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Figure 1. We propose a fitting method that leverages shape and deformation priors trained on synthetic data to recover realistic 3D garment

mesh from in-the-wild images. We produce triangulated meshes that are directly usable for animation and simulation.

Abstract

While modeling people wearing tight-fitting clothing has
made great strides in recent years, loose-fitting clothing re-
mains a challenge. We propose a method that delivers re-
alistic garment models from real-world images, regardless
of garment shape or deformation. To this end, we introduce
a fitting approach that utilizes shape and deformation pri-
ors learned from synthetic data to accurately capture gar-
ment shapes and deformations, including large ones. Not
only does our approach recover the garment geometry ac-
curately, it also yields models that can be directly used by
downstream applications such as animation and simulation.

1. Introduction

3D clothed human recovery aims to reconstruct the body

shape, pose, and clothing of many different people from im-

ages. It is key to applications such as fashion design, virtual

try-on, 3D avatars, along with virtual and augmented reality.

Recent years have seen tremendous progress in modeling

people wearing tight-fitting clothing both in terms of body

poses [6, 14, 21, 22, 25, 26, 28, 30, 38, 41, 54] and 3D shape

of the clothes [5, 9–11, 20, 31, 32, 39]. However, loose-

fitting clothing remains a challenge. Existing approaches

either rely on mesh templates with limited generality, or

produce models expressed in terms of 3D point clouds [37]

or as a single watertight mesh that tightly binds the body

and garment together [53], neither of which is straightfor-

ward to integrate into downstream applications.

In this paper, we propose a method that overcomes these

limitations and can effectively recover the shape of loose fit-

ting garments from single images. The recovered garments

can then be animated without any additional processing, as

shown in Fig. 1. Starting from the Implicit Sewing Patterns

(ISP) model [32] that represents garments in terms of a set

of individual 2D panels and 3D surfaces associated to these

panels, we introduce a deformation model that we apply to

the 3D surfaces so that they can deviate substantially from

the body shape. These deformations are conditioned on nor-

mals estimated from an input image of the target garment.

They are learned from synthetic mesh data featuring loose

clothing, where the deformations are taken to be those re-

quired to fit individual ISP 3D surfaces to the ground-truth

3D meshes.

Given the trained deformation model, we designed a

two-stage fitting process to recover the 3D garment from

in-the-wild images. First, the parameters of the pre-trained

deformation model are optimized to produce a shape that

minimizes the distance between garment outlines and seg-

mented garment regions, the differences between garment

normals and the normals estimated in the images by off-

the-shelf-algorithms [46, 53], and a physics-based loss to

promote physical plausibility of the results. Then, fine local

details are recovered by directly optimizing the vertex posi-

tions of the reconstructed mesh with the same loss. Our fit-

ting process does not require external 3D annotations, other

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1586



than the estimated normals of the target garment.

We demonstrate that our method can recover garments

that go from tight- to loose-fitting and outperforms exist-

ing approaches [9, 11, 20, 32, 39, 53] in terms of recon-

struction accuracy. Furthermore, our reconstructed meshes

are directly usable for virtual try-on or animation, un-

like [37, 53]. Our implementation and model weights

are available at https://github.com/liren2515/
GarmentRecovery.

2. Related Work
Before the advent of Deep Learning, garment shape recov-

ery from images depended mostly on user defined outlines

and shape-from-shading techniques [59]. Since then, data-

driven techniques have become dominant.

Tight-Fitting Clothing. The majority of methods devel-

oped in recent years focus on clothing that clings relatively

closely to the body. These can be classified into two main

categories.

