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Abstract

The pre-training architectures of large language models
encompass various types, including autoencoding models,
autoregressive models, and encoder-decoder models. We
posit that any modality can potentially benefit from a large
language model, as long as it undergoes vector quantization
to become discrete tokens. Inspired by the General Lan-
guage Model, we propose a General Point Model (GPM)
that seamlessly integrates autoencoding and autoregressive
tasks in a point cloud transformer. This model is versatile,
allowing fine-tuning for downstream point cloud represen-
tation tasks, as well as unconditional and conditional gen-
eration tasks. GPM enhances masked prediction in autoen-
coding through various forms of mask padding tasks, lead-
ing to improved performance in point cloud understanding.
Additionally, GPM demonstrates highly competitive results
in unconditional point cloud generation tasks, even exhibit-
ing the potential for conditional generation tasks by modify-
ing the input’s conditional information. Compared to mod-
els like Point-BERT, MaskPoint, and PointMAE, our GPM
achieves superior performance in point cloud understand-
ing tasks. Furthermore, the integration of autoregressive
and autoencoding within the same transformer underscores
its versatility across different downstream tasks. Codes are
available at https://github.com/gentlefress/GPM

1. Introduction

In recent years, the natural language processing (NLP) [4,
19,20, 29, 40] and computer vision (CV) [3, 7,9, 49, 57, 66]
realms have witnessed a proliferation of transformer-based
pretrained models. Their primary advantage lies in the in-
clusion of massive parameters and data in the training pro-
cess, overcoming inductive biases introduced by traditional
Convolutional Neural Networks [21]. Point clouds serve as
fundamental data structures in fields like autonomous driv-
ing and robotics, thus emphasizing the escalating signifi-
cance of tasks related to point cloud representation learn-
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Figure 1. Comparison of pre-training frameworks between GPM
and Point-BERT [63]. Point-BERT (left) conducts the masked
prediction task in an autoencoding manner, while GPM (right)
combines both autoencoding and autoregressive tasks, performing
tasks for both masked prediction and masked region blank filling.

ing and generation. However, the realm of pretrained
point cloud models based on transformers remains rela-
tively scarce. Existing transformer-based point cloud mod-
els [13, 65] encounter inevitable inductive biases due to lo-
cal feature aggregation [13], neighbor embedding [65], and
the scarcity of annotated data [9]. These biases deviate from
the mainstream of standard Transformers. Self-supervised
models [12, 15, 20, 25, 26, 39, 40, 61] have emerged as the
dominant methodology. They excel in learning high-quality
representations across modalities without extensive labeled
data, models like GPT [39] even dominate in text genera-
tion. In this end, there is a compelling need to design a
transformer-based point cloud model that minimizes induc-
tive biases, learns superior point cloud representations from
limited data, and simultaneously possesses the capacities
for conditional and unconditional point cloud generation.
The transformer-based BERT [20] has marked a significant
milestone in the field of natural language processing (NLP).
Its pre-training phase, involving masked prediction tasks,
grants the model the capacity to learn language represen-
tations, showcasing the prowess of autoencoding language
models. Given BERT’s proficiency in learning language
representations, the question arises: can we extend BERT’s
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capabilities to the realm of point clouds? However, since
point clouds lack a direct analog to the concept of words’
in language, constructing a discrete vocabulary for point
clouds, as done in language models, is infeasible. Point
clouds are composed of individual points, and considering
each point as a token would lead to a quadratic increase in
computational cost as the number of tokens grows. Further-
more, each point in a point cloud contains limited semantic
information, necessitating the maximization of geometric
information utilization. Inspired by Point-BERT [63], we
embarked on a journey to vector quantization, transforming
point clouds into discrete tokens. Through the application
of the farthest point sampling (FPS) [36] algorithm, we seg-
ment the point cloud into multiple patches, each patch en-
capsulates plentiful geometric information, akin to a unit.
By constructing a vocabulary specific to the point cloud do-
main, we obtain labels for each unit, discretizing the entire
point cloud. This paves the way for the completion of the
autoencoding model’s masked prediction tasks in the point
cloud domain.

