
Therefore, the final fused features FBEV can be presented
as:

Q = Concat((1−WF )F
′
LB ,WF (F

′
CB + P ))WQ

K = WF (F
′
CB + P )WK

V = (F ′
CB + P )WV

FBEV = MLP
(
LN(Softmax(

QKT

√
C

)V )
) (5)

Where Q, K, and V denote the query, key, and value.
WQ, WK and WV are learnable parameters, P stands for
the learnable position embedding, LN means layer normal-
ization and MLP is the multi-layer perception block.

3.5. Temporal Fusion Module

Temporal information is crucial for the visual system to
understand the surrounding environment. Temporal infor-
mation can better help detect the motion states of the ob-
jects and occluded objects. We follow the fusion scheme
of BEVDet4D [10] and store the BEV features of historical
frames in a memory buffer, and fuse the BEV features of
the previous frame at each time. The detailed operation can
be found in [10]. Finally, we feed the fused BEV features
into the BEV encoder and detection head to obtain the final
detection results.

4. Experiments
4.1. Dataset and Metrics

Similar to previous works [1, 22, 26], we conduct exten-
sive synthetic experiments on the nuScenes dataset. The
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Method Modality mAP↑ NDS↑ Car Truck C.V. Trailer Bus Barrier Motor. Bike Ped. T.C.
PointPillars [15] L 30.5 45.3 68.4 23.0 4.1 23.4 28.2 38.9 27.4 1.1 59.7 30.8
CenterPoint [44] L 60.3 67.3 85.2 53.5 20.0 56.0 63.6 71.1 59.5 30.7 84.6 78.4
TransFusion-L [1] L 65.5 70.2 86.2 56.7 28.2 58.8 66.3 78.2 68.3 44.2 86.1 82.0
LargeKernel3D [5] L 65.3 70.5 85.9 55.3 26.8 60.2 66.2 74.3 72.5 46.6 85.6 80.0
FocalFormer3D [6] L 68.7 72.6 87.8 59.4 37.8 65.7 73.0 77.8 77.4 52.4 90.0 83.4
PointPainting [36] LC 46.4 58.1 77.9 35.8 15.8 37.3 36.2 60.2 41.5 24.1 73.3 62.4
3D-CVF [45] LC 52.7 62.3 83.0 45.0 15.9 49.6 48.8 65.9 51.2 30.4 74.2 62.9
MVP [43] LC 66.4 70.5 86.8 58.5 26.1 57.3 67.4 74.8 70.0 49.3 89.1 85.0
TransFusion [1] LC 68.9 71.7 87.1 60.0 33.1 60.8 68.3 78.1 73.6 52.9 88.4 86.7
AutoAlignV2 [7] LC 68.4 72.4 87.0 59.0 33.1 59.3 69.3 - 72.9 52.1 87.6 -
BEVFusion [26] LC 70.2 72.9 88.6 60.1 39.3 63.8 69.8 80.0 74.1 51.0 89.2 85.2
BEVFusion [22] LC 71.3 73.3 88.1 60.9 34.4 62.1 69.3 78.2 72.2 52.2 89.2 86.7
CMT [40] LC 70.4 73.0 87.2 61.5 37.5 62.8 72.4 86.9 79.4 58.3 86.9 83.1
DeepInteraction [42] LC 70.8 73.4 87.9 60.2 37.5 63.8 70.8 80.4 75.4 54.5 91.7 87.2
FocalFormer3D [6] LC 71.6 73.9 88.5 61.4 35.9 66.4 71.7 79.3 80.3 57.1 89.7 85.3
MSMDFusion [13] LC 71.5 74.0 88.4 61.0 35.2 66.2 71.4 80.7 76.9 58.3 90.6 88.1
GAFusion(ours) LC 73.6 74.9 89.4 65.3 42.4 65.8 73.7 79.2 80.8 60.2 92.3 87.0

Table 1. Comparison on the nuScenes test set. The models in the table are without ensemble or test-time augmen-
tation. “L” is LiDAR, “C” is camera.

nuScenes [2] dataset is a large-scale autonomous driving
benchmark, which includes 1000 scenes with images from 6
cameras with surrounding views, points from 5 Radars and
1 LiDAR. The scenes are officially split into 700/150/150
scenes for training/validation/testing. Each scene lasts for
about 20 seconds, where key frames are annotated at 2Hz.
Each frame of point cloud data corresponds to 6 RGB im-
ages with 360° horizontal FOV.

