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Figure 1. Our method, called GP-NeRF, achieves remarkable performance improvements for instance and semantic segmentation in
both synthesis [35] and real-world [10] datasets, as shown in the right column of the figure. Here we showcase generalized semantic
segmentation, finetuning semantic segmentation, and instance segmentation) with their corresponding reconstruction results. For the left
column, the qualitative results of the visualization are presented, showing the effectiveness of our method for simultaneous segmentation
and reconstruction. What’s more, we visualize our rendered features via PCA in the novel view, demonstrating our method possesses the
capability to produce semantic-aware features that can distinguish between different classes and objects.

Abstract

Applying Neural Radiance Fields (NeRF) to downstream
perception tasks for scene understanding and representa-
tion is becoming increasingly popular. Most existing meth-
ods treat semantic prediction as an additional rendering
task, i.e., the ”label rendering” task, to build semantic
NeRFs. However, by rendering semantic/instance labels per
pixel without considering the contextual information of the
rendered image, these methods usually suffer from unclear
boundary segmentation and abnormal segmentation of pix-

els within an object. To solve this problem, we propose
Generalized Perception NeRF (GP-NeRF), a novel pipeline
that makes the widely used segmentation model and NeRF
work compatibly under a unified framework, for facilitat-
ing context-aware 3D scene perception. To accomplish this
goal, we introduce transformers to aggregate radiance as
well as semantic embedding fields jointly for novel views
and facilitate the joint volumetric rendering of both fields.
In addition, we propose two self-distillation mechanisms,
i.e., the Semantic Distill Loss and the Depth-Guided Se-
mantic Distill Loss, to enhance the discrimination and qual-
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ity of the semantic field and the maintenance of geometric
consistency. In evaluation, as shown in Fig. 1 we conduct
experimental comparisons under two perception tasks (i.e.
semantic and instance segmentation) using both synthetic
and real-world datasets. Notably, our method outperforms
SOTA approaches by 6.94%, 11.76%, and 8.47% on gener-
alized semantic segmentation, finetuning semantic segmen-
tation, and instance segmentation, respectively. Project.

1. Introduction
Robust scene understanding models are crucial for enabling
various applications, including virtual reality (VR) [17],
robot navigation [48], self-driving [12], and more [1].
They have experienced tremendous progress over the past
years, driven by continuously improved model architec-
tures [7, 8, 24, 26, 53] in 2D image segmentation. However,
these methods face challenges due to their lack of specific
scene representation and the inability to track unique object
identities across different views [34].

Meanwhile, implicit neural representations [27, 28, 38,
41] have demonstrated an impressive capability in captur-
ing the 3D structure of complex real-world scenes [10]. By
adopting multi-layer perceptions, it utilizes multi-view im-
ages to learn 3D representations for synthesizing images
in novel views with fine-grained details. This success has
spurred research into applying NeRF for robust scene un-
derstanding, aiming to explore a broader range of possibili-
ties in high-level vision tasks and applications.

Recent works [13, 22, 34, 54] addressed scene under-
standing from 2D images by exploring semantics using
Neural Radiance Fields (NeRFs) [28]. Per-scene optimized
methods, such as Semantic-NeRF [54], DM-NeRF [40],
and Panoptic-NeRF [13], simply utilize additional Multi-
Layer Perceptron (MLP) to regress the semantic class for
each 3D-point together with radiance and density. The lat-
est method Semantic-Ray [22], based on generalized NeRF
NeuRay [27], achieves generalized semantic segmentation
by introducing an individual learnable semantic branch to
construct the semantic field and render semantic features in
novel view using frozen density.

Although this operation is reasonable to build a seman-
tic field, it falls short in achieving joint optimization of
both RGB rendering and semantic prediction, thus miss-
ing an important message when building high-quality het-
erogeneous embedding fields: The geometry distribution of
the radiance field and Semantic-Embedding field should be
consistent with each other. For example: 1) The boundaries
of different objects are usually distinct in RGB represen-
tation, they could be utilized for achieving more accurate
boundary segmentation; and 2) The areas belonging to the
same object often share consistent coloration, which can act
as informative cues to enhance the quality of RGB recon-

struction. Moreover, Semantic-Ray follows the vanilla se-
mantic NeRF by rendering semantic labels for each point
independently in the novel view, ignoring the context infor-
mation, such as the relationships and interactions between
the nearby pixels and objects.