Transformer-based GPT [39] has dominated the field of
text generation, with its core being an autoregressive lan-
guage model, predicting the next token based on preceding
tokens. In recent years, researchers have progressively ex-
tended this paradigm into the realm of images [7, 41, 42],
ushering in a new era of image generation. In this endeavor,
we bring this paradigm to the domain of point clouds, aim-
ing to empower it for autoregressive conditional and uncon-
ditional point cloud generation tasks. After discretization,
each patch of the point cloud possesses distinct geometric
information, enabling it to excel in autoregressive tasks.

While these pre-training frameworks can be adapted to
the point cloud domain, they lack the flexibility to satisfy all
point cloud tasks. Therefore, we aim to integrate these two
pre-training frameworks from the NLP domain and apply
them to the point cloud domain, depicted in Figure 1.

In this work, we introduce a novel approach termed
General Point Model (GPM) with autoencoding and autore-
gressive, which integrates point cloud representation learn-
ing and point cloud generation (both conditional and un-
conditional) within the same transformer framework. Sim-
ilar to Point-BERT, we employ a point cloud tokenizer
designed through dVAE-based point cloud reconstruction,
where the point cloud can be discretely labeled based on
the learned vocabulary. Additionally, we utilize the Masked
Point Modeling (MPM) task. This involves partitioning
the point cloud into distinct patches and randomly mask-
ing some adjacent patches. This aims to predict the masked
portion, with the goal of learning geometric information be-
tween neighboring blocks and capturing meaningful geo-
metric features for understanding the point cloud.

Our primary contributions can be summarized as fol-
lows:

* We introduce autoencoding + autoregressive as a novel
point cloud transformer paradigm, unifying tasks in point
cloud understanding and generation.

* We partition the input into two segments, the first part pre-
dicts masked points (autoencoding), the second part gen-
erates masked points (autoregressive), enhancing compre-
hension and generation.

* Our approach demonstrates notable competitiveness
across various point cloud understanding tasks and un-
conditional generation tasks. Moreover, it exhibits the po-
tential for conditional generation, such as text- or image-
conditioned point clouds generation.

2. Related Work
2.1. Self-supervised Learning

Self-supervised learning (SSL) has garnered significant at-
tention owing to the substantial labor required for acquir-
ing annotated data in large quantities. SSL enables models
to learn feature representations from unlabeled data, adapt-
ing to downstream tasks. The core of SSL lies in the de-
sign of proxy tasks to replace traditional classification tasks,
thereby learning feature representations. ELMo [44] em-
ploys bidirectional LSTMs [16] and generates subsequent
words from left to right given the representation of preced-
ing content. ViP [25] employs a dynamically updated mo-
mentum encoder for contrastive learning and designs a text
swapping task to enhance the model’s sentence representa-
tion capability. In the computer vision domain, Image-GPT
[7] trains a sequence transformer to autoregressively predict
pixels, showing promising representation learning capabili-
ties without incorporating specific knowledge about the 2D
input structure after pretraining. Furthermore, SSL in the
field of point clouds has garnered significant attention. ACT
[8] employs cross-modal autoencoders as teacher models
to acquire knowledge from other modalities. The genera-
tive approaches [1, 22, 33, 45, 63, 64] are the most perti-
nent research to our work. Point-MAE [34] extends MAE
by randomly masking point patches and reconstructing the
masked regions. Point-M2AE [64] further utilizes a hierar-
chical transformer architecture and designs corresponding
masking strategies. However, mask-based point modeling
methods still face the issue of shape leakage, limiting their
effective generalization to downstream tasks. In this paper,
we leverage autoregressive pretraining on point clouds and
address the unique challenges associated with point cloud
attributes. Our concise design avoids position information
leakage, thereby enhancing generalization capabilities.

2.2. General Language Model

In the field of natural language processing, GLM [10] inte-
grates both autoregressive and autoencoding methods. This
enables it to perform tasks related to sentence representa-
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Figure 2. The framework of our GPM. We divide the entire pipeline into two stages: 1) The input point cloud is divided into several sub-
clouds. Then, we utilize Mini-PointNet [35] to obtain a sequence of point embeddings. These embeddings are transformed into a sequence
of discrete point tokens using a pre-trained tokenizer; 2) During pre-training, for PartA, certain portions of the masked embeddings
are masked and replaced with [M]. They are predicted in an autoencoding manner. For PartB, masks for PartA are generated in an

autoregressive manner.

tion as well as conditioned and unconditioned generation
through fine-tuning. To the best of our knowledge, we
are the first to integrate autoregressive and autoencoding
techniques on a single transformer in the domain of point
clouds. In downstream tasks, we have the potential to fine-
tune point cloud representations and perform unconditioned
generation even in zero-shot scenarios, with the possibility
of fine-tuning towards conditioned generation.

