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Abstract

Inspired by the success of Large Language Models
in dealing with new tasks via In-Context Learning (ICL)
in NLP, researchers have also developed Large Vision-
Language Models (LVLMs) with ICL capabilities. However,
when implementing ICL using these LVLMs, researchers
usually resort to the simplest way like random sampling
to configure the in-context sequence, thus leading to sub-
optimal results. To enhance the ICL performance, in this
study, we use Visual Question Answering (VQA) as case
study to explore diverse in-context configurations to find the
powerful ones. Additionally, through observing the changes
of the LVLM outputs by altering the in-context sequence, we
gain insights into the inner properties of LVLMs, improv-
ing our understanding of them. Specifically, to explore in-
context configurations, we design diverse retrieval methods
and employ different strategies to manipulate the retrieved
demonstrations. Through exhaustive experiments on three
VQA datasets: VQAv2, VizWiz, and OK-VQA, we uncover
three important inner properties of the applied LVLM and
demonstrate which strategies can consistently improve the
ICL VQA performance. Our code is provided in: https:
//github.com/GaryJiajia/OFv2_ICL_VQA.

1. Introduction
Recently, Large Language Models (LLMs) [5, 8, 38] have
showed remarkable abilities in solving new tasks through
prompt engineering [27] and In-Context Learning (ICL) [9].
However, despite their success, LLMs still remain in-
scrutable to the research community. To unravel the prop-
erties of these models, researchers have drawn inspiration
from the “outside-in” methodologies to comprehend com-
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plex systems. Analogously, as scientists treat unknown sys-
tems as black boxes, conducting experiments to discern the
effects of varied inputs on outputs, researchers introduce
diverse prompts and analyze the resultant feedback. This
strategy provides crucial insights into the inner properties
of LLMs[33, 34].

Compared to the standard single sentence prompt, which
is one kind of zero-shot prompt, ICL sequences few-shot
demonstrations where each one contains knowledge about
the input and the corresponding label of the task that needs
to be solved. Such few-shot nature of ICL enables it to
encapsulate more information, resulting in enhanced per-
formance. However, the ICL performance is heavily in-
fluenced by various demonstration configurations, such as
the selection or ordering of the demonstrations [14, 26, 30].
Consequently, many NLP studies [11, 40, 44, 50] explore
how to configure demonstrations to enhance the ICL per-
formance. Meanwhile, NLP researchers also use ICL to un-
ravel the inner properties of large models, owing to its flex-
ible controllability. For example, by controlling the label
space of the demonstrations, researchers [34] find that the
ICL ability may be demonstrated by two distinct functions:
Task Recognition (TR), i.e., the ability to identify the task
formulation, and Task Learning (TL), the ability to learn the
mapping between input and labels of the demonstrations.

Nowadays, multi-modal learning becomes attractive
with the development [39, 46, 47, 52]. Inspired by the
success of LLM, researchers in the vision-language (VL)
domain have also developed large models with ICL capa-
bilities, such as Flamingo [1] and its corresponding open-
source version, Open-Flamingo [2]. However, there is lim-
ited research on how to effectively configure demonstra-
tions in these models, both in terms of enhancing the per-
formance of Large Vision-Language Model (LVLM) and
exploring its properties. To the best of our knowledge,
currently, only one study [45] has explored demonstration
configurations for image captioning. Unfortunately, this re-
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Figure 1. ICL shows two different functions: Task Recognition (TR) and Task Learning (TL). In VQA, TR includes three components: (a)
Visual TR and (b) Linguistic TR narrow the label space based on the query image and question, and (c) Format TR recognizes the answer
formats from the demonstrations. After combining them, the label space can be narrowed down for better answer the question. While TL
learns the mapping between inputs (images&questions) and outputs (answers) from demonstrations to make LVLM get the right answer.

search still fails to make use of ICL to explore the properties
of LVLM.

In VL, Visual Question Answering (VQA) is more suit-
able for exploring the inner properties of LVLM through
ICL for two reasons. First, most NLP tasks employed to ex-
plore LLMs can be considered as question-answering tasks,
i.e., the sentiment classification can be viewed as answering
“what is the sentiment of this sentence?”. Therefore, VQA
is well-suited for adapting the methodologies used in QA
studies into the VL domain. Second, VQA encompasses
various visual understanding tasks, including classification,
counting, locating and so on, allowing for a more compre-
hensive exploration of LVLM. Therefore, in this study, we
explore demonstration configurations in the VQA task with
a dual-purpose: (1) to explore effective demonstration con-
figuration strategies for enhancing VQA performance and
(2) to gain a better understanding of the inner properties of
LVLM.