To address these problems, we present Generalized Per-
ception NeRF (GP-NeRF), a novel unified learning frame-
work that embeds NeRF and the powerful 2D segmentation
modules together to perform context-aware 3D scene per-
ception. As shown in Fig. 2, GP-NeRF utilizes Field Aggre-
gation Transformer to aggregate the radiance field as well as
the semantic-embedding field, and Ray Aggregation Trans-
former to render them jointly in novel views. Both pro-
cesses perform under a joint optimization scheme. Specifi-
cally, we render rich-semantic features rather than labels in
novel views and feed them into a powerful 2D segmentation
module to perform context-aware semantic perception. To
enable our framework to work compatibly, we further in-
troduce two novel self-distillation mechanisms: 1) the Se-
mantic Distill Loss, which enhances the discrimination and
quality of the semantic field, thereby facilitating improved
prediction performance by the perception head; and 2) the
Depth-Guided Semantic Distill Loss, which aims to super-
vise the semantic representation of each point within the se-
mantic field, ensuring the maintenance of geometric consis-
tency. Under such mechanisms, our method bridges the gap
between the powerful 2D segmentation modules and NeRF
methods, offering a possible integration solution with exist-
ing downstream perception heads.

Our contributions can be summarized as follows:
• We make an early effort to establish a unified learn-

ing framework that can combine NeRF and segmentation
modules to perform context-aware 3D scene perception.

• Technically, we use Transformers to jointly construct ra-
diance as well as semantic embedding fields and facili-
tates the joint volumetric rendering upon both fields for
novel views. optimize them in the novel view

• The 2D and depth-guided self-distillation mechanisms are
proposed to boost the discrimination and quality of the
semantic embedding field.

• Comprehensive experiments are conducted. The results
demonstrate that our method can surpass existing NeRF
methods in downstream perception tasks (i.e.semantic, in-
stance) with both generalized and per-scene settings.

2. Related Work

2.1. Neural Radiance Fields (NeRF)

Neural Radiance Fields (NeRF), introduced by Mildenhall
et al. [28], have revolutionized view synthesis by fitting
scenes into a continuous 5D radiance field using MLPs.
Subsequent enhancements include Mip-NeRF’s [2, 3] effi-
cient scaling in unbounded scenes, Nex’s [43] handling of
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Figure 2. Overview of proposed GP-NeRF. Given reference views with their poses, we embed NeRF into the segmenter to perform
context-aware semantic Ysem /instance Yins segmentation and ray reconstruction Yrgb in novel view (Sec. 4.1). In detail, we use Trans-
formers to co-aggregate Radiance as well as Semantic-Embedding fields and render them jointly in novel views (Sec. 4.2). Specifically,
we propose two self-distillation mechanisms to boost the discrimination and quality of the semantic embedding field (Sec. 4.3).

large view-dependent effects, improvements in surface rep-
resentation [29, 46] and dynamic scene adaptation [30, 31],
as well as advancements in lighting, reflection [6, 39], and
depth-based regression [11, 44]. Methods like PixelNeRF
[49], IBRNet [41], NeuRay [27], and GNT [38] further
reduce the need for per-scene training by using cross-scene
multi-view aggregators for one-shot radiance field recon-
struction. Building on these cross-scene Nerf methods, our
work introduces a generalized semantic and rendering joint
field, aiming to achieve simultaneous cross-scene recon-
struction and segmentation.

2.2. NeRFs with Scene Understanding

Encoding semantics into NeRF is essential for scene un-
derstanding. Semantic NeRF [54] first explored introduc-
ing vanilla NeRF into semantic masks by adopting extra
MLP layers to ”render” semantic labels. DFF [18] and
FeatureNeRF [47] utilize the pre-trained CLIP network and
employ extra MLP layers for distillation learning to ren-
der text-aligned semantics features. Panoptic-Lifting [34]
directly distills labels from Mask2former’s predicted prob-
abilities [7]. Based on Generalize NeRF [27], Semantic-
Ray [22] adds an additional semantic branch to perform per-
pixel semantic label rendering.

