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Abstract

Transformers have been successfully applied in the field
of video-based 3D human pose estimation. However, the
high computational costs of these video pose transformers
(VPTs) make them impractical on resource-constrained de-
vices. In this paper, we present a plug-and-play pruning-and-
recovering framework, called Hourglass Tokenizer (HoT),
for efficient transformer-based 3D human pose estimation
from videos. Our HoT begins with pruning pose tokens of re-
dundant frames and ends with recovering full-length tokens,
resulting in a few pose tokens in the intermediate transformer
blocks and thus improving the model efficiency. To effectively
achieve this, we propose a token pruning cluster (TPC) that
dynamically selects a few representative tokens with high
semantic diversity while eliminating the redundancy of video
frames. In addition, we develop a token recovering attention
(TRA) to restore the detailed spatio-temporal information
based on the selected tokens, thereby expanding the network
output to the original full-length temporal resolution for
fast inference. Extensive experiments on two benchmark
datasets (i.e., Human3.6M and MPI-INF-3DHP) demon-
strate that our method can achieve both high efficiency and
estimation accuracy compared to the original VPT models.
For instance, applying to MotionBERT and MixSTE on Hu-
man3.6M, our HoT can save nearly 50% FLOPs without
sacrificing accuracy and nearly 40% FLOPs with only 0.2%
accuracy drop, respectively. Code and models are available
at https://github.com/NationalGAILab/HoT.

1. Introduction
3D human pose estimation (HPE) from videos has numer-
ous applications, such as action recognition [22, 25, 38],
human-robot interaction [11, 53], and computer animation
[30]. Current video-based 3D HPE methods mainly follow
the pipeline of 2D-to-3D pose lifting [2, 4, 13, 21, 43, 44, 47].
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Figure 1. FLOPs and estimation errors (MPJPE, lower is better)
of different VPTs on Human3.6M dataset. We achieve highly
competitive or even better results while saving FLOPs.

This two-stage pipeline first utilizes an off-the-shelf 2D HPE
model to detect 2D body joints for each video frame and
then employs a separate lifting model to estimate 3D pose
sequences from the detected 2D poses.

Recently, transformer-based architectures [18, 48, 51, 52]
have shown state-of-the-art (SOTA) performance in the field
of video-based 3D HPE, since they are effective at modeling
the long-range dependencies among video frames. These
video pose transformers (VPTs) typically regard each video
frame as a pose token and utilize extremely long video se-
quences to achieve superior performance (e.g., 81 frames in
[51], 243 frames in [34, 48, 52], or 351 frames in [9, 17, 18]).
However, these methods inevitably suffer from high compu-
tational demands since the VPT’s self-attention complexity
grows quadratically with respect to the number of tokens
(i.e., frames), hindering the deployment of these heavy VPTs
on devices with limited computing resources.

To achieve efficient VPTs, two crucial factors require
careful consideration: (i) Directly reducing the frame num-
ber can boost VPTs’ efficiency, but it results in a small
temporal receptive field that limits the model to capture
richer spatio-temporal information to improve performance

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. (a) Existing VPTs follow a “rectangle” paradigm that
retains the full-length sequence across all blocks, which incurs
expensive and redundant computational costs. (b) Instead, our
HoT follows an “hourglass” paradigm that prunes the pose tokens
and recovers the full-length tokens, which keeps a few tokens in
the intermediate transformer blocks and thus improves the model
efficiency. The gray squares represent the pruned tokens.

[23, 32]. Hence, it is essential to design an efficient solution
while maintaining a large temporal receptive field for accu-
rate estimation. (ii) Adjacent frames in a video sequence
contain redundant information due to the similarity of nearby
poses (50 Hz cameras used in Human3.6M [14]). Moreover,
recent studies [16, 33, 40] found that some tokens tend to be
similar in the deep transformer blocks. Thus, we infer that us-
ing full-length pose tokens in these blocks leads to redundant
calculations and contributes little to the final estimation.

Based on these observations, we propose to prune pose to-
kens in the deep transformer blocks to improve the efficiency
of VPTs. Although token pruning can reduce the number
of tokens and bring efficiency, it also makes it difficult to
estimate the consecutive 3D pose of all frames, as in existing
VPTs [18, 48, 52], where each token corresponds to a frame.
Additionally, for efficient inference, a real-world 3D HPE
system should be able to estimate the 3D poses of all frames
at once in an input video. Therefore, in order to make our
method more compatible with being plugged into existing
VPTs and achieve fast inference, we need to recover the
original full-length tokens for all-frame estimation.