To achieve the dual-purpose, we design various
demonstration configuration strategies, including retriev-
ing demonstrations based on similarity via images or texts
(questions and answers) and using different ways to manip-
ulate the in-context sequence constructed by the retrieved
demonstrations, e.g., mismatching the (image, question, an-
swer) triplets, incorporating the instructions, and reordering
the demonstrations. Through exhaustive experiments, our
research makes the following three key contributions.
• We extend the TR and TL hypothesis to the field of LVLM

by refining this hypothesis to interpret and measure the
ICL capabilities of LVLM, as depicted in Fig. 1.

• Based on the refined hypothesis, we uncover three im-
portant inner properties of LVLM during ICL: limited TL
capabilities, the presence of a short-cut effect, and partial
compatibility between vision and language modules.

• Building upon these findings, we explain in detail the
roles played by various demonstration configuration
strategies in LVLM and design new demonstration con-

figuration methods.

2. Related Work

In-Context Learning in NLP. Recently, NLP has wit-
nessed significant advancements in Large Language Mod-
els (LLMs). With the increase in model and corpus sizes [8,
37], researchers discovered their emergent capabilities, par-
ticularly in prompt engineering [16, 23, 27, 28]. The in-
troduction of even larger models like GPT-3 [4] has un-
veiled the potential for In-Context Learning (ICL). ICL, a
form of specialized prompt engineering, enables LLMs to
make predictions based on contextual information supple-
mented by a few illustrative examples. Numerous inves-
tigations have demonstrated the proficient performance of
LLMs in various tasks through ICL [35, 42, 43]. This led to
a surge of studies exploring the configuration of in-context
sequence [10, 13, 17, 30, 36, 41]. However, most of these
studies have been limited to NLP tasks, and there is a need
to extend this research to other domains.
In-Context Learning in VL. Inspired by the success of
LLMs in NLP, the vision-language field has also witnessed
the emergence of corresponding large vision-language mod-
els (LVLMs) [6, 19, 22, 29]. Some of these models, such
as BLIP2 [21], MiniGPT-4 [52], and LLAVA [25], are pre-
trained by aligning image and text data using adapters [20,
49] to alleviate training burdens. Specifically, they freeze
a well-trained LLM and train a smaller network alongside
it, leveraging this alignment to enable joint learning from
both modalities during pretraining. Although there are nu-
merous large VLMs available, it is important to note that
not all models support in-context learning (ICL). For ex-
ample, mPLUG-Owl [48] and MiniGPT-4 [52] lack the ca-
pabilities for ICL because they have not undergone dedi-
cated few-shot pre-training and cannot handle the input dis-
tribution associated with in-context learning. In contrast,
models like Flamingo [1] and Otter [18] are specifically de-
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signed to support this task. However, since Flamingo is
not open-source, we utilize its open-source version called
Open-Flamingo [2] and IDEFICS [15]. Among them, Ot-
ter derives from Open-Flamingo through instruction fine-
tuning. In our research, we utilize Open-Flamingo, re-
moving the interference caused by instruction fine-tuning.
Additionally, the recently released MMICL [51] model in-
cludes pre-training data from the classic VQA datasets such
as VQAv2 [12], VizWiz [3], and OK-VQA [32]. Open-
Flamingo and IDEFICS, on the other hand, does not use
these datasets for pre-training, thus eliminating any inter-
ference from being exposed to them during the pre-training
process. Therefore, Open-Flamingo and IDEFICS emerges
as the most suitable choice for conducting ICL research at
present.

Currently, there is limited research on multimodal ICL,
with only one study focusing on captioning [45]. We are the
first to explore demonstration configuration in the context of
the Visual Question Answering (VQA) task.

Configuring In-Context Sequence for QA. In NLP, there
is a significant body of research dedicated to demonstra-
tion configuration. This research encompasses techniques
such as leveraging similarity measures to retrieve more
relevant in-context examples [26] or employing machine-
generated demonstrations [14]. During the research pro-
cess, some studies have also identified certain properties of
LLMs when applied to in-context learning. For instance,
[33] discovered that randomly replacing labels in demon-
strations has minimal impact on performance, and as long as
the demonstration maintains consistency in terms of format,
input distribution, label space, and query, the model can
achieve favorable results. [30] have empirically demon-
strated that order sensitivity is a common and persistent
challenge across various models. Additionally, [34] pro-
posed a deconstruction of ICL into task recognition and task
learning, investigating the TR and TL capabilities of models
with different shot numbers and scales. Furthermore, [31]
observed the presence of a “copying effect” phenomenon
within LLMs, which is a type of short-cut inference.