3. Methods

In this study, we endeavor to seamlessly integrate BERT-
style and GPT-style pre-trained strategies, extending their
applicability to point cloud transformers. Following the
Point-BERT([63], our training process unfolds in two dis-
tinctive stages. Firstly, we embark on training a specialized
Tokenizer, a critical step towards acquiring discrete point
labels for each input point cloud. Concurrently, a dedi-
cated discrete VAE (dVAE) is employed to masterfully re-
construct the discrete point cloud. The subsequent stage in-
volves the splicing of two sequences of point cloud embed-
dings, partA for autoencoding and partB for autoregressive.
The overall idea of our approach is illustrated in Figure 2.

3.1. Stage 1: Discrete Varitional Autoencoder Pre-
training

Point Cloud Partitioning. We posit that discrete tokens
derived from points encapsulate crucial geometric infor-
mation, allowing for a discrete representation of any point
cloud. However, a naive strategy of assigning one token
to each point in a point-wise reconstruction task poses a
formidable computational challenge. This arises from the
quadratic complexity of self-attention within transformers.

Building upon the foundations laid by Point-BERT [63] and
ViT[9], we adopt a strategy of partitioning each point cloud
into distinct patches, each serving as a single token. Specif-
ically, for an input point cloud p € RV >3, we initiate the
process by extracting m center points C,, € R™*3 from the
point cloud p through farthest point sampling (FPS). Subse-
quently, we employ the k-nearest neighbor (kNN) algorithm
to identify the k nearest neighboring points for every center
point. This forms m localized patches or sub-clouds de-
noted as P, € R™***3_ To ensure these patches are free
of bias, we normalize them by subtracting their respective
center coordinates. This operation effectively disentangles
the structural patterns from the spatial coordinates inherent
to each local patch.

Point Cloud Embedding. Follwing Point-BERT [63], we
employ a mini-PointNet [35] to embed the point patches as
a sequence of point embedding {h;}™ . For the further
vector quantization, we pre-define a learnable codebook
V= {(s, Zs)}gés7 where d is the dimension of codes, S
is the size of codebook and s is the index of embedding in
V. We adopt DGCNN [53] as tokenizer Q : h; — z;, which
maps {h;}™, into {z;}7, in V. However, given the non-
differentiable nature of the discrete tokens, applying repa-
rameterization gradients for dVAE training becomes un-
feasible. As suggested in [41], we resort to the Gumbel-
softmax relaxation technique [18], coupled with a uniform
prior, as a workaround during the dVAE training process.

Point Cloud Reconstruction. Given {z;}7>, as input, the
decoder D(+) is tasked with the reconstruction of the entire
point cloud. Inspired by [63], to effectively capture inter-
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point relationships and bolster the representational capacity
of discrete point tokens across various local structures, we
adopt the DGCNN [53]-FoldingNet [60] architecture to re-
construct the whole point cloud.

The overarching reconstruction objective can be denoted
as E.o(z|n) log D(p|z). Inspired by Point-BERT [63], the
entire reconstruction process can be conceptualized as the
maximization of the Evidence Lower Bound (ELB) for the
log-likelihood, denoted as D(p|p):

S log D(pulp) 23" (E., ~ Q(zlpi)flos Dipilz:)]

— KL[Q(z|p;), D(z[p;)]-
(D

Simultaneously, we account for an intuitive reconstruction
loss, leveraging the {1 Chamfer Distance [11] to supervise
prediction point cloud with the ground-truth point cloud:
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where P denotes the predicted point clouds and G is the
ground truth point clouds. Additional, we follow [41], op-
timize the KL-divergence Lk between the generated point
cloud distribution and a uniform distribution:

Lavag = Lcp + Lk (3)
3.2. Stage 2: GPM Pre-training

To ensure GPM excel in both point cloud representation
learning and point cloud generation task, we formulate a
training framework that amalgamates autoencoding and au-
toregressive techniques motivated by [10].