In conclusion, although these methods have extended the
idea, e.g., by applying to panoptic tasks [13], adding large
language model (LLM) [32] features [4, 18, 47], and mak-
ing it generalize [22], they all consider the semantic prob-

lem as another ”rendering” variant: they render labels or
features for each pixel independently, ignoring the contex-
tual consistency among pixels in the novel view.

In contrast to previous approaches, we frame the
segmentation issue as “prediction with context” rather
than “isolated label rendering”. Accordingly, we gen-
erate semantic-aware features instead of labels from our
semantic-embedding field in new views. Moreover, we
are able to perform context-aware segmentation thanks to
the capabilities of the segmenter, which is a feature that
previous methods lacked. Thanks to this design, the ren-
dering and segmentation branches can benefit each other.
Therefore, unlike [16], which enhances 3D object detection
performance at the expense of reconstruction performance,
our method can simultaneously improve both reconstruc-
tion and segmentation performance.

3. Preliminaries
In this section, we take a brief review of GNT [38]. NeRF
represents a 3D scene as a radiance field F : (x,θ) 7→
(c, σ), which maps the spatial coordinate x to a density σ
and color c. While GNT models 3D scene as a coordinate-
aligned feature field F : (x,θ) 7→ f ∈ Rd, d is the di-
mension of the features. To learn this representation, GNT
uses Transformer as a set aggregated function V(·) to ag-
gregate the features of reference views into a coordinate-
aligned feature field, which is formulated below:

F(x,θ) = V (x,θ; {I1, · · · , IN}) (1)

21710



Subsequently, to obtain the final outputs C of the ray
r = (o,d) in target view in this feature field, GNT pa-
rameterizes the ray by r(t) = o + td, t ∈ [t1, tM ], and
uniformly samples M points xi of feature representations
f i = F (xi,θ) ∈ Rd along the ray r. Then, GNT adopts
Transformer as a formulation of weighted aggregation to
achieve volume rendering:

C(r) = MLP ◦ 1

M

M∑
i=1

A(xi)f(xi, θ), (2)

where A(xi) is the weight of point xi computed by Trans-
former and C(r) is the rendered color of the ray r.

4. Methodology
4.1. Overall Framework

Given N images I = {Ii ∈ RH×W×3
}

with corresponding
poses, the training targets are to conduct scene perception
(semantic Ysem, instance Yins) and reconstruction Yrgb in
the novel target views, where Ysem = {Yi ∈ RH×W×O

}
,

Yins = {Yi ∈ RH×W×C
}

, and Yrgb = {Yi ∈ RH×W×3
}

,
where O and C denote the number of semantic classes and
instances. Unlike previous Semantic NeRF methods that di-
rectly render colors and semantic labels in a per-pixel man-
ner, we perform segmentation tasks using (implicit) image
context (Fig. 2). To accomplish this objective, we utilize
NeRF to aggregate novel view semantic features S2D

sem from
reference features F sem

i (Sec. 4.2), where F sem
i is extracted

by Multi-Scale Feature Extractor. After that, semantic fea-
tures S2D

sem are fed into the Context-Aware Perception Head
to perform image-wise context-aware perception.
Multi-Scale Feature Extractor. To enhance the semantic-
aware of our semantic-embedding fields, for each reference
image Ii, we use shared ResNet-34 followed by a Fea-
ture Pyramid Network (FPN) [21] module to produce multi-
scale features F sem

i for our semantic field aggregation.
Context-Aware Perception Head. Our perception head
takes rendered semantic features S2D

sem and outputs seman-
tic labels Ysem in novel view. Here we split S2D

sem into
4 parts [s2Dsem,1, s

2D
sem,2, s

2D
sem,3, s

2D
sem,4] to decompose high-

level features and low-level features, and adopt the decoder
of the U-Net [33] to verify our architecture’s performance.
In specific, for i-th layer, it consists of an upsampling (i-1)-
th layer’s output feature s′i−1 with 2 × 2 convolution(”up-
convolution”), a concatenation of i-th feature map s2Dsem,i,
and two 3 × 3 convolutions followed by a ReLU. The pro-
cess can be formulated as below:

s′i = ReLU · Conv(s2Dsem,i + Up-Conv(s′i−1)) (3)