Driven by this analysis, we present a novel pruning-and-
recovering framework for efficient transformer-based 3D
HPE from videos. Different from existing VPTs that main-
tain the full-length sequence across all blocks, our method
begins with pruning the pose tokens of redundant frames
and ends with recovering the full-length tokens. By using
these two designs, we can keep only a few tokens in the
intermediate transformer blocks and thus improve the model
efficiency (see Figure 2). For this to be achieved effectively,
we argue that the key is to select a few representative tokens
with high semantic diversity, as such tokens can maintain

rich information while reducing video redundancy. Since the
cluster centers can retain the semantic diversity of the origi-
nal signal, we propose a token pruning cluster (TPC) module
that utilizes the cluster to dynamically select the cluster cen-
ters as the representative tokens. Furthermore, we develop
a lightweight token recovering attention (TRA) module to
restore the detailed spatio-temporal information based on the
selected tokens, which expands the low temporal resolution
caused by pruning operation to the full temporal resolution.
This strategy enables the network to estimate consecutive
3D poses of all frames, which facilitates fast inference.

Our method can be easily integrated into existing VPTs
[18, 48, 52] with minimal modifications (see Figure 3).
Specifically, the first few transformer blocks of VPTs re-
main unchanged to obtain pose tokens with comprehensive
information from full video frames. These pose tokens are
then pruned by our TPC, and the remaining tokens that serve
as the representative tokens are further fed into the subse-
quent transformer blocks. Finally, the full-length tokens are
recovered by TRA, which is added after the last transformer
block, while the intermediate transformer blocks still use
representative tokens. Thus the additional parameters and
FLOPs from TRA are negligible. Since the number of tokens
first decreases through pruning and then increases through
recovering, we refer to the framework as an hourglass [31]
and name it as Hourglass Tokenizer (HoT).

To validate the effectiveness and efficiency of our method,
we deploy it on top of SOTA VPTs (MHFormer [18],
MixSTE [48], and MotionBERT [52]). Extensive experi-
ments demonstrate that existing VPTs consume huge un-
necessary computational costs in capturing temporal infor-
mation, and the proposed method can not only maintain
the ability of the model but also reduce the computational
costs. As shown in Figure 1, our HoT can reduce nearly
50% floating-point operations (FLOPs) on MotionBERT
[52] without sacrificing performance and nearly 40% FLOPs
on MixSTE [48] with only 0.2% performance loss.

The contributions of our paper are summarized below:

• We present HoT, a plug-and-play pruning-and-
recovering framework for efficient transformer-based
3D HPE from videos. Our HoT reveals that maintaining
the full-length pose sequence is redundant, and a few
pose tokens of representative frames can achieve both
high efficiency and performance.

• To accelerate VPTs effectively, we propose a TPC mod-
ule to select a few representative tokens for video re-
dundancy reduction and a TRA module to restore the
original temporal resolution for fast inference.

• Extensive experiments conducted on three recent VPTs
show that HoT achieves highly competitive or even su-
perior results while significantly improving efficiency.
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Figure 3. Overview of the proposed Hourglass Tokenizer (HoT). It mainly consists of a token pruning cluster (TPC) module and a token
recovering attention (TRA) module. TPC selects the pose tokens of representative frames after the first few transformer blocks and TRA
recovers the full-length tokens after the last transformer block.

2. Related Work

Transformer-based 3D HPE. Transformers are firstly pro-
posed in [36] and have been successfully applied to video-
based 3D HPE [18, 48, 51, 52]. These video pose transform-
ers (VPTs) are often built to capture spatial and temporal
information for 3D HPE using transformers. For instance,
MHFormer [18] learns spatio-temporal multi-hypothesis rep-
resentations of 3D human poses via transformers. MixSTE
[48] proposes a mixed spatio-temporal transformer to capture
the temporal motion of different body joints. MotionBERT
[52] presents a dual-stream spatio-temporal transformer to
model long-range spatio-temporal relationships among skele-
tal joints. However, the improved performance of these VPTs
comes with a heavy computation burden.
Efficient 3D HPE. Efficient 3D HPE is critical in computing
resource-constrained environments. Existing explorations
mainly focus on efficient architecture design [6, 28, 32]
and data redundancy reduction [9, 17, 34, 45]. VPose [32]
presents a fully convolutional architecture that processes
multiple frames in parallel. Strided [17] designs a strided
transformer encoder to aggregate redundant sequences. Re-
cently, several studies [9, 34, 45] have attempted to improve
model efficiency by uniformly sampling video sequences.
For example, DeciWatch [45] proposes a flow that takes
sparsely sampled frames as inputs. However, this is sub-
optimal as it simply selects frames at a fixed interval in a
static manner without considering their contextual cues. In
contrast, we propose to utilize the cluster to dynamically
select pose tokens of representative frames with high-level
semantic representations. Besides, many efficient methods
[9, 17, 50] are designed for a specific model and none of
them unifies the efficient design for different VPTs. We are
the first to propose a plug-and-play framework for efficient
VPTs, which can be plugged into common VPT models.
Token Pruning for Transformers. The self-attention com-
plexity in transformers grows quadratically with the number