Autoencoding Masked Sequence Generation. We em-
ploy the standard Transformers [51], which encompass
multi-headed self-attention layers and FFN blocks. Initially,
we partition each input point cloud into m local patches
with designated center points. Subsequently, these local
patches undergo discretization into a code sequence { f; }7*,
via our pre-trained dVAE in stage 1. Formally, the input em-
beddings {e; }!™, are constructed as a combination of point
embeddings { f; }!"; and positional embeddings {pos; } ™ ;.
Adhering to language model [20], a class token [CLS] is
appended to the input sequences, rendering the transformer
input sequence as I = {[CLS], %, ¢9, ..., e }.

Drawing inspiration from [63], we initiate by selecting a
central point C; alongside its corresponding sub-cloud P;,
integrate it with m neighboring sub-clouds as a coherent
local region. Within this region, we apply a masking opera-
tion to obscure all local patches, generating what we refer to
as the “masked point cloud”. Specifically, we substitute all
the masked point embeddings with a universally learnable

pre-defined mask embeddings [M]. We mark the masked
position as M = {1, ..., b}, and the final input embeddings
EM = {e;yi ¢ M} U{M] + pos;,i € M} are fed into
the transformer.

The objective of our Masked Point Modeling (MPM)
task is to deduce the geometric arrangement of absent por-
tions and reconstruct point tokens aligned with the masked
positions using the available information. Geometric infor-
mation refers to the relative positions and morphological
attributes of points within a localized region. These cru-
cial geometric details provide vital cues for understanding
and processing the shape and structure of the local region,
playing a pivotal role in delving deep into the intricacies of
point cloud data. Formally, the pre-training objective can be
expressed as maximizing the log-likelihood of the point to-
kens e; conditioned on the masked input embeddings EM:

max Z E { Z log P(ei|EM)} ; “)

EeW ieM

where W is the set of all input embeddings. Similar to
[63], we also adopt Point Patch Mixing and contrastive
learning to help the model to better learn high-level se-
mantics. Point Patch Mixing involves mixing sub-clouds
without complex alignment techniques. However, training
solely with masked precition has limitations in understand-
ing high-level semantics. To overcome this, we incorpo-
rate contrastive learning to enhance semantic understand-
ing. Assuming the masking ratio is 3, the loss function is
defined as:

exp(qky/7) -8 exp(qka/T)
>ito explgks) e * YK explahs)

where ¢ is the feature of a mixed sample that comes from
two other samples, whose features are kAl and kAz. k; are
extracted by the momentum feature encoder, 7 is the tem-
perature and K is the size of memory bank.

—pBlog )

Autoregressive Sequence Generation. While Point-
BERT models the relationship between unmasked and
masked regions using the Masked Point Modeling (MPM)
task, it does not adequately model the interactions within
masked regions. Furthermore, our aim extends beyond ac-
quiring high-quality point cloud representations; we also
aspire to proficiently execute point cloud generation tasks.
Hence, for the latter segment, PartB, we engage in autore-
gressive mask generation tasks to enhance the MPM task.
In the case of PartB, the mask operation is ignored.
Our focus lies in acquiring the generated tokens from the
masked positions of PartA. We take the initial n — 1 tokens
from PartA, appending the start token [S] at its forefront to
get the PartB E® = {[S],e1, ..., e,_1}. Following the au-
toregressive approach, the prediction of the next token relies
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on the preceding token:
mgme{; log Py (e;|PartA, e<;, [S]) |- (6)

Although no masking operation is performed on PartB,
since the mask positions of PartA are multiple consecu-
tive sub-clouds instead of a single one, in PartB we are
also equivalent to autoregressive generation of a continuous
mask span. We extract the generated tokens from PartB,
corresponding to the masked positions in PartA, and com-
pare them with the discrete tokens produced by the Tok-
enizer:

Lar = CrossEntropy(e;, jem, argmaxQ(h); ;o ng)- (7)

In this way, it allows our model to acquire proficiency in
an autoencoding bidirectional encoding scheme for PartA,
and an autoregressive unidirectional encoder for PartB.

3.3. Multi-task Pretraining

The masking of 15% of tokens in BERT is tailored for
downstream natural language understanding tasks, whereas
Point-BERT masks 25% ~ 45% to acquire enhanced point
cloud representations. Our GPM focus on both point cloud
representation learning and point cloud generation, we con-
catenate PartA and PartB as input to the transformer, aim-
ing to simultaneously perform both autoencoding and au-
toregressive tasks. Therefore, we need to establish specific
attention masks to facilitate the interaction of information
between these two segments.