Rendering and Training Process. NeRF can only ren-
der limited Npts points in each iteration, the same as our
method. During rendering, we stack all the semantic fea-
tures S2D

sem(r) of sampled points as image-level features
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Figure 3. Illustration of training(a) and rendering(b) procedure,
where S.E. field denotes Semantic-Embedding Field.

and feed them into the perception head together (see Fig.
3(b)). However, it’s impossible to use fully rendered seman-
tic features in every training batch. Therefore, as shown in
Fig. 3(a), for the semantic 2D map S2D

sem, we specifically fill
its unrendered areas with the corresponding regions from
the novel 2D map S2D

novel. This process creates a fused
image-level feature map S2D

fused, which is subsequently fed
into the Perception Head for semantic prediction.
4.2. Co-Aggregated Fields and Joint Rendering

Given low-level features F rgb
i and high-level features

F sem
i from Multi-Scale Feature Extractor, we use shared-

attention(i.e. Field-Aggregation Transformer) to co-
aggregate the radiance field and semantic-embedding
field. Subsequently, another shared-attention (i.e. Ray-
Aggregation Transformer) employs joint volumetric render-
ing from both fields to generate point-wise colors and se-
mantic features in the novel view.
Co-Aggregate Radiance and Semantic-Embedding
Fields. We represent a 3D scene as a coordinate-aligned
feature field [38], which can attach low-level features for
ray rendering or high-level features for scene understand-
ing. Therefore, to obtain feature representations of position
x in novel view, following the idea of epipolar geometry
constraint [36], x is projected to every reference image and
interpolated the feature vector on the image plane. Firstly,
the Field Aggregation Transformer (dubbed FAT(·)) is
adopted to combine all features F rgb

i from reference views
for radiance field Frgb(x,θ) aggregation. Formally, this
process can be written as:

Frgb(x,θ),AFAT = FAT(F rgb
1 (Π1(x),θ) , · · · ,

F rgb
N (ΠN (x),θ)),

(4)

where Πi(x) projects x to i-th reference image plane by
applying extrinsic matrix, F rgb

i (Πi(x),θ) ∈ RDrgb com-
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putes the feature vector at projected position Πi(x) ∈ R2

via bilinear interpolation on the feature grids. Furthermore,
AFAT ∈ RNpts×N is the aggregation weight from Field
Aggregation Transformer, which enables us to construct se-
mantic embedding field Fsem(x,θ) easily by applying dot-
product with features F sem

i from reference views:

Fsem(x,θ) = Mean ◦ (AFAT · [F sem
1 (Π1(x),θ) ,

· · · ,F sem
N (ΠN (x),θ)]T )

(5)

The network detail of the Field-Aggregation Transformer
can refer to the appendix.
Joint Volumetric Rendering from both Fields. For ra-
diance rendering, given a sequence of

{
frgb
1 , · · · ,frgb

M

}
from a sample ray, where frgb

i = Frgb (xi,θ) ∈ RDrgb

is the radiance feature of sampled points xi along its
corresponding sample ray r = (o,d), we apply Ray-
Aggregation Transformer (dubbed RAT(·)) to aggregate
weighted attention ARAT ∈ RNpts

of the sequence to as-
semble the final feature vectors S2D

rgb ∈ RDrgb , then mean
pooling and MLP layers are employed to map the feature
vectors to RGB. The formulation of the above process is
written below:

S2D
rgb(r),ARAT = RAT (frgb

1 , · · · ,frgb
M )

C(r) = MLP ◦ Mean ◦ S2D
rgb(r)

(6)

For semantic rendering, similar to the process of co-
aggregate fields, given a sequence of {fsem

1 , · · · ,fsem
M }

from the same sampled ray, we adopt dot-product between
ARAT and fsem

i ∈ RDsem to render semantic features
S2D
sem(r) ∈ RDsem in novel view:

S2D
sem(r) = MLP ◦ Mean ◦ (ARAT · [fsem

1 , · · · ,fsem
M ]T )

(7)
The network detail of the Ray-Aggregation Transformer can
be referred to the appendix.