of tokens, making it infeasible for high spatial or temporal
resolution inputs. Many works [3, 7, 15, 24, 41] attempt to
alleviate this issue by using token pruning, which aims to
select significant tokens from different inputs. They find that
discarding less informative tokens in the deep transformer
blocks only leads to a slight performance drop. Dynam-
icViT [33] proposes a learnable prediction module to esti-
mate the scores of tokens and prune redundant tokens. PPT
[26] selects important tokens based on the attention score.
TCFormer [46] presents a token clustering transformer to
cluster and merge tokens. In this work, we are the first to
perform token pruning in VPTs for model acceleration. Un-
like these studies that aim to reduce less related information
(e.g., image background) from images in the spatial domain,
we focus on reducing temporal redundancy by selecting a
few pose tokens of representative frames in the temporal
domain. Furthermore, we propose to restore the full-length
temporal resolution to meet the domain-specific requirement
of efficient video-based 3D HPE.

3. Method

Figure 3 illustrates the overview of our Hourglass Tok-
enizer (HoT). Our HoT is a general-purpose pruning-and-
recovering framework that can use different token pruning
and token recovering strategies (see Sec 4.3). For better
token pruning and recovering, we propose token pruning
cluster (TPC) and token recovering attention (TRA) modules
and insert them into SOTA VPTs [18, 48, 52]. Specifically,
TPC takes the full-length pose tokens xn ∈ RF×J×C of
n-th transformer block as inputs and outputs a few represen-
tative tokens x̃ ∈ Rf×J×C (f ≪ F ), where J , F , and f are
the number of body joints, input frames, and representative
tokens, respectively. Here, C denotes the feature dimen-
sion. TRA recovers the full-length tokens from the tokens
of the last transformer block xL ∈ Rf×J×C , where L is the
number of transformer blocks, resulting in recovered tokens
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Figure 4. Illustration of our token pruning cluster (TPC) archi-
tecture. Given the input pose tokens, we pool them in the spatial
dimension, cluster the input tokens into several groups according
to the feature similarity of the resulting pooled tokens, and select
the cluster centers as the representative tokens.

x̂ ∈ RF×J×C . In the following section, we give details
about the proposed TPC and TRA modules and show how
to apply them to existing VPTs.

3.1. Token Pruning Cluster

We observe that the existing VPTs [18, 48, 52] take long
video sequences as input and maintain the full-length se-
quence across all blocks (Figure 2 (a)), which is computa-
tionally expensive for high temporal resolution inputs. To
tackle this issue, we propose to prune the pose tokens of
video frames to improve the efficiency of VPTs. However, it
is challenging to select a few pose tokens that maintain rich
information for accurate 3D HPE.

To address this challenge, we propose a simple, effective,
and parameter-free token pruning cluster (TPC) that dynami-
cally selects a few pose tokens of representative frames to
eliminate video redundancy. The architecture of TPC is il-
lustrated in Figure 4. Given the input pose tokens of n-th
transformer blocks xn ∈ RF×J×C , an average spatial pool-
ing is used along the spatial dimension to remove spatial
redundancy, resulting in pooled tokens xn ∈ RF×C . Then,
we apply an efficient density peaks clustering based on k-
nearest neighbors (DPC-kNN) algorithm [8]. This algorithm
clusters the input pose tokens into several groups accord-
ing to the feature similarity of the pooled tokens without
requiring an iterative process.

The cluster centers of tokens are characterized by a higher
density compared to their neighbors, as well as a relatively
large distance from other tokens with higher densities. For a
token xi ∈ xn, the local density of tokens ρ is calculated by:

ρi = exp(−1

k

∑
xj∈kNN(xi)

∥∥xi − xj
∥∥2
2
), (1)

where kNN
(
xi
)

are the k-nearest neighbors of a token xi.
We then define the δi that measures the minimal distance

between the token xi and other tokens with higher density.
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Figure 5. Illustration of our token recovering attention (TRA) archi-
tecture. TRA takes the representative tokens of the last transformer
block, along with learnable tokens that are initialized to zero, as
input to recover the full-length tokens.