Motivated by [10], the tokens in PartA can participate in
MLM task in PartA and autoregressive generation in PartB.
PartB tokens can not be observed by PartA, but those an-
tecedents. PartA is treated as the conditioning for autore-
gressive generation in PartB, akin to prefix tuning [23] in
NLP. The implement of GPM multi-task pretraining is de-
picted in Figure 3.

The tokens output by the pretrained tokenizer Q(-) are
regarded as labels. PartA conducts a masked prediction task
in an autoencoding manner, and the prediction loss between
the predicted masked portion and the labels is computed as
follows:

L 4 = CrossEntropy(e; jem, argmaxQ(h)j’jeM). (8)

Although Equation 7 and 8 exhibit identical formal struc-
tures. However, one entails mask prediction through au-
toencoding, while the other involves mask generation in an
autoregressive way, indicating a fundamental distinction be-
tween the two approaches.

4. Experiments

In this section, we commence by outlining the configura-
tions of our pretraining scheme. Subsequently, we pro-
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Figure 3. Self-attention mask. The regions in grey are masked.
Tokens in PartA can attend to themselves, but not to PartB. Tokens
in PartB can attend to PartA and their antecedents in PartB.

ceed to assess the proposed model through various down-
stream tasks, encompassing object classification, partial
segmentation, few-shot learning, transfer learning (to val-
idate the model’s representation learning capabilities), and
point cloud generation (to validate its generative capabili-
ties). Additionally, we conduct ablation studies on GPM.

4.1. Pre-training Setups and Implementation

Pre-training Data. Following the dataset configuration
similar to Point-BERT [63], we employ ShapeNet [5] as
our pretraining dataset, encompassing over 50,000 unique
3D models spanning 55 common object categories. From
each 3D model, we sample 1024 points, dividing them into
64 point patches (sub-clouds) and each sub-cloud contains
32 points. Utilizing a lightweight PointNet [35] with two
MLP layers, we project each sub-cloud into a 64-point em-
bedding, serving as input for both dVAE and Transformer
[51].

dVAE Pretraining Setups. The purpose of pretraining
the dVAE is to acquire a high-quality tokenizer, enabling the
reconstruction of discretized features back into the original
point cloud to the fullest extent. Our dVAE is composed of
a tokenizer and a decoder. To be specific, the tokenizer con-
sists of a 4-layer DGCNN [53], while the decoder encom-
passes a 4-layer DGCNN followed by a FoldingNet [60].
Additionally, the FoldingLayer establishes a connection be-
tween a 2D grid and the input, ultimately generating a 3D
point cloud.

During the training of dVAE [41], we set the number of
words in the codebook N to 8192. We employ the common
[1-style Chamfer Distance loss in the reconstruction pro-
cess. Due to the small numerical value of this /1 loss, the
weight of the KL loss in Equation 1 must be smaller than
that in image tasks. In the initial 10,000 steps of training,
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the weight of the KL loss is kept at 0 and gradually raised to
0.1 in the subsequent 100,000 steps. Our learning rate is set
to 0.0005, and follows a cosine annealing schedule span-
ning 60,000 steps. Consistent with prior works [41] and
Point-BERT [63], we decay the temperature in the Gumble-
softmax function from 1 to 0.0625 over 100,000 steps. The
training of dVAE encompasses a total of 150,000 steps, with
a batch size of 64. It’s worth noting that our dVAE’s net-
work architecture closely mirrors that of Point-BERT.

GPM Pretraining Setups. In our experiments, we adhere
to the standard Transformer architecture [9], which consists
of a stack of Transformer blocks [51], each composed of
multi-head self-attention layers and feed-forward networks.
LayerNorm is applied in both layers. We set the depth of
our Transformer to 12, feature dimension to 384, and the
number of heads to 6. A random depth of 0.1 [17] is applied
in our Transformer encoder. During GPM pretraining, the
weights of the Tokenizer learned by dVAE are kept fixed.
Input point embeddings from 25% ~ 45% are randomly
masked, and the model is trained to infer the expected point
labels at these masked positions. Unlike Point-BERT [63],
which does not have a generation task during pretraining,
we incorporate both autoregressive and autoencoding tasks
in our work. Thus, an attention mask is necessary, as illus-
trated in Figure 3. For MoCo, we set the same configuration
as [63]. More Details can be found in the supplementary 6.1
and 6.2.