In the first category, are methods that model garments

as surfaces that are distinct from the body surface and in-

teract with it. DeepGarment [10], MGN [5], and BCNet

[20] train neural networks on synthetic images to predict

the vertex positions of specific mesh templates. [8] and [34]

leverage normal estimation to optimize the vertex position

of the template and recover wrinkle details. Such meth-

ods are inherently limited in the range of shapes they can

handle, and those being trained on synthetic data can easily

fail when facing real images. To overcome these limita-

tions, SMPLicit [9], DIG [31], and ClothWild [39] leverage

Signed Distance Functions (SDF) to recover a wide array of

garment meshes from RGB images and the corresponding

segmentation masks. However, to represent non-watertight

garment surfaces using an SDF, one has to wrap around

them a watertight surface with a minimum thickness, which

reduces accuracy. This can be addressed by using Unsigned

Distance Functions (UDFs) instead [11, 15] but creates ro-

bustness issues: if the UDF is even slightly inaccurate, the

value of the surface is never exactly zero and holes can ap-

pear in the reconstructed models. In our experience, the

Implicit Sewing Patterns (ISP) model of [32] effectively ad-

dresses the issues of generality, accuracy, and robustness.

The garments consist of flat 2D panels whose boundary is

defined by a 2D SDF. To each panel is associated a 3D sur-

face parameterized by the 2D panel coordinates. Hence,

different articles of clothing are represented in a standard-

ized way, which allows the recovery of various garments

from single images. This is why we choose it as the basis

for our approach.

In the second category, are the many methods that repre-

sent body and garment using a single model. For example,

in [19, 57] a volumetric regression network yields a voxel

representation of 3D clothed humans given a single image.

Other works [3, 16, 45, 46] employ a pixel-aligned implicit

function that defines 3D occupancy fields or signed distance

fields for clothed humans. In [1, 2], displacement vectors

or UV maps are used to represent deviations from a SMPL

parametric body model [36]. Similarly, in [17, 18, 52, 58]

parametric body models are combined with implicit repre-

sentations to achieve robustness to pose changes. While

effective, all these methods suffer from significant limita-

tions, because they cannot separate the surface of the gar-

ment from that of the body, and they are at a disadvantage

when it comes to modeling loose garments whose motion

can be relatively independent from the body.

Loose-Fitting Clothing. There is a more limited num-

ber of methods designed to handle free-flowing garments.

Some recent works [55, 60, 61] rely on complex physics

simulation steps or feature line estimation to align the sur-

face reconstruction with the input image. However, their

dependence on garment templates limits their generality,

in the same way it did for other template-based methods

discussed above. Point-based methods that can reconstruct

generic clothes have been proposed [50, 56] to overcome

this. Unfortunately, point clouds are not straightforward

to integrate into downstream applications. As a result, the

method of [50] resorts to modified Poisson Surface Recon-

struction (PSR) to create a garment surface from the point

cloud, which can result in incorrect geometry. Another

point-based representation is introduced in [37]. While be-

ing successful at modeling and animating humans wearing

loose garments, it also relies on PSR to infer the mesh from

the point cloud, yielding a single mesh that represents body

and garment jointly. Furthermore, [37] does not explore

how this representation can be fitted to images.

ECON [53] is a method specifically designed for

clothed human recovery from images. By leveraging tech-

niques such as normal integration and shape completion, it

achieves visually appealing results for individuals wearing

loose clothing. However, as [37], ECON produces a sin-

gle watertight mesh that tightly binds the body and garment

together, precluding easy use for applications such as cloth

simulation and re-animation.

3. Method
Given an image of a clothed person and a body model ex-

tracted from it using existing techniques, our goal is to re-

cover accurate 3D models of the garments matching the im-

age. To this end, we add to the Implicit Sewing Pattern

(ISP) garment model [32], which provides us with a shape

prior for garment in its rest state, a deformation model that

allows us to recover its potentially large deformations, as

illustrated by Fig. 2. As a result, whereas the original ISP,

like most current clothes-recovery algorithms, is limited to
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Figure 2. Framework. Given an image, (1) we first estimate the normal map of the target garment and the SMPL body parameters (β, θ),
which are used to compute the body part segmentation and position maps. (2) The maximum coverage garment shape M̄ is then skinned

to closely fit to the body, yielding M. Leveraging (3) pixel-aligned image features, our deformation model (4) predicts occupancy and

position maps to correct M for large deformations. (5) The 3D garment mesh is recovered using ISP and further refined.

tight-fitting clothing, our approach can handle both tight-

and loose-fitting garments, such as skirts and open jackets.