4.3. Optimizations

We train the whole network from scratch under photometric
loss Lrgb , semantic pixel loss Lsem as well as our proposed
semantic distill loss L2D

disill and depth-guided semantic distill
loss Ldgs

distill, the overall loss Lall can be summarized as:

Lall = α1 · Lrgb +α2 · Lsem +α3 · L2D
distill +α4 · Ldgs

distill (8)

Photometric loss Lrgb and semantic pixel loss Lsem are
pixel-level supervision, and they are widely used in NeRF
and semantic tasks:

Lrgb =
∑
r∈R

∥∥∥Ĉ(r)−C(r)
∥∥∥2
2
, (9)

Lsem = −
∑
r∈R

[
C∑
l=1

pc(r) log p̂c(r)

]
, (10)

t
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Figure 4. 2D Semantic Distillation LS.D and Depth-Guided Se-
mantic Optimization LD.G. This figure demonstrates a single raw
of our semantic-embedding field. the network ”cheat” by render-
ing all points fsem

i to the same prediction to satisfy LS.D super-
vision. By performing spatial-wise semantic supervision, LS.D is
able to mitigate the issue of ”cheating”.
where R are the sampled rays within a training batch.
Ĉ(r),C(r) are the GT color and predicted color for ray r,
respectively. Moreover, pc and p̂c are the multi-class se-
mantic probability at class c of the ground truth map.
2D Semantic Distillation. For semantic-driven tasks, it is
crucial to augment the discrimination and semantic-aware
ability of our rendered features. Therefore, we propose 2D
Semantic Distill Loss LS.D. It distills [15] the aggregated
features S2D

sem by considering the features S2D
novel extracted

on novel-view as teacher, which effectively minimizes the
differences between aggregated and teacher features:

LS.D =
∑
r∈R

[
1− cos

(
S2D

sem(r),S2D
novel(r)

)]
(11)

Since our model is trained from scratch, we apply a gra-
dient block after ResNet-34 encoder to ensure that the loss
function supervises the aggregation process of the Trans-
former modules to get better rendered semantic features
S2D

sem, otherwise, the extractor tends to learn less discrimi-
native features to ”cheat” the distillation loss.
Depth-Guided Semantic Optimization. It’s worth noting
that although LS.D it significantly boosts the discrimination
of rendered features, it also corrupts the geometry represen-
tation of our model. As illustrated in the first column of
Fig. 4, the semantic representation of the ray is conducted
by weighted summation of sampled point fsem

i and their
corresponding coefficient σi, where σi belongs to ARAT .
Therefore, the loss can be minimized by misguiding fsem

i

(class ’Floor’→’Table’) rather than optimizing the atten-
tion weights σi(i.e. geometry representation). To restore
the semantic consistency with geometry constraint, we pro-
posed Depth-Guided Semantic Optimization LD.G. given a
sequence of sampled points xi and corresponding features
fsem
i from ray r, we perform per-point semantic distillation

from the teacher’s features S2D
novel(r):

LD.G =
∑
r∈R

Npts∑
i=1

Lsim(xi,f
sem
i ,S2D

novel(r)) (12)
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Synthetic Data (Replica [35]) Real Data (ScanNet [10])
Method Settings

Total Acc↑ Avg Acc↑ mIoU↑ Total Acc↑ Avg Acc↑ mIoU↑

MVSNeRF + Semantic Head 54.25 33.70 23.41 60.01 46.01 39.82
NeuRay + Semantic Head 69.35 43.97 35.90 77.61 57.12 51.03
Semantic-Ray 70.51 47.19 41.59 78.24 62.55 57.15
Ours

Generalization

78.01 50.80 48.536.94↑ 78.49 70.75 59.922.7↑

Semantic-NeRF 94.36 70.20 75.06 97.54 93.89 91.24
MVSNeRF + Semantic Headft 79.48 62.85 53.77 76.25 69.70 55.26
NeuRay + Semantic Headft 85.54 70.05 63.73 91.56 81.04 77.48
S-Rayft 96.38 80.81 75.96 98.20 93.97 91.06
Oursft

Finetuning

97.60 86.45 87.7211.76↑ 98.43 94.77 93.842.78↑

Table 1. Quantitative Comparison with other SOTA methods for generalized and fine-tuning semantic segmentation.