4.2. Downstream Tasks
4.2.1 Point Cloud Representation Evaluation

Object classification on ModelNet4). We evaluate our
pre-trained model on the ModelNet40 dataset [55], com-
prising 12,311 clean 3D CAD models spanning 40 cate-
gories. Following the Point-BERT [63] setups, we employ
a two-layer MLP with a dropout rate of 0.5 as the classi-
fication head for the task. We optimize the model using
AdamW with a weight decay of 0.05 and a learning rate of
0.0005, while employing a batch size of 32 and a cosine
annealing schedule. We conduct comparisons with various
Transformer-based models with identical Point-BERT set-
tings, denoting [ST] for the standard Transformer architec-
ture and [T] for Transformer models with specific designs
or inductive biases. The results in Table 1 demonstrate that
our model not only outperforms Point-BERT in classifica-
tion metrics on this dataset but also exhibits autoregressive
generation capabilities.

Object classification on ScanObjectNN. The practical
applicability of our model on real datasets serves as a cru-
cial metric. Therefore, the pre-trained models are trans-
ferred to the ScanObjectNN dataset [50], which comprises

Methods number of points  Acc
Supervised Learning
PointNet[35] 1k 89.2
SO-Net[22] 1k 92.5
PointNet++ [36] 1k 90.5
PointCNN[24] 1k 92.2
DGCNN[53] 1k 92.9
MVTN[14] 1k 93.8
RSCNN [43] 1k 92.9
GBNet[38] 1k 93.8
PointMLP[32] 1k 94.5
DensePoint[28] 1k 92.8
PointNeXt[37] 1k 94.0
P2P-RN101[54] 1k 93.1
P2P-HorNet[54] 1k 94.0
KPConv[48] ~6.8k 92.9
Self-Supervised Representation Learning
[TJPCT [65] 1k 93.2
[T]PointTransformer [13] - 93.7
[STINPCT [13] 1k 91.0
[ST|Transformer[51] 1k 91.4
[ST]Transformer-OcCo[51] 1k 92.1
[ST|Point-BERT[63] 1k 93.2
[ST]MaskPoint[27] 1k 93.8
[ST]Point-MAE[34] 1k 93.8
[ST|GPM 1k 94.0
Methods with Cross-modal Information and Teacher Models
ACT[8] 1k 93.7
[ST|Transformer[51] 4k 912
[ST]Transformer-OcCol[51] 4k 92.2
[ST]Point-BERT[63] 4k 93.4
[ST|GPM 4k 93.1
[ST]Point-BERT[63] 8k 93.8
[ST]MaskPoint[27] 8k -
[ST|Point-MAE[34] 8k 94.0
[ST|GPM 8k 94.3

Table 1. Classification results on ModelNet40. All results are ex-
pressed as percentages accuracy.

approximately 15,000 objects extracted from real indoor
scans, encompassing 2902 point clouds from 15 categories.
This dataset presents a greater challenge as it involves sam-
pling from real-world scans with backgrounds and occlu-
sions. We conducted experiments on three main variants,
namely OBJ-BG, OBJ-ONLY, and PB-T50-RS, in line with
prior work. The experimental results are summarized in Ta-
ble 2. It is observed that GPM exhibits an improvement of
approximately 2.77%, 1.88%, and 1.73% over the regular
Point-BERT across the three variants.

Few-shot learning. To demonstrate the ability to acquire
knowledge for new tasks with limited training data, we eval-
uate our model under the setting of few-shot learning, fol-
lowing the methodology of previous work [47, 63]. In the
typical *W-way S-shot’ setup, we initially randomly select
W classes and then sample (S+20) objects for each class
[46]. The model is trained on W x § samples (support
set) and evaluated on the remaining 20W samples (query
set). We conduct 10 independent experiments for each set-
ting and report the average performance and standard devi-
ation across the 10 runs. As shown in Table 3, our approach
outperforms other methods in all tests, achieving absolute
improvements of 0.4%, 0.4%, and 0.6% over Point-BERT.
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Methods OBJ-BG OBJ-ONLY PB-T50-RS
Supervised Learning
PointNet[35] 733 79.2 68.0
SpiderCNNI[58] 77.1 79.5 73.7
PointNet++ [36] 823 84.3 719
PointCNN[24] 86.1 85.5 78.5
DGCNN[53] 82.8 86.2 78.1
MVTNI14] 92.6 92.3 82.8
BGA-DGCNN([50] - - 79.7
BGA-PN++ [50] - - 80.2
GBNet[38] - - 81.0
PointMLP[32] - - 854
PointNeXt[37] - - 87.7
P2P-RN101[54] - - 87.4
P2P-HorNet[54] - - 89.3
Self-Supervised Representation Learning