In this section, we first describe briefly the ISP model

upon which we build our approach. We then introduce the

deformation model that underpins the main contribution of

this paper, going from tight fitting clothes to loosely fitting

and free flowing ones. Finally, we present our approach to

fitting this model to real-world images.

3.1. ISP Garment Model

ISP is a garment model inspired by the sewing patterns that

fashion designers use to represent clothes. A sewing pattern

is made of several 2D panels along with information about

how to stitch them into a complete garment. ISP implicitly

models patterns using a 2D signed distance field and a 2D

label field.

Formalization. Given the latent code z of a garment and

a point u in the 2D UV space Ω = [−1, 1]2 of a 2D panel of

that garment, ISP outputs the signed distance s to the panel

boundary and a label l as

(s, l) = IΘ(u, z) , (1)

where IΘ is a fully connected network. The zero crossing

of the SDF defines the shape of the panel, with s < 0 indi-

cating that u is within the panel and s > 0 indicating that

u is outside the panel. The stitch information is encoded

in l, where panel boundaries with the same label should be

stitched together. To transform the 2D sewing patterns into

3D surfaces, a UV parameterization function AΦ is learned

to perform the 2D-to-3D mapping

X = AΦ(u, z) , (2)

where X ∈ R
3 represents the 3D position of u. Essentially,

ISP registers each garment onto a unified 2D space Ω, and

represents it using UV maps that record 2D-to-3D mapping,

as shown in Fig. 3(b). Given the paired 2D sewing patterns

and their 3D meshes, the pattern parameterization network

IΘ and the UV parameterization network AΦ are trained by

minimizing the losses

LI = LSDF + LCE + ||z||22 , (3)

LA = LMSE + Lconsist , (4)

respectively. LSDF is the mean absolute error for the pre-

dicted SDF value s, LCE is the cross-entropy loss for the

predicted label l, LMSE is the mean squared error of the

predicted 3D position X, and Lconsist is the loss to reduce

the gap between the front and back panels. More details can

be found in [32].

Training. Training ISP requires the 2D sewing patterns

of 3D garments in a rest state, that is, draped on a T-pose

neutral body. However, patterns are absent in most large

scale garment datasets, including CLOTH3D [4]. We use

the garment flattening algorithm of [42] to generate the re-

quired 2D patterns. The garment mesh is first divided into

several pieces given predefined cutting rules. These pieces
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(a) (b) (c)

Figure 3. Cutting and flattening. (a) The front (top) and back (bottom) surfaces after cutting. (b) The flattened panels and UV maps

generated by ISP for (a). (c) The maximum-coverage UV maps and its represented 3D shape.

are then unfolded into 2D panels by minimizing an as-rigid-

as-possible [33] energy, ensuring local area preservation be-

tween the 3D and 2D parameterizations. While doing this,

we constrain the boundary vertices at places such as waist

and sleeves to have a constant value along a specific axis.

This enhances pattern consistency across the dataset. Fig.

3 illustrates this and shows the panels generated for a shirt.

We provide more details in the supplementary material.

We generate a front and a back panels as the sewing

pattern for each garment in our dataset (shirt, skirt, and

trousers). Once ISP has been trained on these, we compute

the maximum-coverage UV maps M̄ over the UV maps of

each garment for each category, as shown in Fig. 3(c). The

values of M̄ are taken to be

M̄[u, v] =

∑
i siu≤0 ·mi[u, v]∑

i siu≤0
, (5)

where mi is the UV maps of garment i, is the indicator

function, [·, ·] denotes array addressing, and siu is the SDF

value of ISP at u = (u, v). The maximum coverage map
M̄ encompasses information from all the patterns in the

dataset. It represents the smallest possible map that cov-

ers all garments in a category, with the 3D position of each

uv-point u being the average of all garments that include

u. We use it as a prototype for a garment category and to

compute an initial guess of the deformed garment given the

body pose, as discussed below.