Test Scenes GT S-Ray w/o ft S-Ray w ft Ours w/o ft Ours w/ ft PCA vis w/o ft PCA vis w/ ft

Figure 5. Semantic quality comparison in Replica [35]. On the left, we show the rendering results of S-Ray [22] and GP-NeRF(ours) in
generalized and finetuning settings. On the right, we visualize the PCA results of our rendered semantic features in novel views.

where Lsim is the cosine embedding loss, it performs su-
pervision under two situations: (1) for those points xi near
the GT depth ( |xi−xd| < Np ), it conducts similarity con-
straint with teacher features; (2) for those points far from
the GT depth (|xi − xd| > Np), it conducts anti-similarity
constraint with teacher features, where xd is the sampled
point projected by GT depth. In our implementation, Np is
set to 2. The formulation is shown below:

Lsim(xi, f1, f2) =

{
1− cos (f1, f2) , |xi − xd| < Np

max (0, cos (f1, f2)) , |xi − xd| > Np

(13)

5. Experiments
5.1. Implementation Details

We conduct experiments to compare our method against
state-of-the-art methods for novel view synthesis with
RGBs as well as semantic/instance labels. Firstly, we train
our model in several scenes and directly evaluate our model
on test scenes (i.e., unseen scenes). Secondly, we finetune
our generalized model on each unseen scene with small
steps and compared them with per-scene optimized NeRF
methods in semantic and reconstruction metrics.
Parameter Settings. We train our method end-to-end on
datasets of multi-view posed images using the Adam opti-

mizer to minimize the overall loss Lall . The learning rate
or Multi-Task Feature Extractor, Transformer modules, and
Perception Head are 5 × 10−3,1 × 10−5 and 5 × 10−5 re-
spectively, which decay exponentially over training steps.
For generalized training, we train for 200,000 steps with
512 rays sampled in each iteration. For finetuning, we train
for 10,000 steps for each scene. Meanwhile, we sample 64
points per ray across all experiments. For each render inter-
action, we select N = 10 images as reference views.
Metrics. Same as Semantic-Ray [22]: (1) For semantic
quality evaluation, we adopt mean Intersection-over-Union
(mIoU) as well as average accuracy and total accuracy to
compute segmentation quality. (2) For render quality evalu-
ation, Peak Signal-to-Noise Ratio (PSNR), Structural Simi-
larity Index Measure (SSIM) [42], and the Learned Percep-
tual Image Patch Similarity (LPIPS) [52] are adopted. More
specifically, we refer to DM-NeRF [40] and use AP of all
2D test images to evaluate instance quality evaluation.
Datasets. We train and evaluate our method on Replica [35]
and ScanNet [10] datasets. In these experiments, we use the
same resolution and train/test splits as S-Ray [22].

5.2. Comparison with State-of-the-Art

Generalized Semantic Results. We compare our model
with Semantic Ray, Generalized NeRFs(i.e. NeuRay, MVS-
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Scene M-RCNN Swin-T DM-NeRF Ours

Office 0 74.05 80.17 82.71 90.46
Office 2 73.41 75.39 81.12 88.62
Office 3 72.91 73.26 76.30 82.64
Office 4 74.76 72.51 70.33 88.38
Room 0 78.67 76.90 79.83 89.91
Room 1 78.38 81.41 92.11 93.38
Room 2 77.58 80.33 84.78 93.11
Average 75.68 77.14 81.03 89.508.47↑

Table 2. Quantitative results of instance segmentation results on
Replica [35]. The metric is AP0.75.