For the 3D detection task, we adopt the nuScenes De-
tection Score (NDS) and mean Average Precision (mAP) to
evaluate the performance of the proposed model. In addi-
tion, the evaluation metrics of nuScenes also include five
True Positive (TP) metrics, namely mean Average Trans-
lation Error (mATE), mean Average Scale Error (mASE),
mean Average Orientation Error (mAOE), mean Average
Velocity Error (mAVE) and mean Average Attribute Error
(mAAE), which assess the performance of the model from
different perspectives. NDS is the weighted average of mAP
and five TP metrics.

4.2. Implementation Details

The developed model is implemented based on the MMDe-
tection3D [8] framework. For the LiDAR stream, we uti-
lize the additional downsampling operation on top of Voxel-
Net [47] as our backbone. For the camera stream, we adopt
Swin-T [25] and FPN as the image backbone, and use the
pre-trained model of Swin-T. Similar to most models, the
image resolution is 448×800, and the voxel size is (0.075m,
0.075m, 0.2m). The whole training process follows the pre-
vious work [22, 26]. Firstly, a LiDAR detector is trained as
3D backbone for 20 epochs. Then, we freeze the pre-trained

Methods Modality mAP↑ NDS↑
BEVFormer [19] C 41.6 51.7
PETRv2 [24] C 45.6 35.0
CenterPoint [44] L 60.3 67.3
TransFusion-L [1] L 65.5 70.2
TransFusion [1] LC 67.5 71.3
BEVFusion [26] LC 68.5 71.4
CMT [40] LC 67.9 70.8
MSMDFusion [13] LC 69.3 72.1
DeepInteration [42] LC 69.9 72.6
SparseFusion [39] LC 70.5 72.8
GAFusion(ours) LC 72.1 73.5

Table 2. Comparison on the nuScenes val set. The models in the
table are without ensemble or test-time augmentation.

LiDAR components and jointly train for another 6 epochs
according to the proposed framework. During the training
stage, we use AdamW [27] optimizer with an initial learn-
ing rate of 5×10−5 and a weight decay of 10−2. GAFusion
is trained on two 3090 GPUs with batch size of 4. In the in-
ference stage, we do not use test-time augmentation (TTA)
or multi-model ensemble.

4.3. Results and Comparison

As shown in Table 2 and Table 1, we report the results of
GAFusion on the nuScenes validation and test sets, and
compare them with other state-of-the-art models. The re-
sults show that, on the test set, GAFusion surpasses all the
existing methods with 73.6% mAP and 74.9% NDS, such as
MSMDFusion [13] and CMT [40]. It also achieves excel-
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Figure 7. Visualization results of BEVFusion and GAFusion on the nuScenes validation set. The red circles and boxes show the detection
ability of GAFusion for small and occluded objects.

lent performance on the validation set. In addition, we also
provide the visualization results of GAFusion and BEVFu-
sion to demonstrate the superiority of the proposed method,
and they can be seen in Fig. 7. This is attributed to bet-
ter guidance mechanisms, larger receptive fields and a more
suitable fusion method.

4.4. Ablation Studies

To demonstrate the effectiveness and rationality of GAFu-
sion, we conduct comprehensive ablation studies for each
of the proposed components.

Additional downsampling and sparse height com-
pression. To prove the validity and generalization of this
module, we separately insert the developed module into
TransFusion [1] and BEVFusion [26], as shown in Table 3.
We do not use any augmentation strategies or multi-model
ensemble during testing. The results illustrate that it can
significantly improve the performance of different models.
It enhances 1.0% mAP and 0.6% NDS in TransFusion, and
0.8% mAP and 0.5% NDS in BEVFusion, which indicates
that it can aggregate multi-scale information.

Impacts of LiDAR guidance. To demonstrate that the
contributions of LiDAR guidance indeed improve the model
performance, we introduce SDG and LOG into BEVFu-
sion [26]. Table 4 presents the impacts of different com-
binations of the guidance modules in BEVFusion. We ob-
serve that the model performance brings about 1.4% mAP
and 0.8% NDS gain with both SDG and LOG. When nei-

Backbone + Sparse2Dense
TransFusion BEVFusion

mAP↑ NDS↑ mAP↑ NDS↑
Voxelnet + HC 68.9 71.6 70.2 72.9

VoxelNet, AD + SHC 69.9 72.4 71.0 73.4

Table 3. Performance and generalization of additional downsam-
pling (AD) and sparse height compression (SHC) on other com-
mon models. NDS/mAP comparison on nuScenes test set. “HC”
is height compression.

ther SDG nor LOG module is used, the model scores drop
significantly. It can be attributed to the lack of guidance in
the camera stream, and results in unreliable depth informa-
tion. Moreover, it realizes 0.8% mAP and 0.4% NDS with
SDG alone and 1.0% mAP and 0.6% NDS with LOG alone.
The interaction effects of LOG are more remarkable, so we
conjecture that directly interacting among 3D features can
provide sufficient located information. SDG and LOG play
their respective roles: the former integrates sparse depth
information into 2D image features, and the latter guides
depth information in 3D feature volume, which enables the
camera stream to obtain rich geometric information.