The δi of the token with the highest density is set to the
maximum distance between it and any other tokens. The δi
of each token is calculated by:

δi =

{
minj:ρj>ρi

∥∥xi − xj
∥∥
2
, if ∃ρj > ρi

maxj
∥∥xi − xj

∥∥
2
, otherwise . (2)

The clustering center score of a token xi is denoted by
combining the local density ρi and minimal distance δi as
ρi × δi. A higher score indicates that the token has both
a large density and distance, showing a higher potential to
be the cluster center. The top-f -scored input pose tokens
are selected as cluster centers, and the remaining tokens are
assigned to the nearest cluster center with higher density.

The cluster centers have high semantic diversity, con-
taining more informative information than the other tokens.
Therefore, the cluster centers serve as the representative
tokens x̃ ∈ Rf×J×C for efficient estimation, and the remain-
ing tokens are discarded for reduction of video redundancy.
Note that our method only prunes the tokens along the tem-
poral dimension since the frame number F is much larger
than the joint number J (e.g., F=243 and J=17), i.e., the
expensive and redundant computational costs are dominated
by the frame number in the temporal domain.

3.2. Token Recovering Attention

A large number of pose tokens have been pruned by TPC,
which significantly reduces the computational costs. How-
ever, for fast inference, a real-world 3D HPE system should
be capable of estimating the consecutive 3D poses of all
frames in a given video (this is called seq2seq pipeline in
[48]). Therefore, different from some token pruning meth-
ods in vision transformers that can use a few selected tokens
to directly perform classification [20, 27, 33, 42], we need
to recover the full-length tokens to keep the same number
of tokens as the input video frames (in existing VPTs, each
token corresponds to a frame). Meanwhile, for efficiency
purposes, the recovering module should be lightweight.
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To this end, a lightweight token recovering attention
(TRA) module is proposed to restore the spatio-temporal
information from the selected pose tokens, as shown in Fig-
ure 5. It only contains one multi-head cross-attention (MCA)
layer without any additional networks. Formally, the dot-
product attention [36] in the MCA is defined as:

Attention(Q,K, V ) = Softmax
(
QKT /

√
d
)
V, (3)

where queries Q ∈ Rnq×d, keys K ∈ Rnk×d, and values
V ∈ Rnv×d. d is the dimension and {nq, nk, nv} are the
number of tokens for {Q,K, V }, respectively.

Our MCA takes the learnable tokens x′ ∈ RF×C that are
initialized to zero as queries and the j-th joint representative
tokens of the last transformer block xj

L ∈ Rf×C as keys and
values, followed by a residual connection:

x̂j = x′ +MCA(x′, xj
L, x

j
L), (4)

where MCA(·) is the function of MCA, and its inputs are
queries, keys, and values. x̂j ∈ RF×C is the j-th joint
recovered token, whose temporal dimension is the same as
the queries (i.e., the designed learnable tokens).

The TRA performs a reverse operation of selecting repre-
sentative tokens, which recovers tokens of full-length tempo-
ral resolution from low ones using high-level spatio-temporal
semantic information.

3.3. Applying to VPTs

Recent studies of VPTs can be divided into two types
of pipelines based on their inference outputs: seq2frame
[17, 18, 34, 51] and seq2seq [48, 52] pipelines. The
seq2frame pipeline outputs the 3D pose of the center frame
and requires repeated inputs of 2D pose sequences with sig-
nificant overlap to predict the 3D poses of all frames. This
pipeline can achieve better performance by considering both
past and future information, but it is not efficient due to re-
peated calculations. In contrast, the seq2seq pipeline outputs
3D poses of all frames from the input 2D pose sequence at
once, making it more efficient but leading to a degradation
in performance. As a result, these two pipelines have their
unique strengths, and we need to develop two strategies to
better accommodate their different inference manners.

For the seq2seq pipeline, the outputs are all frames of the
input video, and hence we need to restore the original tempo-
ral resolution. TPC and TRA are inserted into VPTs, where
TPC prunes the tokens after a few transformer blocks and
TRA recovers the full-length tokens after the last transformer
block, as shown in Figure 3. Specifically, given the input
2D pose sequence p ∈ RF×J×2 detected by an off-the-shelf
2D HPE detector from a video, we first feed them into a
pose embedding module to embed spatial and temporal in-
formation of pose frames, resulting in tokens x ∈ RF×J×C .
The embedded tokens are then fed into a few transformer
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Figure 6. Illustration of our framework on seq2frame pipeline. The
pose tokens are fed into TPC to select representative tokens. After
the regression head, the 3D pose of the center frame is selected as
the output for evaluation.

blocks. Next, the TPC selects a few representative tokens
x̃ ∈ Rf×J×C , which are the inputs of subsequent trans-
former blocks. After the last transformer block, the TRA
restores the original temporal resolution and produces re-
covered tokens x̂ ∈ RF×J×C . Finally, a regression head is
added to estimate the 3D pose sequence q ∈ RF×J×3.