Skinning. As in many prior work [11, 31, 32], we use

SMPL [36] to parameterize the body in terms of shape and

pose parameters (β, θ), and its extended skinning procedure

for the 3D volume around the body to initially deform the

3D shape represented as M̄. More specifically, given a 2D

point u = (u, v) in UV space Ω, we get its actual 3D po-

sition as X̄u = M̄[u, v]. We then deform it by computing

Xu = W (X(β,θ), β, θ, w(X̄u)W) , (6)

X(β,θ) = X̄u + w(X̄u)Bβ + w(X̄u)Bθ ,

where W (·) is the SMPL skinning function with skinning

weights W ∈ R
NB×24, with NB being the number of ver-

tices of the SMPL body mesh, and Bβ ∈ R
NB×3 and

Bθ ∈ R
NB×3 are the shape and pose displacements of

SMPL, respectively. The diffused weights w(·) ∈ R
NB

are computed by a neural network, which generalizes the

SMPL skinning to any point in 3D space. By repeating this

for all points in a panel, we obtain the vertex position map

M[u, v] = Xu.

3.2. Modeling Large Deformations

As shown in Fig. 2, the ISP approach described above gen-

erates a garment prototype M that closely fits the underly-

ing body. To a point u = (u, v) that belongs to a given gar-

ment panel, it associates the vertex position Xu = M[u, v]
of Eq. 6, which is usually relatively close to the body. To

model loose clothing, we now need to compute a potentially

larger displacement ΔXu to be added to Xu.

To evaluate ΔXu, we train a network D that consists

of an MLP to estimate the occupancy value and the cor-

rective displacement value, and two CNNs to extract image

features Fn and Fb from the image of normals and the seg-

mentation and vertex position images of the SMPL body,

respectively. Fig. 2 depicts this architecture. We obtain the

pixel-aligned image feature for u by computing

F (xu) = Fn ⊕ Fb(xu) , (7)

xu = P (Xu) ,

where P (·) denotes the projection into the image and ⊕
concatenation. The MLP takes as input u, its 3D position

and image features to predict the occupancy Ou ∈ {0, 1}
and the corrective displacement ΔXu. By assembling the

results of each point in the UV space, we obtain the final

occupancy maps O and the vertex position maps M̂, where

M̂[u, v] = Xu+ΔXu. In essence, O is the binarized SDF

of the garment 2D panels, which implicitly defines the gar-

ment shape and geometry in the rest state, while M̂ encodes

the deformed state for that garment. The 3D garment mesh
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can be recovered from these 2D maps with ISP, as discussed

below.

We use a single network D for the front and the back

panels, and encode the points u of the front as [u, v,+1]
and those of the back as [u, v,−1]. We learn the parameters

of D by minimizing

L =
∑

u∈Ω

||Xu+ΔXu−X̃u||2+λ
∑

u∈Ω

BE(Ou, Õu), (8)

where X̃u and Õu are the ground truth vertex positions and

occupancy values, BE(·) is the binary cross entropy, and λ
is a weighting constant.

From 2D maps to 3D mesh. The occupancy value Ou in-
dicates whether u falls within the panels of the garment. To
convert the generated 2D occupancy maps O into a 3D gar-
ment mesh in its rest shape, we need to recover an ISP latent
code z as defined in Eq. 1. To this end, we find the vector
z such that the corresponding SDF of ISP best matches the
produced occupancy maps by minimizing

z∗ = argmin
z

∑

u ∈ Ω−

R(su(z))+
∑

u ∈ Ω+

R(−su(z))+λz||z||2 , (9)

where Ω− = {u|Ou = 1,u ∈ Ω}, Ω+ = {u|Ou = 0,u ∈
Ω}, R(·) is the ReLU function, su(z) is the SDF value of

u computed by ISP, and λz is the weighting constant. With

z∗, the rest garment mesh is inferred through ISP’s mesh-

ing and sewing process. The deformed garment mesh can

be obtained by simply replacing the vertex position of the

recovered mesh with the values stored in M̂. This yields

3D garment meshes in both the rest and deformed states as

shown in the top-right of Fig. 2, which are required for the

application such as cloth simulation and can be used for fur-

ther refinement as discussed below.