BEV features fusion strategy. We explore the impacts
of different fusion methods, including addition, concatena-
tion, LiDAR-guide fusion transformer (LGFT) and LGAFT.
As shown in Table 5, LGFT achieves a noticeable improve-
ment over addition and concatenation, with about 0.7%
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Figure 8. Receptive fields of the preliminary fused BEV features
from different modalities. The colored dots indicate effective re-
ceptive fields.

SDG LOG mAP↑ NDS↑
(1) 68.52 71.38
(2) ✓ 69.33 71.76
(3) ✓ 69.49 72.04
(4) ✓ ✓ 69.93 72.24

Table 4. Ablation study of LiDAR guidance on nuScenes val set.
(1) represents the performance of the original BEVFusion model.

mAP and 0.4% NDS. LGAFT further enhances 0.16% mAP
and 0.11% NDS against LGFT due to the addition of adap-
tive mechanism. It presents that enhancing the interaction
between LiDAR and camera BEV features from a global
scope and the adaptive mechanism can sufficiently improve
global spatial relevance.

Effects of MSDPT. We illustrate the related results to
prove that MSDPT can effectively enlarge the receptive
fields of camera features and aggregate semantic informa-
tion. In Table 6, (1)-(5) are using output features (F ′′

c ) to
fuse the features of different scales. Without MSDPT, the
model performance drops by about 0.5% mAP and 0.4%
NDS. Different scales of features also affect the model ac-
curacy, which is due to the fact that the multi-scale oper-
ation can enlarge the receptive fields of camera features.
However, redundant scales also cause too much compu-
tation and the performance enhancement is not obvious.
Therefore, we select 3 scales to combine the different scale
features for the balance of performance and computation.

Larger receptive fields. As shown in Fig. 8, (a) and
(b) illustrate the effective receptive fields of the fused fea-
tures from the camera and LiDAR BEV features by BEVfu-
sion [26] and GAFusion, respectively. We observe that GA-
Fusion achieves larger effective receptive fields than BEV-
Fusion. This is attributed to the additional downsampling
and MSDPT modules, which indicate that multi-scale fea-
tures can provide more contextual information. Besides, the
global and local interaction of LGAFT contributes to en-
larging the feature receptive fields to some extent.

Temporal fusion. In Table 5, the temporal fusion im-
proves about 0.3% mAP and 0.1% NDS. We integrate two

BEV Fusion Tem mAP↑ NDS↑

(1) ADD.
70.85 72.82

✓ 71.17 72.93

(2) Cat.
70.92 72.88

✓ 71.21 72.98

(3) LGFT
71.63 73.32

✓ 71.91 73.41

(4) LGAFT
71.79 73.43

✓ 72.08 73.53

Table 5. Ablation study of BEV fusion strategy and temporal fu-
sion on nuScenes val set. “Tem” is temporal fusion.

C1 C2 C3 C4 mAP↑ NDS↑
(1) 71.60 73.11
(2) ✓ 71.92 73.39
(3) ✓ 72.01 73.45
(4) ✓ 72.08 73.53
(5) ✓ 72.07 73.54

Table 6. Ablation study of MSDPT on nuScenes val set. C1-C4
denote the number of 3D convolution layers (1-4) applied to the
3D feature volume, respectively.

frames of the BEV features, and the approach enables
partial features alignment between adjacent frames, which
leads to a marginal performance improvement. For multi-
ple frames, it can attain higher enhancement, which is our
future work.

5. Conclusion

We propose GAFusion, a more effective 3D object detec-
tion method in BEV representation, which is equipped with
excellent guidance and fusion mechanisms. Additional
downsampling and MSDPT are developed to enlarge the
receptive fields of different modal features. Then SDG and
LOG are employed to transform the 2D camera features
into 3D features with sufficient located and spatial informa-
tion. Afterward, we propose LGAFT to facilitate the fusion
of LiDAR and camera BEV features. Finally, a temporal
fusion module is adopted to aggregate features from
different frames. Extensive experiments demonstrate the
effectiveness and generality of our developed modules and
GAFusion achieves state-of-the-art performances on the
nuScenes dataset. We hope that the proposed components
of GAFusion could provide more insights for subsequent
research in this field.
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