For the seq2frame pipeline, the output is the 3D pose of
the center frame. Therefore, TRA is unnecessary and we
only insert TPC into VPTs. Since the token of the center
frame directly corresponds to the output and can provide
crucial information to the final estimation, we concatenate it
with the selected tokens to make this pipeline work better. As
shown in Figure 6, the early stages of both pipelines share
the same workflow. After the last transformer block, the
tokens are directly sent to the regression head to perform re-
gression and the 3D pose of center frame qcenter ∈ R1×J×3

is selected as the final prediction.

4. Experiments
4.1. Datasets and Evaluation Metrics

Datasets. We evaluate our method on two 3D HPE bench-
mark datasets: Human3.6M [14] and MPI-INF-3DHP [29].
Human3.6M is the most widely used dataset for 3D HPE. It
consists of 3.6 million video frames recorded by four RGB
cameras at 50 Hz in an indoor environment. This dataset
includes 11 actors performing 15 daily actions. Following
[12, 19, 49, 54], subjects S1, S5, S6, S7, S8 are used for
training and subjects S9, S11 are used for testing. MPI-
INF-3DHP is another popular 3D HPE dataset. This dataset
contains 1.3 million frames collected in indoor and outdoor
scenes. It is smaller than Human3.6M but more challenging
due to its diverse scenes, viewpoints, and motions.
Evaluation Metrics. For Human3.6M, we use the most
commonly used mean per joint position error (MPJPE) as
the evaluation metric, which measures the average Euclidean
distance between estimated and ground truth 3D joint co-
ordinates in millimeters. For MPI-INF-3DHP, we follow
previous works [18, 48, 51] to report metrics of MPJPE,
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Table 1. Comparison of efficiency and accuracy between seq2seq
(∗) and seq2frame (†) inference pipelines. Frame per second (FPS)
was computed on a single GeForce RTX 3090 GPU.

Method Param (M) FLOPs (G) FPS MPJPE ↓

MixSTE [48] (∗) 33.78 277.25 10432 40.9
HoT w. MixSTE (∗) 35.00 167.52 (↓ 39.6%) 15770 (↑ 51.2%) 41.0

MixSTE [48] (†) 33.78 277.25 43 40.7
TPC w. MixSTE (†) 33.78 161.73 (↓ 41.7%) 68 (↑ 58.1%) 40.4

MotionBERT [52] (∗) 16.00 131.09 14638 39.8
HoT w. MotionBERT (∗) 16.35 63.21 (↓ 51.8%) 25526 (↑ 74.4%) 39.8

MotionBERT [52] (†) 16.00 131.09 60 39.5
TPC w. MotionBERT (†) 16.00 61.04 (↓ 53.4%) 109 (↑ 81.7%) 39.2

percentage of correct keypoint (PCK) with the threshold of
150mm, and area under curve (AUC).

4.2. Implementation Details

The network is implemented using the PyTorch framework
on one consumer-level NVIDIA RTX 3090 GPU with 24G
memory. Our method builds upon MHFormer [18], MixSTE
[48], and MotionBERT [52] for their largest frame number
(i.e., F=351, 243, 243) models. For a speed-accuracy trade-
off, by default, we set {F=351, n=1, f=117} for MH-
Former, {F=243, n=3, f=81} for MixSTE, and {F=243,
n=1, f=81} for MotionBERT. Note that MHFormer is de-
signed for seq2frame pipeline, so we only implement our
TPC on it. MixSTE and MotionBERT are designed for
seq2seq pipeline and can be implemented on both seq2frame
(with TPC) and seq2seq (with HoT) pipelines.

4.3. Ablation Study

To validate the effectiveness of our method, we conduct
extensive ablation studies on Human3.6M dataset.
Inference Pipeline. In Table 1, we compare the efficiency
and accuracy between different inference pipelines (men-
tioned in Sec 3.3). We conduct experiments on MixSTE
[48] and MotionBERT [52] because both are designed for
seq2seq pipeline and can be evaluated on both seq2frame
and seq2seq pipelines. As shown in the table, the seq2frame
can achieve better estimation accuracy by taking advantage
of past and future information but lower efficiency due to
repeated computations, e.g., 40.7mm vs. 40.9mm and 43
FPS vs. 10432 FPS for MixSTE (about 243× lower). As our
TPC is parameter-free and TRA is lightweight, our method
with TPC introduces no additional parameters, and HoT w.
MotionBERT only introduces additional 0.35M (2.2%) pa-
rameters, which can be neglected. Moreover, our method
reduces the computational costs and improves the inference
speed of these two pipelines, while maintaining or obtaining
better performance.