3. In-Context Learning (ICL) for VQA

Given a well-trained Large Vision-Language Model
(LVLM) e.g., Flamingo [1], we can use it to
solve VQA by ICL. To achieve this, we need to
prepare a multi-modal in-context sequence S =
{(I1,Q1,A1); (I2,Q2,A2); ...; (In,Qn,An); (Î, Q̂)}
that consists of n-shot (image I , question Q, answer A)
triplets acting as the demonstrations and one test sample
(Î, Q̂). Then we input S to the LVLM for generating the
corresponding answer Â = {â1, ..., âT }, where the t-th
word ât is sampled from the following word distribution

P (·) calculated by the LVLM:
P (ât|S, â1:t−1) (1)

Next, we first extend the hypothesis that ICL can be
decoupled into Task Recognition (TR) and Task Learning
(TL) from NLP [34] to VL domain in Sec. 3.1 where we fur-
ther decouple TR into format TR, visual TR, and linguistic
TR for better analyzing the ICL ability of a LVLM. Then we
introduce the techniques used to configure the demonstra-
tions. The applied techniques include two parts where the
first part in Sec. 3.2 shows how to retrieve the samples from
a supporting set and the second part in Sec. 3.3 discusses
how to manipulate the in-context sequence constructed by
the retrieved demonstrations. Due to space constraints, only
the effective techniques we utilize are presented here and
some other less effective ones are given in the supplemen-
tary materials.

3.1. TR and TL in the VL domain

The ability of ICL can be demonstrated by two distinc-
tive functions: Task Recognition (TR) and Task Learning
(TL) [34]. TR recognizes the task based on the demonstra-
tions, e.g., recognizing the data distribution of the task, and
applying pre-trained priors of LLM. While TL focuses on
learning the correct input-output mapping from the demon-
strations, which can be regarded as an implicit learning pro-
cess analogous to explicit fine-tuning [7].

In this paper, we further refine this hypothesis, providing
a more detailed interpretation within the VL realm. Specifi-
cally, we further decouple TR into three aspects: format TR,
visual TR, and linguistic TR, as shown in Fig. 1. Format
TR pertains to the capacity of the LVLM to identify the task
format, input distribution, and label space based on demon-
strations. For example, in Fig. 1 (c), the question-answer
format of the demonstration helps the model determine that
the potential answer should be a single word or a simple
phrase rather than a complete sentence.

Visual and linguistic TR correspond to the recall of cor-
responding pre-trained knowledge preserved in the LVLM.
As Fig. 1 (a) shows, visual TR uses a visual encoder to iden-
tify relevant labels associated with the query image, includ-
ing the appeared entities, colors, relationships, and more.
Linguistic TR (Fig. 1 (b)) recognizes the query question
(e.g., “What color is the dog?”) through the language com-
ponent. Drawing from pre-training experience, the model
delimits the potential answer space, indicating that only la-
bels related to colors are admissible as the answers. By
combining three TR abilities, the label space can be nar-
rowed down for LVLM to make better prediction.

On the other hand, TL refers to the ability of the LVLM
model to learn the mapping relationship between (image,
question) pairs and their corresponding answers from the
demonstrations. As shown in Fig. 1 (d), TL treats the
questions and ground truth answers from demonstrations as

26712



“training samples”, from which it learns the mapping. Then
if the LVLM can successfully achieve TL, it can directly
map the query into the correct answer.

3.2. Retrieving Demonstrations

Recognizing that each component (e.g., image, question,
and answer) of a VQA sample can be used as an index, we
can respectively use them to retrieve n examples from the
supporting set D = {(I1,Q1,A1), ..., (IN ,QN ,AN ))} as
the demonstrations for n-shot setting. After that, we can
sequence the n-shot triplets to construct the in-context se-
quence S. Next we introduce specific retrieval strategies.
Random Sampling (RS) (Fig. 2 (a)). We obey the uniform
distribution to randomly sample n-shot triplets from D.
Retrieving via Similar Image (SI) (Fig. 2 (b)). We retrieve
n images from D which are most similar to the query image
and then use the corresponding triplets of these retrieved
images as the demonstrations. For example, given the query
sample (Î, Q̂), suppose the i-th image Ii is similar to Î ,
then the whole i-th triplet (Ii,Qi,Ai) will be used as one
demonstration. Here we use the CLIP embeddings of the
images to calculate the cosine similarity.
Retrieving via Similar Texts. Besides retrieving via im-
ages, we can also retrieve n triplets which contain most sim-
ilar texts to the query sample, where the CLIP embeddings
of these texts are used to calculate the cosine similarity. We
consider three kinds of texts.
(1) Retrieving via Similar Questions (SQ) (Fig. 2 (c)). We
use the question as the text for retrieving, i.e., comparing the
similarity between Q̂ and each Qi ∈ D.
(2) Retrieving via Similar Question&Answer (SQA)
(Fig. 2 (d)). We concatenate the question and answer into
a text sequence for retrieving, i.e., comparing the similar-
ity between (Q̂, Â) and each (Qi,Ai) ∈ D. Although this
strategy cannot be applied in practice since we do not have
the ground-truth answer of the query sample, it can give us
an “upper-bound result” of diverse retrieval methods that
can help us better analyze other retrieval strategies.
(3) Retrieving via Similar Question&Pseudo Answer
(SQPA) (Fig. 2 (e)). Since the ground truth answer is not
available during inference, we cannot implement SQA in
practice. To exploit the knowledge of the answers in D,
we generate the pseudo answer ÂP