3.3. Fitting the Models to Images

For practical reasons, the range of garment materials, ex-

ternal forces, and body motions present in the training data

is limited. As a result, given in-the-wild images as input,

the trained model can produce inaccurate results as shown

in Fig. 4(b). To remedy this and to leverage the deforma-

tion prior that the network D captures, we refine the result

by minimizing a loss function with respect to the pretrained

deformation parameters of D as in [13, 21, 51]. L is de-

signed to promote a good match between the garment mesh

and image observations. We take it to be

L = λCLCD + λnLnormal + λpLphysics , (10)

LCD = d(xf
c , xIn) , (11)

Lnormal =
∑

i∈f

1− cos(ni, In(x
i
c)) , (12)

Lphysics = Lstrain + Lbend + Lgravity + Lcol , (13)

(c) (d)

(a) (b)

Figure 4. Fitting results. Given (a) the normal estimation of an

in-the-wild image, (b) is the inference result with ISP recovered

geometry. (c) is obtained by optimizing the parameters of the pre-

trained deformation model. Further refinement of the mesh vertex

positions yields (d).

where xf
c is the 2D projection of the centers of visible faces

f after mesh rasterization, xIn denotes the coordinates of

foreground pixels, ni is the normal of face i, In(x
i
c) is the

normal image values at xi
c, and λC , λn and λp are the

balancing scalars. d(·) and cos(·) are the functions mea-

suring the 2D Chamfer Distance and the cosine similar-

ity, respectively. Lphysics is a physics-based loss derived

from [40, 48], which computes the membrane strain en-

ergy Lstrain caused by the deformation, the bending energy

Lbend resulting from the folding of adjacent faces, the grav-

itational potential energy Lgravity and the penalty for body-

garment collision Lcol. Minimizing LCD induces an exter-

nal force of stretching or compression on the garment mesh

to align its 2D projection with the given image, while min-

imizing Lphysics ensures that the mesh exhibits physically

plausible deformation adhering to the shape constraints of

the rest-state mesh recovered by ISP.

Minimizing the loss L with respect to the deformation

parameters yields a mesh whose overall shape matches the

input image, as illustrated in Fig. 4(c). However, since neu-

ral networks tend to learn low-frequency functions [43], the

result might be too smooth. To recover fine surface details,

we perform a refinement step by minimizing L directly with

respect to the coordinates of the garment mesh vertices.

This generates realistic local details, such as wrinkles on

the surface, as shown in Fig. 4(d).

4. Experiments
In short, our method begins by inferring the shape and the

deformation of the garment in terms of the occupancy and

position maps. Leveraging the shape prior of ISP, we then
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recover the garment geometry from the occupancy maps

and deform it using the position maps. Next, we refine

the initial deformed mesh to better align with image obser-

vations by fine-tuning the pre-trained network D that cap-

tures the deformation prior. Finally, we recover fine details

through vertex-level optimization of the garment mesh. In

this section, we demonstrate the effectiveness of this pro-

cess and compare it to that of other state-of-the-art methods.

4.1. Implementation Details

Following the implementation of [32], both the pattern

parameterization model IΘ and the UV parameterization

model AΦ of ISP have two separate MLPs for the front and

back panels. Each MLP has 7 layers with Softplus activa-

tions. The dimension of latent code z is 32. The skinning

weight model w is a 9-layer MLP with leaky ReLU activa-

tions, whose output is normalized by a final Softmax layer.