For the seq2seq, our method can reduce the FLOPs of
MixSTE and MotionBERT by 39.6% and 51.8% and im-
prove the FPS by 51.2% and 74.4%, while estimation errors

Table 2. Ablation study on the block index of representative tokens
(n) under the seq2frame pipeline. Here, ∗ denotes the result without
re-training.

Method Param (M) FLOPs (G) MPJPE∗ MPJPE ↓

MixSTE [48] 33.78 277.25 40.7 40.7

TPC w. MixSTE, n=2 33.78 121.52 (↓ 56.2%) 41.2 40.7
TPC w. MixSTE, n=3 33.78 147.47 (↓ 46.8%) 41.2 40.5
TPC w. MixSTE, n=5 33.78 199.38 (↓ 28.1%) 40.9 40.2
TPC w. MixSTE, n=7 33.78 251.29 (↓ 09.4%) 40.7 39.9

Table 3. Ablation study on the number of representative tokens (f )
under the seq2seq pipeline.

Method Param (M) FLOPs (G) MPJPE ↓

MixSTE [48] 33.78 277.25 40.9

HoT w. MixSTE, f=9 34.96 114.90 (↓ 58.6%) 43.5
HoT w. MixSTE, f=16 34.97 120.01 (↓ 56.7%) 42.2
HoT w. MixSTE, f=61 34.99 152.90 (↓ 44.9%) 41.2
HoT w. MixSTE, f=81 35.00 167.52 (↓ 39.6%) 41.0
HoT w. MixSTE, f=135 35.03 206.98 (↓ 25.3%) 41.3

only drop 0.1mm (0.24%) and remain unchanged, respec-
tively. For the seq2frame, our TPC w. MixSTE can reduce
the FLOPs by 41.7% and improve the FPS by 58.1%, while
bringing 0.3mm improvement. Additionally, our TPC w.
MotionBERT can reduce 53.4% FLOPs and improve 81.7%
FPS, while the estimation errors are reduced from 39.5mm
to 39.2mm. Note that our method with TPC outperforms the
one utilizing HoT. This is reasonable since our TRA in HoT
is a reverse operation that uses inadequate information to
recover the full-length tokens. In the following ablations, we
take these two inference pipelines into account to sufficiently
explore the proposed method, and we choose MixSTE [48]
as the baseline since it is the first seq2seq transformer-based
architecture and MotionBERT [52] is its follow-ups.
Block index of Representative Tokens. The TPC can be
inserted into optional transformer blocks, thereby adjusting
the trade-off between computational costs and performance
on demand in a flexible manner. Table 2 studies this under
seq2frame pipeline (f is fixed to 61). Since TPC is a data-
dependent scheme that introduces no extra parameters and
transformers are input agnostic [1, 10], we can evaluate mod-
els with or without re-training. Increasing the block index
of representative tokens can reduce the estimation error, but
it also leads to higher computational costs. This indicates
the deeper blocks of transformers contain more redundancy
while the shallower blocks retain more useful information.
Our method achieves competitive results without re-training
while reducing FLOPs. When it works with re-training (train-
ing from scratch without pre-trained models), our method
attains better performance. Our TPC w. MixSTE (n=2)
achieves the same results while reducing 56.2% FLOPs and
TPC w. MixSTE (n=7) improves the performance from
40.7mm to 39.9mm while reducing 9.4% FLOPs.
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Figure 7. Statistics visualization of selected tokens for different token pruning strategies. Top: Frame indexes of selected tokens for some
samples (140 samples) of consecutive video sequences (243 frames). Blue points are selected tokens and white points are pruned tokens.
Bottom: Frequency count of frame indexes of selected tokens for these samples.