i and then concatenate it
with Q̂ for retrieving. To get ÂP

i , we can apply the ICL
with the demonstrations retrieved by RS and SI.

3.3. Manipulating Demonstrations

Mismatching the Triplet. To explore whether the cor-
rectness of demonstrations affects results, we implement
mismatched configurations for the image, answer, and
question-answer pair in each demonstration. The follow-
ing Ĩ , Q̃, Ã respectively denotes the mismatched images,
questions, and answers.

(1) Mismatching Image (MI). We replace the image with a
random one from from D. Consequently, S is transformed
to {(Ĩ1,Q1,A1); ...; (Ĩn,Qn,An); (Î, Q̂)}.
(2) Mismatching Answer (MA). We replace the answer
with a random answer in the same label space. S is trans-
formed to {(I1,Q1, Ã1); ...; (In,Qn, Ãn); (Î, Q̂)}.
(3) Mismatching Question-Answer pair (MQA). We re-
place the question-answer pair with a random pair from D.
S ′ = {(I1, Q̃1, Ã1); ...; (In, Q̃n, Ãn); (Î, Q̂)}.
Reordering in Another Modality. We reorder the demon-
strations based on the similarity of another modality, en-
suring that the final sequence is visually and linguistically
similar to the query sample.
(1) Reordering SI demonstrations via question similar-
ity (SI-Q). We use SI to retrieve the demonstrations, and
then reorder these demonstrations based on the similarity
between the question of each demonstration and Q̂.
(2) Reordering SQ demonstrations via image similarity
(SQ-I). Similar to SQ-I, we start with SQ to get the initial
demonstrations based on linguistically relevance, then re-
order the demonstrations by image-lead similarity.
Using Instructions. To investigate how the model be-
haves when given a specific instruction, we add an in-
struction at the beginning of the in-context sequence
S ′ = {Inst; (I1,Q1,A1); ...; (In,Qn,An); (Î, Q̂)},
where Inst denotes the instruction. Besides using instruc-
tions written by humans, we utilize instructions prompted
from GPT-4 to further guide the LVLM.

4. Experiments

4.1. Datasets and Implementation Details

We utilize three VQA datasets: VQAv2 [12], VizWiz [3],
and OK-VQA [32]. The VQAv2 dataset consists of images
from the MSCOCO dataset [24], with more conventional
questions. The VizWiz dataset contains low-quality images
and questions, and it includes a significant number of unan-
swerable questions. The OK-VQA dataset requires external
knowledge to answer the questions. In each VQA dataset,
we use the training set as our supporting set for the exper-
iments, and the validation set serves as our query set. We
employ the Open-Flamingo v1(OFv1, the first version of
OF) and v2(OFv2, the second version of OF) as the LVLM
to evaluate the strategies of demonstration configurations.
During retriving, to calculate the embedding similarity, we
use the ViT-B/32 model as the vision encoder and a 12-
layer Transformer from a well-trained CLIP model [39] as
the language encoder to extract image and sentence embed-
dings, respectively. In ICL, we use 4, 8, 16-shot demon-
strations. All experiments are conducted on the RTX 3090
GPU with FP16 precision.
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Figure 2. The schematic representation of the demonstrations retrieval strategies. Circles, rectangles, and triangles respectively represent
the images, questions, and answers in triplets. The color proximity between these elements indicates their similarity level.

4.2. Results and Analyses

Since exhaustive retrieval and manipulation techniques are
applied to configure in-context sequence, presenting all
these results could lead to disarray. To avoid confusions
and emphasize the major conclusions, we show the corre-
sponding experiment results of each claim in the following
and list all the results in the Supplementary Material. Next,
in Section 4.2.1, we first show the inner properties of the
applied LVLM, Open-Flamingo (OF), which are concluded
from the experiment observations. In this part, we will es-
pecially show the limitations of OF that will harm the ICL
performance of VQA. Then in Section 4.2.2, we will show
which configuration strategies can be used to alleviate these
limitations for improving the performance.