Transformer[51] 79.86 80.55 77.24
Transformer-OcCo[51] 84.85 85.54 78.79
Point-BERT[63] 87.43 88.12 83.07
MaskPoint[27] 89.3 83.1 84.3
Point-MAE[34] 90.0 88.2 85.2
GPM 90.2 90.0 84.8

Table 2. Classification results on ScanObjectNN. All results are
expressed as percentages accuracy.

5-way 10-way

Methods
10-shot 20-shot 10-shot 20-shot

Supervised Learning
DGCNN-rand [53]
OcCo [52]

316 £28 408+46 199421 169+15
90.6+28 925+19 829+13 865+22

Self-Supervised Representation Learning

Point-BERT [63] 946+3.1 963+£27 91.0£54 927451
MaskPoint [27] 95.04+3.7 972417 914440 934435
Piont-MAE [34] 963+25 97.8+18 926+41 950+3.0

Piont-M2AE [64] 968+ 1.8 983414 923+45 950+3.0
GPM 97.24+2.6 98.7+22 929+42 950+3.0

Table 3. The results of few-shot classification on the ModelNet40
dataset. For each experimental setting, we conduct 10 independent
experiments and report the average accuracy (%) along with its
standard deviation.

Part segmentation. We evaluate the representation learn-
ing capability of our approach on the ShapeNetPart dataset
[62], aiming to predict more fine-grained class labels for
each point. This dataset consists of 16 categories and com-
prises 16,881 objects. The point cloud is downsampled to
2048 points, and the segmentation head [34] connects fea-
tures F*, F8, F'2 extracted from the 4-th, 6-th, and 12-
th layers of the transformer blocks. Subsequently, aver-
age pooling, max pooling, and upsampling are employed
to generate features for each point, followed by label pre-
diction using MLP. In our experiments, we evaluate the per-
formance under the settings of 5 way 10 shot”, 5 way 20
shot”, ”10 way 10 shot”, and ”10 way 20 shot”. The exper-
imental results shown in Table 4 demonstrate the superior
performance of our GPM compared to all other methods.
4.2.2 Point Cloud Generation Evaluation

In the pre-training phase, we perform unconditional autore-
gressive generation on tokens in PartB, endowing the model
with the capability of point cloud unconditional generation.

Methods ‘ Cls.mloU Inst.mloU

Supervised Learning
PointNet[35] 80.39 83.7
PointNet++ [36] 81.35 85.1
DGCNNI[53] 82.33 85.2
PointMLP [32] 84.6 86.1

Self-Supervised Representation Learning

Transformer[51] 83.42 85.1
Transformer-OcCo[51] 83.42 85.1
PointContrast [56] - 85.1
CrossPoint [2] - 85.5
Point-BERT [63] 84.11 85.6
Point-MAE [34] - 86.1
GPM | 84.20 85.8

Table 4. Part segmentation results on the ShapeNetPart dataset.
We report the average intersection mloU over the union of all
classes (Cls.) and instances (Inst.).

MMD (1) Cov (%, 1) 1-NNA % (%, )

Category Model ISP cD t:MD cp EMD cD EMl]v)
Aiplane PoinCFlow 49 0217 324 4691 4840 7568 7506
Point-BERT 407 0189 275 5017 5344 7016 6107

GPM 332 0176 247 5234 5644 6822 6030

Chais Point-Flow 1.74 242 787 4683 4698 6088  59.89
Point-BERT 123 182 701 4973 5007 5730 5661

GPM 0.98 167 682 5108 5214 5409 5427

Car Point-Flow 087 091 522 4403 4659 6065 6236

Point-BERT 073 082 496 4727 5213 5909 6048

GPM 0.66 075 438 4967 5417 5888  58.16

Table 5. Generation results on ShapeNet dataset. 1: the higher
the better, |.: the lower the better. MMD-CD is multiplied by 10?;
MMD-EMD and JSD are multiplied by 102.