IΘ and AΦ are trained jointly for 9000 iterations with a

batch size of 50. w is trained with the same parameters as

[32]. For the image feature extraction, we use two separate

ConvNeXt [35] networks to extract multi-scale garment and

body features of sizes 96, 192, 384, 768, which are con-

catenated as the final features. The point UV coordinates

u, 3D position Xu, and image features F (xu) are projected

separately to 384 dimensions by three linear layers, which

are then concatenated as the input of the MLP of the de-

formation model. The MLP of the deformation model has

10 layers with a skip connection from the input layer to the

middle, and uses Gaussian functions as the activation layer

following [44]. The CNNs and MLP of the deformation

model are trained jointly for 40 epochs with the Adam op-

timizer [23] and a learning rate of 10−4. For real images,

we use [53] and [12] to obtain their normal and SMPL body

parameter estimations, respectively. The garment segmen-

tation masks are generated by leveraging the segmentation

of SAM [24] and the semantic labels of [29].

4.2. Dataset, Evaluation Metrics, and Baseline

Our models are trained on CLOTH3D [4], which is a syn-

thetic dataset with motion sequences of 3D clothed human.

It contains garment in the rest state, and deformed states

caused by the motion of underlying body. For each gar-

ment, it has a single simulated sequence up to 10 seconds.

It covers a large variety of garment in different shapes, types

and topologies. For the training of ISP, we randomly select

400 shirts, 200 skirts and 200 pairs of trousers, and generate

their sewing patterns by the method described in Sec. 3.1.

The deformation model is trained on the corresponding sim-

ulated sequences. For each frame, we render 11 normal im-

ages for the garment mesh with random rotations around the

Y-axis, which produces 40K, 40K and 20K training images

for shirt, skirt and trousers respectively. During training, we

augment the data with image flipping and rotation.

To evaluate the garment reconstruction quality, we use

the Chamfer Distance (CD) between the ground truth and

the recovered garment mesh, and Intersection over Union

(IoU) between the ground truth mask and the rendered mask

of reconstructed garment mesh.

We compare our method against state-of-the-art methods

BCNet [20], SMPLicit [9], ClothWild [39], DrapeNet [11]

and ISP [32]. SMPLicit, DrapeNet and ISP use the gar-

ment segmentation mask for reconstruction, while BCNet

and ClothWild take the RGB images as input.

4.3. Comparison with State-of-the-Art Methods

CD (×103) ↓ Skirt Shirt Trousers

SMPLicit 8.05 3.49 0.81

DrapeNet n/a 1.54 0.84

ISP 7.26 2.02 0.91

Ours 2.87 0.44 0.28

Ours-GT 1.67 0.31 0.23

IoU ↑ Skirt Shirt Trousers

SMPLicit 0.657 0.527 0.782

DrapeNet n/a 0.715 0.845

ISP 0.709 0.665 0.781

Ours 0.940 0.939 0.946

Ours-GT 0.953 0.942 0.954

Table 1. Quantitative comparisons. Our method outperforms

SMPLicit, DrapeNet, and ISP in terms of CD and IoU on all three

garment categories, as shown in the second-to-last row of both ta-

bles (Ours). These results were obtained using normals estimated

from the images using [53]. In the last row (Ours-GT), we provide

the results we obtained using ground-truth normals instead.

Quantitative Results. Due to the absence of publicly

available real dataset for evaluating garment reconstruction,

we utilize synthetic data consisting of 30 unseen shirts,

30 unseen skirts, and 30 pairs of unseen trousers from

CLOTH3D for quantitative evaluation. We compare our

method with SMPLicit, DrapeNet, and ISP, which recover

garment meshes from segmentation masks. The segmen-

tation masks required by the baselines are rendered from

the ground truth mesh data, while the normal images re-

quired by our method are estimated with [53]. As shown in

Tab. 1, our approach significantly outperforms the baselines

in terms of Chamfer Distance (CD) and Intersection over

Union (IoU) across all garment categories.