4.2.1 The Properties of Open-Flamingo

In our demonstration configuration experiments and a se-
ries of auxiliary experiments, we observe three main prop-
erties of OF. Although these properties are specifically ob-
served in OF, which is currently the most suitable LVLM
for ICL, the methods used to observe these properties can
be applied to all LVLMs since that these conclusions are
also validated by partial complementary experiments on the
IDEFICS. These properties provide new perspectives for in-
terpreting and evaluating the ICL capabilities of LVLMs.
Task Recognition (TR) is More Crucial than Task
Learning (TL). This is the first property about OF sup-
ported by two experiment observations. Firstly, from Fig. 3
we observe that when shot number increases, the accuracy
does not consistently increase. For instance, in VQAv2, ex-
panding the shot count from 8 to 16 offers a modest accu-
racy increase of 1.33 points, compared to a 2.82 point rise
from 4-shot to 8-shot(OFv1-RS). This suggests that TR out-
performs TL in OF, aligning with prior findings that format
TR does not significantly benefit from additional shots [34].
This is because TR focuses on the label space, format, and

VQAv2 VizWiz OK-VQA

OFv1 OFv2 OFv1 OFv2 OFv1 OFv2

RS 45.97 49.94 27.00 27.21 36.13 36.68
RS(MI) 45.13 49.73 26.92 26.92 35.96 36.16
RS(MA) 45.65 48.94 12.77 11.51 35.56 29.88

SI 48.48 51.66 38.21 39.10 39.87 38.35
SI(MQA) 47.76 49.94 27.57 26.73 37.37 35.82
SI(MA) 47.64 50.40 13.11 11.48 34.70 29.55

SQ 49.53 48.83 30.69 34.17 40.31 37.52
SQ(MI) 48.01 46.21 30.57 31.95 38.38 33.25
SQ(MQA) 45.32 48.98 27.19 26.45 36.71 35.52
SQ(MA) 47.18 42.72 14.82 15.42 29.50 20.50

SQA 65.71 61.50 41.46 41.46 52.49 47.85
SQA(MI) 65.52 60.88 41.09 40.66 51.31 46.88
SQA(MQ) 50.62 60.62 40.31 40.16 40.25 33.04

Table 1. Average results over 4&8-shot of mismatching triplets.

input distribution, which means that more shots bring neg-
ligible benefits. However, TL aims at learning input-output
mappings. Then given more demonstrations the model can
better grasp the mapping relationships and thus enhancing
TL performance.

Secondly, Table 1 presents the results of using mismatch-
ing triplets. When the disturbed triplets are used, anti-
intuitively, the VQA performance does not significantly de-
grade, e.g., even when all input-output mappings are dis-
turbed, the RS accuracy on VQAv2 only decreases by less
than 1 point. Such phenomenon can be explained from the
perspectives of TR and TL. Specifically, TR focus on rec-
ognizing the question format, input distribution, and label
space from the demonstrations, which can be provided from
the disturbed demonstrations as the non-disturbed ones. TL
needs to capture the correct input-out mapping while the
disturbed QA pairs will damage this. Therefore, TR is less
affected by disturbances compared to TL. As the ICL per-
formance is less affected by disturbances, we can conclude
that TR plays is more crucial than than TL. In Table 2, mis-
matched images(RS(MI))/answers(RS(MA)) have minimal
impact, also indicating the dominance of TR in IDEFICS.

Besides these two experiment observations, we conduct
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Figure 3. Experimental results of different demonstrations retrieval strategies on OFv1 and OFv2, comparing 4-shot, 8-shot, 16-shot, and
average results across these configurations. SQPA(SI-4) refers to using the result of 4-shot SI as the pseudo answer.

further validation following the approach proposed in [34].
This approach disentangles TR and TL by utilizing differ-
ent demonstration settings to reflect their respective capa-
bilities. Details and full results of our experiments can be
found in the supplementary material. We discover that the
accuracy of TR is significantly higher than TL and it is com-
parable to the results obtained from the standard ICL. Such
observation further confirms that TR plays a dominant role
in ICL. Additionally, we observe that with more data pre-
training and an improved language backbone, the TL ca-
pability of OFv2 significantly increases compared to OFv1.
This indicates that increasing the amount of pre-training can
enhance the TL capability of the model.
Short-cut Inference. In NLP, using similar text demon-
strations often enhances performance. However, our ex-
periments show that similar demonstrations do not always
improve results and can sometimes damage them. For in-
stance, in Fig. 3, on VQAv2, using demonstrations with
similar questions (SQ) performs worse than randomly sam-
pled ones (RS), e.g., 50.25 vs. 48.94.