Table 4. Ablation study on the design choices of token pruning.
“FN” denotes the frame noise that calculates the MPJPE of selected
frames. “Full”, “Pruned”, “Selected”, and “Center” denote the
MPJPE of all frames, pruned frames, selected frames, and the
center frame, respectively.

seq2seq seq2frame
Method FN Full ↓ Pruned ↓ Selected ↓ Center ↓ Selected ↓
MixSTE [48] 6.61 40.9 - - 40.7 -
Ours, Uniform Sampling 6.61 41.4 41.3 41.4 40.7 40.8
Ours, Attention Pruning 6.56 42.1 42.5 41.5 42.3 44.4
Ours, Motion Pruning 7.00 42.8 43.4 41.6 41.3 42.3
Ours, the Proposed TPC 6.63 41.0 41.3 40.2 40.4 39.4

Number of Representative Tokens. The number of repre-
sentative tokens f can also be flexibly adjusted. In Table 3,
we fix n to 3 and vary f under seq2seq pipeline. Decreas-
ing f can reduce the FLOPs, but the best performance is
achieved by using f=81. The reason for this is that an
appropriate number of representative tokens can bring a
good trade-off between retaining important information and
reducing redundant information for both the pruning and
recovering stages. Therefore, the optimal hyper-parameters
for our HoT w. MixSTE are n=3 and f=81.
Token Pruning Design. Our HoT is a general-purpose
pruning-and-recovering framework that can be equipped
with different token pruning and recovering strategies. In Ta-
ble 4, we compare different token pruning strategies, includ-
ing attention pruning [26, 39], uniform sampling [9, 34, 45],
and motion pruning that selects tokens with top-k-large mo-
tions. To measure the quality of selected tokens, we define
a frame noise metric, which calculates the MPJPE of the
2D poses of input frames corresponding to the selected in-
dexes. As the table shows, the frame noise values among
these methods are similar (around 6.6mm) except for the mo-
tion pruning (7.0mm). This is because selecting tokens with
top-k-large motion introduces some noise frames that differ
significantly from clean frames, which can adversely affect

Table 5. Ablation study on the design choices of token recovering.
∆ represents the performance gap between the results of pruned
frames and selected frames.
Method Param FLOPs Full ↓ Pruned ↓ Selected ↓ ∆

MixSTE [48] 33.78 277.25 40.9 - - -
Ours, Nearest Interpolation 33.78 161.73 41.5 42.2 40.2 2.0
Ours, Linear Interpolation 33.78 161.73 41.3 41.9 40.0 1.9
Ours, the Proposed TRA 35.00 167.52 41.0 41.3 40.2 1.1

performance. Moreover, our proposed TPC outperforms
all other token pruning strategies, particularly for selected
frames. Our TPC outperforms the uniform sampling strategy
by 1.2mm (40.2mm vs. 41.4mm) and 1.4mm (39.4mm vs.
40.8mm) for selected frames under seq2seq and seq2frame
pipelines, respectively. This emphasizes that the 3D pose
results of our selected frames are easier to estimate, and our
method can select more representative frames from a video.

Furthermore, we statistically visualize selected tokens of
these four token pruning strategies. For better observation,
we take samples of consecutive video sequences as input
with a temporal interval of 1 between neighboring samples.
The frame indexes and the frequency count of frame indexes
of the selected tokens are shown in Figure 7 (top) and Fig-
ure 7 (bottom). Uniform sampling and motion pruning are
static pruning methods because the former selects tokens at a
fixed frame interval (equidistance in the top of Figure 7 (a)),
while the latter selects tokens with the top-k-large motions
that move with the input sequence (oblique triangle in the top
of Figure 7 (c)). Instead, the attention score pruning and our
method are dynamic methods that consider the significance
of input tokens. The bottom of Figure 7 (b) shows that atten-
tion score pruning tends to select tokens in the left half of a
sequence, indicating that the selected tokens tend to be sim-
ilar to each other [40] and thus lack diversity. Our method
primarily selects tokens at the beginning, center, and end of
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Table 6. Comparison of parameters (M), FLOPs (G), and MPJPE
with SOTA VPTs on Human3.6M. Here, F denotes the number of
input frames. ∗ indicates our re-implementation.

Method F Param FLOPs MPJPE ↓

PoseFormer (ICCV’21) [51] 81 9.60 1.63 44.3
Strided (TMM’22) [17] 351 4.35 1.60 43.7
P-STMO (ECCV’22) [34] 243 7.01 1.74 42.8
STCFormer (CVPR’23) [35] 243 18.93 156.22 40.5

MHFormer (CVPR’22) [18] 351 31.52 14.15 43.0
TPC w. MHFormer (Ours) 351 31.52 8.22 (↓ 41.91%) 43.0

MixSTE (CVPR’22) [48] 243 33.78 277.25 40.9
HoT w. MixSTE (Ours) 243 35.00 167.52 (↓ 39.6%) 41.0
TPC w. MixSTE (Ours) 243 33.78 251.29 (↓ 09.4%) 39.9