For comparison purposes, we re-ran our algorithm using

the ground-truth normals and report the results in the last

row of Tab. 1. As expected, this leads to an improvement

in reconstruction accuracy, but the increase is only modest.

This highlights the robustness of our approach to the slight

inaccuracies that can be expected from a normal-estimation

algorithm.

Qualitative Results. Fig. 5 shows the qualitative com-

parison for the results reconstructed from in-the-wild im-

ages. Since BCNet is trained only on synthetic RGB data,

it is not able to predict accurate body and garment results.

Both SMPLicit and ClothWild generate unrealistic water-

tight meshes that do not accurately represent real garments.
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Ours (Front and Side Views) BCNet SMPLicit ClothWild DrapeNet ISP

Figure 5. Comparison against SOTA methods. From left to right, we show the input image and the 3D garment meshes recovered by

our method and SOTA methods: BCNet, SMPLicit, ClothWild, DrapeNet, ISP. (Since skirt is unavailable for DrapeNet, a random pair of

trousers is put on its result in the second row.)

CD (×103) ↓ GT Est.

(-D∗,-v∗) 2.04 3.58

(-D∗,+v∗) 1.80 3.39

(+D∗,-v∗) 1.75 2.93

(+D∗,+v∗) 1.67 2.87

IoU ↑ GT Est.

(-D∗,-v∗) 0.848 0.751

(-D∗,+v∗) 0.947 0.904

(+D∗,-v∗) 0.941 0.923

(+D∗,+v∗) 0.953 0.940

Table 2. Ablation study. GT and Est. mean using ground-truth

and estimated normal images as input, respectively. +/-D∗ denote

with/without the finetuning of the deformation model. +/-v∗ de-

note with/without the optimization of vertex positions.

While DrapeNet and ISP are able to recover open surfaces

for garments, their results remain closely adhered to the

body, similar to SMPLicit and ClothWild. In contrast, our

method can faithfully recover garment mesh from input im-

ages, as clearly observed in the depiction of the open jacket

and the flowing long skirt that stand away from the body.

4.4. Ablation Study

Table 2 presents the evaluation results of our method with

and without fitting on the test set of skirts. The results

of row 1, 3 and 4 indicate that optimizing the parameters

of the pretrained deformation network (+D∗,-v∗) improves

the quality of the raw inference results, and optimizing the

vertex positions (+D∗,+v∗) further enhances the outcome,

(b)(a)

Figure 6. Fitting strategy comparison between (a) our fitting

method and (b) only vertex optimization.

yielding the lowest CD and highest IoU.

However, as demonstrated in the second row, directly op-

timizing the vertex positions on the raw inference results

without optimizing the deformation model (-D∗,+v∗) is not

as effective. The deformation model encapsulates a con-

tinuous deformation field. When its weights are optimized

based on partial observations, the entire field undergoes

modification, thereby influencing all mesh vertices globally.

On the contrary, a direct vertex optimization with partial ob-

servations predominantly affects the mesh vertices locally.

While this can capture localized details like wrinkles, it

struggles to resolve discrepancies in the overall shape. Fig.

6 displays the results of our methods and an ablation with
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Figure 7. Recovering from in-the-wild images. Our method is able to recover realistic meshes for garments with diverse shapes and

deformations.

vertex optimization only. Unsurprisingly, the latter fails at

recovering the correct shape and produces implausible de-

formation on the mesh surface.

4.5. More Results

Fig. 7 shows a collection of results reconstructed by our

method from in-the-wild images. Our method can produce

realistic 3D meshes with fine details across a wide range of

garment types, from tight-fitting attire to more relaxed and

flowing outfits.

5. Conclusion
We have presented a novel approach to recovering realistic

3D garment meshes from in-the-wild images featuring loose

fitting clothing. It relies on a fitting process that imposes

shape and deformation priors learned on synthetic data to

accurately capture garment shape and deformations. In fu-

ture work, we will extend our approach to modeling defor-

mations over time from video sequences while enforcing

temporal consistency of the reconstructions.
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