We believe this happens because OF tends to build short-
cut for predicting. After analyzing, we find that when the
demonstration has a question similar to the query, OF often
copies the answer from the demonstration with the similar
question instead of using visual information, thus building a
short-cut. For example, in Fig. 4 (b1), when asked about bed
sheet patterns, SQ incorrectly returns “alligator and bear”
from the demonstration with a similar question, even though
it does not match the query image.

Besides the qualitative observations, we also quantita-
tively measure the short-cut effect. In Tab. 3 and Tab. 2,
we compute the probability that predicted answers also ap-
pear in the demonstrations. For SQ, OFv1/OFv2/IDEFICS
exhibit copy rates of 77.26%/79.84%/75.34%, respec-
tively, while SQA further increases the copy rates
to 87.74%/89.47%/87.32%, while RS and SI achieve
only 43.64%/37.34%/44.1% and 50.44%/54.38%/55.66%.

RS SI SQ SI-Q SQA RS(MI) RS(MA) RS w/o instruction

IDEFICS 53.70 54.23 52.34 55.84 64.05 52.29 52.85 52.22

Table 2. Average results over 4&8-shot of IDEFICS on VQAv2
and the copy rate (16 shot). We follow IDEFICS[15] to add in-
struction and “w/o instruction” denotes not using the instruction.

RS SI SQ SQA SQA(sole) SQA(sole wrong)

OFv1 43.64 50.44 77.26 87.74 47.39 37.07
OFv2 37.34 54.38 79.84 89.47 45.82 45.71
IDEFICS 44.10 55.66 75.34 87.32 52.70 39.66

Table 3. The copy rate (%) of short-cut on VQAv2 (16-shot).

Moreover, we conduct an experiment following [31] that us-
ing demonstrations with identical test inputs and correct or
incorrect labels. OF predicts the same answer as the iden-
tical input in 47.39%/45.82% of cases with correct labels
and 37.07%/45.71% of cases with incorrect labels, suggest-
ing that even when there is only one question similar to the
query in the demonstration, it can still trigger more severe
short-cut inference.

This short-cut effect, prevalent in NLP [31] and Image
Captioning [45], its influence beyond LLMs to also impact
LVLMs across various tasks. One possible reason is that
these models have limited TL ability and are influenced by
biases instead of learning from the demonstrations.
Image and Language Decoders are not totally Compat-
ible. This is the third conclusion about OF and can be
demonstrated in two aspects. First, the language encoder is
much stronger than the vision encoder, which causing that
linguistic TR plays a more substantial role than visual TR
in VQA. Second, the vision and language modules are not
aligned well, causing some language reasoning ability lose
efficacy in the VL case.

For the first aspect, OF shows heightened sensitivity to
text quality, with compromised textual input leading to a
more significant decline in performance. Results in Tab. 1
demonstrate that replacing the answer in SQ causes a signif-
icant 5-point drop, while replacing the image only leads to
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Q: What is this? 
A: can soup

SI
Q: What kind of food is in this can?
A: vegetable soup

GT: vegetable soup
RS: vegetable

Q: What is the design on the sheets? 
A: alligators and bears

Q: What is the design of the bed cover? 
A: alligators and bears

GT: zebra
RS: zebra

SQ

Q: What color is the darker horse? 
A: blue

RS
Q: What animal is this? 
A: cat

GT: cat
RS: cat

Q: What animal is this? 
A: cat

SQPA
Q: What animal is this? 
A: dog

GT: dog
SI: cat

PA: cat

Q: What kind of meat is 
in the meal?
A: chicken

SI
Q: What meat is in this dish?
A: chicken

GT: chicken
RS: pork

Q: What is the scientific name of this leaf?
A: tulip

Q: What is the scientific name of this leaf?
A: tulip

GT: camellia
RS: rose leaf

SQ

Q: What color are the wheels?
A: white

SI
Q: What color is the sky?
A: blue

GT: blue
RS: blue

Q: What color is the teapot?
A: white

SQPA
Q: What color is the teapot?
A: red

GT: red
SI: white

PA: 
white

(a) SI (b) Short-cut (c) Mismatch (d) SQPA

(a1)

(a2)

(b1) (c1) (d1)

(b2) (c2) (d2)