MotionBERT (ICCV’23) [52] 243 16.00 131.09 39.2
MotionBERT (ICCV’23) [52]∗ 243 16.00 131.09 39.8
HoT w. MotionBERT (Ours) 243 16.35 63.21 (↓ 51.8%) 39.8
TPC w. MotionBERT (Ours) 243 16.00 91.38 (↓ 30.3%) 39.0

a sequence (the bottom of Figure 7 (d)). This is reasonable
since these three parts can represent the rough motion of
an entire sequence, which contributes a lot to accurate esti-
mation. These findings highlight that our method not only
eliminates the redundancy of video frames but also selects
tokens with high semantic diversity (the top of Figure 7 (d)
appears to be irregular), thus selecting more representative
pose tokens for more accurate estimation.
Token Recovering Design. The token recovering strategies
in our HoT can also be designed in different manners, as
studied in Table 5. It shows that linear and nearest interpola-
tion operations are parameter-free and achieve competitive
results due to data redundancy (i.e., nearby poses are similar)
on Human3.6M (captured by 50 Hz cameras). Our TRA
achieves better performance while introducing negligible
parameters and FLOPs. These results validate the effec-
tiveness of the proposed TRA, highlighting the benefits of
using high-level semantic information for pose token recov-
ering. Besides, the experiments show that the proposed TRA
achieves the lowest performance gap between the estimated
3D poses of pruned frames and selected frames. This further
demonstrates the effectiveness of our TRA, which can re-
cover more accurate results based on the limited information
provided by the selected tokens.

4.4. Comparison with state-of-the-art methods

Human3.6M. Current SOTA performance on Human3.6M
is achieved by transformer-based architectures. We com-
pare our method with them by adding it to three very recent
VPTs: MHFormer [18], MixSTE [48], and MotionBERT
[52]. These three models significantly outperform previous
works at the cost of high computational complexity, thus
we choose them as baselines to evaluate our method. The
comparisons are shown in Figure 1 and Table 6. We report
the results of TPC w. MixSTE with {n=7, f=61} and TPC
w. MotionBERT with {n=2, f=121}. As shown in the

Table 7. Quantitative comparison with SOTA methods on MPI-
INF-3DHP.

Method PCK ↑ AUC ↑ MPJPE ↓

VPose (CVPR’19) [32] (F=81) 86.0 51.9 84.0
UGCN (ECCV’20) [37] (F=96) 86.9 62.1 68.1
Anatomy3D (TCSVT’21) [5] (F=81) 87.9 54.0 78.8
PoseFormer (ICCV’21) [51] (F=9) 88.6 56.4 77.1

MHFormer (CVPR’22) [18] (F=9) 93.8 63.3 58.0
TPC w. MHFormer (Ours, F=9) 94.0 63.3 58.4

MixSTE (CVPR’22) [48] (F=27) 94.4 66.5 54.9
HoT w. MixSTE (Ours, F=27) 94.8 66.5 53.2

table, our method can reduce the computational costs of re-
cent VPTs while maintaining the ability of the model. For
example, our HoT w. MotionBERT saves 51.8% FLOPs
while maintaining accuracy, and our TPC w. MotionBERT
obtains better performance with 0.8mm improvements while
reducing computational costs by 30.3% in FLOPs. These
results demonstrate the effectiveness and efficiency of our
method, while also revealing that existing VPTs incur redun-
dant computational costs that contribute little to the estima-
tion accuracy or even decrease the accuracy. In addition, our
method can remove these unnecessary computational costs
while achieving comparable or even superior performance.
MPI-INF-3DHP. We further evaluate our method on MPI-
INF-3DHP dataset in Table 7. For a fair comparison, fol-
lowing [18, 48], we implement our method on MHFormer
with {F=9, n=1, f=3} and MixSTE with {F=27, n=3,
f=9}. It can be found that our method (TPC w. MHFormer
and HoT w. MixSTE) achieves competitive performance,
demonstrating the effectiveness of our method in both indoor
and outdoor scenes. Besides, our method can also work well
with a small temporal receptive field.

5. Conclusion
This paper presents Hourglass Tokenizer (HoT), a plug-
and-play pruning-and-recovering framework for efficient
transformer-based 3D human pose estimation from videos.
Our method reveals that maintaining the full pose sequence
is unnecessary, and using a few pose tokens of representa-
tive frames can achieve both high efficiency and estimation
accuracy. Comprehensive experiments demonstrate that our
method is compatible and general. It can be easily incor-
porated into common VPT models on both seq2seq and
seq2frame pipelines while effectively accommodating vari-
ous token pruning and recovery strategies, thereby highlight-
ing its potential for using future ones. We hope HoT can
enable the creation of stronger and faster VPTs.
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