Therefore, in downstream tasks, without fine-tuning, we
conduct an autoregressive point cloud generation task on
the ShapeNet dataset. Existing models do not possess both
point cloud generation and point cloud classification tasks.
Hence, our model is the first known point cloud transformer
that integrates these two tasks into one. The specific metrics
are shown in Table 5. We compare our results with gener-
ation model Point-Flow [59] and Point-BERT. More details
about downstream tasks and conditional point cloud gener-
ation results can be found in the supplementary 6.3.

4.3. Ablation Study

To validate the fundamental design of the GPM model, we
conducted a comprehensive set of ablation studies. In or-
der to assess the impact of autoregressive mask generation
on the autoencoding masked prediction task, we present re-
sults comparing fine-tuning scenarios on the ModelNet40
dataset: one with autoencoding only, and the other with
a combination of autoencoding + autoregressive. Further-
more, to demonstrate that the order of autoencoding and
autoregressive tasks in the sequence does not affect point
cloud understanding, we conduct additional experiments,
the results are summarized in the Table 6. More ablation
results are shown in the supplementary 6.4.
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(b) Point cloud generation results of Point-BERT.

Figure 4. The reconstruction results visualization on dVAE and Point-BERT.

Tasks | npoints | Acc
autoencoding only | Ik | 929
autoregressive => autoencoding | 1k | 93.6
autoencoding => autoregressive | Ik | 938
autoencoding only | 4k | 934
autoregressive => autoencoding | 4k | 93.9
autoencoding = autoregressive | 4k | 93.9

Table 6. Results on autoencoding, autoencoding=-autoregressive
and autoregressive=-autoencoding on the ModelNet dataset. It is
clear that autoregressive can enhance the completion accuracy of
autoencoding, the order of autoencoding and autoregressive does
not have a significant impact on point cloud understanding tasks.

4.4. Analysis

Compare with Point-BERT. Motivated by BERT, Point-
BERT leverages MPM as a pretext task for training.
Due to the assumption of independence between MLM
and MPM, Point-BERT fails to capture interdependencies
among masked tokens. In our approach, autoregressive
generation explicitly models dependencies between masked
regions, unlike autoencoding which relies solely on un-
masked tokens to predict the masked ones. Autoregressive
masked prediction allows previously predicted tokens to in-
fluence subsequent predictions, enhancing information ex-
change between them. This leads to improved performance
in downstream tasks in the realm of representation learning.
Simultaneously, tokens in PartA can attend to task in PartB,
making PartA a generation condition for PartB, resulting in
enhanced generation performance.

Compare with PointGPT. PointGPT [6] adopts a two-
stage transformer architecture for learning representations
of point clouds, comprising a feature extractor and a gen-
erator. It first extracts features from the point cloud us-

ing the feature extractor and then directly generates with
the obtained features in the generator. During training, it
directly employs Chamfer Distance [11] between gener-
ated point clouds and ground truth points as the optimiza-
tion objective, rather than operating on tokens. This is be-
cause it doesn’t discretize points embeddings, thus failing
to achieve genuine autoregressive generation tasks. More-
over, it doesn’t integrate the two tasks for joint training in a
single transformer; instead, it trains them separately on two
different transformers, which increases the complexity.

4.5. Visualization

We visualize the generation results of dVAE and Point-
BERT, as shown in the Figure 4a and Figure 4b. Al-
though Point-BERT is capable of masked tokens generation
through autoencoding, our approach allows for autoregres-
sive conditional generation tasks, such as text-conditioned
point clouds and image-conditioned point clouds. As ob-
served in Figure 4b, the generation results of Point-BERT
exhibit some scattered points at the edges of the overall
structure, appearing relatively sparse and disorganized. The
generated outcome is not as satisfactory as that of GPM.
More visualizations of generation results can refer to Un-
conditional and Conditional Point Generation in the sup-
plementary 6.3.

5. Conclusion

Our study integrates both autoencoding and autoregressive
tasks within a unified transformer to enhance the model’s
performance in representation learning and generation at the
same time. By this framework, we address the limitation of
current pretraining frameworks and make the proxy tasks
non-trivial, effectively enhance the information interaction
among masked tokens. Moreover, our framework endows
the model with the potential for conditional generation.
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