Figure 4. Four in-context learning scenarios. The arrow on the left signifies the retrieval strategy, between a retrieved demonstration (top)
and the query sample (bottom). (a) SI shows effective TL through similar image retrieval, such as learning “soup can” in (a1). (b) Short-cut
illustrates inference errors where the model replicates the incorrect answer “tulip” from a similar question in (b2). (c) Mismatch highlights
that mismatched answers within the same label space do not significantly impact model effectiveness, with the TR correctly identifying the
answer as “cat” in (c1). (d) SQPA reveals how the model corrects a wrong answer (“white”) to “red” by using pseudo answers for learning
the input-output mapping in (d2).

a minor 1-point decrease. Similarly, substituting the ques-
tion of SQA (MQ) lead to a notable decline of 15 points,
whereas replacing the image (MI) did not cause a signifi-
cant decrease. Moreover, replacing the text with noisy text
leads to a more significant performance decline compared to
replacing the image with a blurred image (full results in sup-
plementary material). These findings validate that linguistic
TR plays a more substantial role than visual TR, potentially
due to the greater power and scale of language module com-
pared to the visual module in OF, e.g., the language mod-
ule is LLaMA/MPT, which containing 7 billion parameters
and pre-trained on one trillion tokens, while the visual mod-
ule is CLIP ViT/L-14, containing 428 million parameters
and pre-trained on 400 million data. This indicates that in
VLMs, language and vision do not play equally important
roles. Instead, linguistic TR demonstrates greater potency
and exerts a stronger influence on overall performance.

For the second aspect, we find that some useful strate-
gies for solving QA lose their efficacy in OF. For instance,
reformulating a QA pair into a declarative sentence to better
adapt to the pre-training language model and changing the
orders of demonstrations, known to improve performance
in NLP, fails to have the same effect on LVLM and detailed
experimental descriptions and complete results will be pre-
sented in the supplementary materials. Additionally, adding
instructions before the in-context sequence, which is effec-
tive in NLP, only works in OFv2 and not OFv1. Before
we think that the language module of OF is stronger than
the vision module, then why some useful NLP strategies
lose the efficacy? We think the major reason is that the vi-
sion and language modules are not aligned well, i.e., the
language reasoning of the original LLM does not totally in-
herited into the VLM after vision-language alignment fine-
tuning. Such assumption can be supported from the com-
parison between OFv1 and OFv2. Compared with OFv1,
OFv2 uses more image-text pairs for aligning vision and

language modules(180M vs.15M pairs) and thus can inherit
more language reasoning ability for solving VL task, and
thus we find that adding instructions works better in OFv2
than OFv1, where more details are given in Section 4.2.2.

4.2.2 Effective Configuration Strategies

Although OF is one of the SOTA LVLMs for ICL, in sec-
tion 4.2.1, we observe that it has three major limitations:
weak TL capabilities, the short-cut effect, and not totally
compatible vision-language modules. However, in this sec-
tion, we still observe that some strategies can improve the
ICL ability for VQA.
Similar images and texts lead to better performance.
Despite we previously show that using demonstrations with
similar questions leads to short-cut inference, we now
present evidence that using demonstrations that simultane-
ously contain similar images and questions can enhance
performance. Although the improvements vary depending
on the dataset, such strategy is still a powerful way to im-
prove the performance.

First, as Fig. 3 and Tab. 2 shows, using the demonstra-
tions with similar image (SI) consistently boosts LVLM
performance, e.g., on VQAv2/VizWiz/OK-VQA/(OFv2, 4-
shot), we observe 1.54/14.23/2.66 point improvements. We
assume that more similar images in the in-context sequence
can compensate more visual information that may have
been missed or incorrectly recognized during the visual TR
stage. For instance, in Fig. 4, while both RS and SQ could
only recognize the term “vegetable” for an image of a soup
can, SI identify it as a “Progresso vegetable soup” since one
in-context image also has this soup can. Such visual com-
pensation works more obvious on VizWiz since the image
quality of this dataset is quite low and using similar images
help OF pinpoint a more accurate label space, i.e., enhanc-
ing the visual TR ability.
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Dataset 4-shot 8-shot 16-shot

RS(OFv1) VQAv2 44.56 47.38 48.71
Instruct1(OFv1) VQAv2 43.75 46.91 48.67
RS VQAv2 48.82 51.05 50.89
Instruct1 VQAv2 49.93 52.71 50.95

RS VizWiz 22.07 32.35 39.01
Instruct1 VizWiz 25.70 34.71 39.32

RS OK-VQA 34.82 38.54 39.55
Instruct1 OK-VQA 35.72 39.38 40.46
Instruct2 OK-VQA 36.45 40.17 41.11
Instruct3 OK-VQA 35.53 40.19 40.02

Instruct1: According to the previous question and answer pair, answer the final question.
Instruct2: Consider the semantic relationship between the question and the image.
Instruct3: You will be engaged in a two-phase task. Phase 1: Absorb the information
from a series of image-text pairs. Phase 2: Use that context, combined with an upcoming
image and your own database of knowledge, to accurately answer a subsequent question.