NeRF) with Semantic Head, and classical semantic seg-
mentor (SemanticFPN) in both synthesis [35] and real-
world [10] datasets. We render the novel images in the reso-
lution of 640×480 for Replica, and 320×240 for ScanNet.
As shown in Tab. 1, our method achieves remarkable per-
formance improvements compared with baselines. For ex-
ample, our method significantly improves over Semantic-
Ray by 6.94% in Replica and 2.7% in ScanNet. It’s no-
table that Replica has more categories than ScanNet, and
we achieve higher performance improvements in Replica,
which further demonstrates the robustness and effectiveness
of our semantic embedding field in handling complex se-
mantic contexts.
Fine-tuning Semantic Results. We fine-tune our pre-
trained with 10k steps for per-scene optimize evaluation.
In Tab. 1, we observe that our method is superior to not
only generalized methods but also per-scene optimization
methods. Especially in ScanNet evaluation, we outperform
the per-scene optimized method Semantic-NeRF [54] by
a notable margin of 2.6% in the mIoU metric. Compara-
tively, Semantic-Ray [22] performs 0.18% less effectively
in the same metric. Furthermore, the visual results in Fig.
5 clearly reflect the quantitative results of Tab. 1. Given the
benefit of jointly optimized attention maps to construct se-
mantic embedding fields, our method demonstrates a clear
ability to segment the boundaries of different classes effec-
tively. This capability is particularly evident in the areas
encircled in the figures.
Instance Segmentation Results. With the success of
our method in semantic scene representation, we explore
the potential of our method in instance-level decompo-
sition. Given the reason that the objects of each scene
are unique, we only evaluate our performance in the per-
scene optimization setting. Tab. 2 presents the quantita-
tive results. Not surprisingly, our method achieves excel-
lent results for novel view prediction (+8.47% w.r.t. DM-
NeRF [40]) thanks to our powerful semantic embedding
field and context-aware ability in novel view prediction.
Figures 6(a) further demonstrate that our semantic field
can provide more discriminate semantic pattern than per-
scene optimization method to decompose instances with

GT Ours DM-NeRFImage

Figure 6. Visualization of instance segmentation results on syn-
thesis dataset [35]. The discriminate area is highlighted with ’⃝’.

GT Image Semantic-Ray GNT Ours

Figure 7. Qualitative results of scene rendering for generalization
settings in ScanNet [10]. We plot the discriminate area with ’⃝’.

Method PSNR↑ SSIM↑ LIPIPS↓

Semantic-NeRF 25.07 0.797 0.196
MVSNeRF 23.84 0.733 0.267
NeuRay 27.22 0.840 0.138
Semantic-Ray 26.57 0.832 0.173
Semantic-Rayft 29.27 0.865 0.127
GNT 28.96 0.909 0.135
GNTft 29.55 0.917 0.102
Ours 29.372.8↑ 0.919 0.110
Oursft 29.600.33↑ 0.923 0.102

Table 3. Reconstruction Quality in ScanNet [10]. ’ft’ denotes per-
scene optimization using a generalized pre-trained model.

accurate boundaries. Moreover, our method prevents the
mis-segmentation of pixels within an instance thanks to our
context-aware ability. These features enhance the accuracy
and reliability of our scene perception process.
Reconstruction Results. It’s worth noting that our method
not only achieves SOTA in perception evaluation but also
surpasses other SOTA methods in reconstruction quality.
As shown in Tab 3, in the generalized setting, our method
surpasses Semantic-Ray [22] by 2.8% in PSNR, which is
even better than Semantic-Ray with fine-tuning steps. Sub-
sequently, we also improve the reconstruction quality by
0.41% compared with GNT [38] given the benefit on our
radiance field is also supervised from semantic consistency.
Fig. 7 provides visual evidence of our performance on ray
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ID Jointly
Optimized

2D S.D
Loss

Gradient
Block

D.G
Loss mIoU↑ PSNR↑

1 % % % % 56.45 29.06
2 ! % % % 57.19 29.30
3 ! ! % % 52.03 29.29
4 ! ! ! % 59.55 29.26
5 ! ! ! ! 59.92 29.37

Table 4. Ablations of our design choices on ScanNet [10]. Notice
that ’Gradient Block’ is dependent on ’2D S.D Loss’ and ’D.G
Loss’, where 2D S.D denotes 2D Semantic Distill Loss and D.G
denotes Depth-Guided Semantic Enhancement.
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Figure 8. Ablations of Semantic Distillation Loss via Gradient
Block. Red part denotes the mIoU results predicted by extracted
features from novel image. Green part denotes the mIoU predicted
by the rendered features from semantic embedding fields.

rendering reconstruction, where our method delivers more
detailed and clearer reconstruction results.