Table 4. The results of using instructions.

Secondly, the SQ approach also brings improvements,
although these enhancements are not consistently stable due
to the presence of the short-cut. However, as shown in
Fig. 3, for the VizWiz dataset with lower-quality text and the
OK-VQA dataset requiring additional knowledge, demon-
strations containing similar questions and reference answers
still assist the model in finding the correct answers.

Thirdly, in section 3.3, we show how to reorder the
retrieved demonstrations based on their similarity in an-
other modality, i.e., it retrieves similar images/questions
and rearranges them based on the similarity of their asso-
ciated questions/images. As Fig. 3 shows, when applied to
two versions of OF and across three varied datasets, this
method consistently showcased superiority over base meth-
ods. Such findings suggest that both visually and textually
similar in-context examples can greatly enhance the perfor-
mance of LVLMs in TL.
Instruction enhances the performance of linguistically
advanced model. Providing instructions notably enhances
the format TR and TL capabilities of the LVLM. As ev-
ident in Tab. 4, the OFv2 model exhibits substantial im-
provements across various datasets when using instructions,
especially in limited demonstration scenarios. For instance,
adding instructions to the 4-shot experiment on VizWiz re-
sults in a 3.63 points increment. Given the necessity for
additional knowledge in VQA tasks on OK-VQA, we uti-
lize GPT-4 to design two types of instructions: concise and
straightforward instructions (Instruct2 in Tab. 4) and de-
tailed, hierarchical instructions (Instruct3 in Tab. 4). Pro-
viding instructions enhances the format TR and TL capabil-
ities of LVLMs by increasing information density in demon-
strations, akin to providing more demonstrations. Com-
pared to additional demonstrations, it saves selection time
and reduces the processing burden on the visual encoder of
LVLM, making it simpler and more convenient. However,
the instructions do not yield significant improvements in ex-
periments with the OFv1 model due to the inferior language
encoder of the v1 model, impacting its capability to process
these instructions.
Pseudo answers have potential for expeditious enhance-

VQAv2 VizWiz OK-VQA

4-shot 8-shot 16-shot 4-shot 8-shot 16-shot 4-shot 8-shot 16-shot

RS 48.82 51.05 50.89 22.07 32.35 39.01 34.82 38.54 39.55
SQPA(RS-4) 49.85 51.03 51.96 30.02 31.93 34.25 38.92 41.16 40.06
SI 50.36 52.95 54.10 36.30 41.89 44.17 36.46 40.23 40.73
SQPA(SI-4) 50.57 52.02 52.53 38.37 39.66 40.67 39.34 41.25 40.84

Table 5. The results of SQPA on OFv2. SQPA(RS/SI-4) refers to
using the result of 4-shot RS/SI as the pseudo answer.

ment of performance. From the results in Tab. 5, we can
observe that at 4-shot, SQPA generally improves perfor-
mance. Intuitively, as shown in Fig. 4, when the first-round
model generates an incorrect answer (“cat”), the demonstra-
tion obtained through SQA retrieval using the question and
the erroneous answer will be dissimilar to the content of the
query image (which is actually a dog). This provides the
model with an opportunity to discover that “cat” is not the
correct answer and to reason and infer a new answer. There-
fore, the accuracy of the second-round model using SQPA is
expected to surpass that of the first round. However, as the
number of shots increases, only on OK-VQA does SQPA
still show improvement. This may be because too many in-
correct QA pairs interfere with the reasoning process of the
model, while OK-VQA requires additional knowledge. By
using pseudo-answers to search, the model may be able to
find more related knowledge.

5. Conclusion

In this paper, our focus is to investigate the diverse in-
context configurations and delve into the inner properties
of LVLMs using VQA as a case study. We design var-
ious methods to retrieve and manipulate in-context sam-
ples. Through exhaustive experiments, we uncover three
important inner properties of the applied LVLMs. Further-
more, we identify the strategies that consistently enhance
the performance of ICL VQA. These findings contribute to
a deeper understanding of LVLMs and provide valuable in-
sights for optimizing their ICL performance in VQA.

In the future, we plan to validate the effectiveness of
our proposed demonstration configuration strategies on a
wider range of LVLMs. Additionally, we will analyze and
evaluate the capabilities of more LVLMs from the perspec-
tives of the three properties observed in Open-Flamingo and
IDEFICS in Sec. 4.2.1.
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