5.3. Component Analysis and Ablation Study

Jointly Optimized Attention Maps. As illustrated in sec.
4.2, we aggregate semantic-embedding fields and render se-
mantic features in novel views by sharing attention maps
from Transformer modules. In Tab. 4, we compare the in-
fluence of our jointly optimized Field in ID. 1, 2, and evalu-
ate their scene perception and reconstruction performances.
In experiment ID. 1, when constructing the semantic field
and aggregating features in novel views, we freeze the At-
tention maps from Transformers. Conversely, in experiment
ID. 2, we unfreeze the attention maps and jointly optimize
them through semantic and radiance supervision. Obvi-
ously, joint optimization can achieve better performance in
semantic perception and ray reconstruction by 0.74% and
0.24%, compared with the frozen patterns. This approach
further demonstrates that semantic consistency can provide
a radiance reference for pixels within the same classes. Ad-
ditionally, radiance consistency also contributes to achiev-
ing more accurate boundary segmentation.
Semantic Distill Loss and Gradient Block. ID. 3, 4
in Tab. 4 reflect the influence of 2D semantic distilla-
tion loss and corresponding gradient block. As observed,
there is a significant drop in performance (-5.16 compared
to ID. 2) when only the 2D semantic distillation loss is
adopted, which means the shared parts of the teacher and
student branch (i.e. CNN encoder and FPN) tend to learn

less discriminate features to ”cheat” the distillation loss.
Meanwhile, with our Gradient Block, the situation can be
solved, and the performance of mIoU achieves remarkable
improvements by 7.52%. Moreover, we repeat the ID.3, 4
experiments five times and show the mIoU learning curves
on ScanNet [10] in Fig. 8. We can observe that this contri-
bution leads to a more precise convergence speed and higher
final accuracy (See Fig. 8(b)).

Depth-Guided Semantic Distill Loss. It is notable that
2D semantic distill has a negative impact on reconstruction
quality, by 0.4% in PSNR compared with ID. 2, which is
due to the fact that the 2D semantic distill loss can only su-
pervise the rendered features rather than 3D points within
the rays. Under this circumstance, some points in the ray
would be ”cheated” by adjusting the semantic representa-
tion to satisfy distillation loss, which would further impact
the actual weight distribution of the points in sample rays.
ID. 5 in Fig. 4 shows that LD.G yields clear improvement
by 0.37% and 0.11% in mIoU and PSNR, indicating that
a more precise, 3D-level semantic supervision can partially
improve the geometry awareness of our semantic field and
suppress the ”cheating” phenomenon.

6. Conclusion

In this paper, we propose GP-NeRF, the first unified learn-
ing framework that combines NeRF and segmentation mod-
ules to perform context-aware 3D scene perception. Un-
like previous NeRF-based approaches that render semantic
labels for each pixel individually, the proposed GP-NeRF
utilizes many contextual modeling units from the widely-
studied 2D segmentors and introduces Transformers to co-
construct radiance as well as semantic embedding fields and
facilitates the joint volumetric rendering upon both fields
for novel views. New self-distillation mechanisms are also
designed to further boost the quality of the semantic embed-
ding field. Comprehensive experiments demonstrate that
GP-NeRF achieves significant performance improvements
(sometimes > 10%) compared to existing SOTA methods.
In the future, we will follow more recent studies on visual
saliency [14, 23, 37] as well as semi-supervised learning
techniques [5, 25, 45, 51] to overcome the scenario of lack
of full annotated semantic labels [9, 19, 20, 50] in scene
understanding task.
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